CN107473736A - 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 - Google Patents
一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 Download PDFInfo
- Publication number
- CN107473736A CN107473736A CN201710041619.0A CN201710041619A CN107473736A CN 107473736 A CN107473736 A CN 107473736A CN 201710041619 A CN201710041619 A CN 201710041619A CN 107473736 A CN107473736 A CN 107473736A
- Authority
- CN
- China
- Prior art keywords
- sintering
- psz
- ceramics
- temperature
- zirconia ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D5/00—Supports, screens, or the like for the charge within the furnace
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Magnetic Ceramics (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明针对氧化锆陶瓷烧结温度高、较难实现致密化的问题,提出了一种氧化锆陶瓷承烧板的低温冷烧结制备方法。采用纳米级部分稳定氧化锆粉末(3Y‑PSZ)为原始粉末,使用水或水溶液为溶剂,在低于200℃的预烧温度和较高单轴压力的作用下制备3Y‑PSZ陶瓷的预烧坯体;随后,分别采用无压烧结、热压烧结和热等静压烧结工艺,在极低的烧结温度(≤1100℃)下制备了致密的氧化锆陶瓷(致密度>94.0%);且制备的氧化锆陶瓷具有优异的力学性能和抗热震性能。该方法工艺简单、环境友好、能耗极低,可成为用于MnZn铁氧体烧制氧化锆陶瓷承烧板的理想制备方法,具有广阔的产业化应用前景。
Description
一、技术领域:
本发明提出了一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法。
二、技术背景:
高性能MnZn铁氧体的起始磁导率μi对Zn含量极为敏感。烧结过程中, Zn的烧损将导致μi的下降。Zn的烧损主要源于MnZn铁氧体烧结磁芯与耐火材料的接触。因此,用于MnZn铁氧体烧制承烧板的选材尤为重要。若使用不恰当的承烧板材料,如ZnAl2O4相,与其接触的磁芯易产生异相结晶,从而影响磁芯产品的外观与性能。
氧化锆(ZrO2)陶瓷具有较好的高温化学稳定性,但纯ZrO2陶瓷在1000℃以上会发生单斜相(m-ZrO2)和四方相(t-ZrO2)间的可逆转变,并伴随约7%的体积变化,而由体积变化产生的应力易引发材料的破坏。将半径与Zr+4离子半径相近的Y2O3掺入ZrO2中,形成的固溶体可抑制ZrO2的相变,降低ZrO2承烧板开裂的可能性。因此,3mol%Y2O3部分稳定的ZrO2(3Y-PSZ)优异的高温化学稳定性和抗热震性能使其成为MnZn铁氧体承烧板的首选材料。
3Y-PSZ陶瓷承烧板的致密度是影响其力学性能和抗热震性能的关键因素。对于陶瓷材料,烧结温度的提高、保温时间的延长均有利于其实现致密化;但会导致材料的晶粒尺寸随之增大(使力学性能等关键性能指标不可控),同时,高温烧结将带来极大的成本损耗,制约了其在工业上的批量生产。通常来说, 3Y-PSZ陶瓷的烧结温度高达1100-1500℃。近年来,研究者们对3Y-PSZ陶瓷的低温烧结工艺进行了不断的探索。G.Bernard-Granger等人采用放电等离子体烧结(SPS)工艺,在1125℃烧结温度下,制备了致密度大于90%的PSZ陶瓷。S. Nightingale等人采用微波场烧结工艺,在1500℃烧结温度下制备了致密度为 96.0%的PSZ陶瓷。M.Mazaheri等人采用两步烧结(TSS)工艺,两步烧结最低温度分别为1300℃和1150℃的条件下,最终制得了致密度大于98.0%的PSZ陶瓷。由此可见,即使采用先进的烧结工艺,致密PSZ陶瓷(>95%)的烧结温度仅可降至1100-1300℃。
针对3Y-PSZ陶瓷承烧板烧结温度高、较难实现致密化的问题,本发明提出了一种3Y-PSZ陶瓷承烧板的低温冷烧结制备方法。选用纳米级 (20-50nm)3Y-PSZ粉末为原始粉末,在低于200℃的预烧温度下获得PSZ陶瓷的预烧结坯体;随后,在极低的烧结温度(≤1100℃)下制备了致密的PSZ陶瓷(致密度>94.0%);制备的PSZ陶瓷具有优异的力学性能和抗热震性能。该方法工艺简单、环境友好、能耗极低,可成为用于MnZn铁氧体烧制的氧化锆陶瓷承烧板的理想制备方法,具有广阔的产业化应用前景。
三、发明内容:
本发明的目的是提供了一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板的低温冷烧结制备方法。具体的说,本发明的技术方案按照以下步骤进行:
1.根据制备ZrO2陶瓷承烧板的尺寸,计算所需3Y-PSZ粉末的质量。将 3Y-PSZ纳米级粉末(纯度>99.0%,平均粒径为20-40nm)中加入30wt.%的去离子水,超声分散并搅拌20-40min,在研钵中研磨10-30min。
2.将步骤1中研磨后的3Y-PSZ浆料倒入模具中,在室温环境中,在电加热压力机上进行冷压,压力为350-450MPa,保压时间为10-20min。此后,保持压力不变,将加热温度升高至180-200℃,升温速率5-10℃/min,保温时间为3h。制得PSZ陶瓷的预制坯体。
3.将步骤2中制备的PSZ陶瓷预制坯体移至鼓风干燥箱,200℃烘干 12-18h,使坯体完全干燥。
4.将干燥后的PSZ陶瓷预制坯体进行无压烧结,制得高致密度的PSZ陶瓷,烧结温度为1000-1100℃,烧结保温时间为3-5h,升温速率为5℃/min,烧结气氛为氩气、氮气或真空。
5.在以上步骤4中,烧结工艺也可采用热压烧结,烧结温度为950-1050℃,加压方式为单向或双向加压,施加压力为30-50MPa,烧结保温时间为2-4h,升温速率为20℃/min,烧结气氛为氩气、氮气或真空。
6.在以上步骤4中,烧结工艺也可采用热等静压烧结,烧结温度为 900-1000℃,压力为50-100MPa,烧结保温时间为1-3h,升温速率为20℃/min。
根据GB/T 4741-1999,测试制备PSZ陶瓷的抗弯强度;根据GB/T 23806 -2009,测试制备PSZ陶瓷的断裂韧性;根据YB/T 376.1-1995测试制备PSZ陶瓷的抗热震性能。经测试,采用本发明提出的低温冷烧结工艺制备的PSZ陶瓷具有优异的力学性能和抗热震性能,适用于制造MnZn铁氧体烧制的氧化锆陶瓷承烧板。
四、具体实施方式:
实施例1:
选取纯度为99.5%,平均粒径为40nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得3Y-PSZ的悬浮液,在研钵中研磨10min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压10min后,在180℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯180℃温度下烘干12h。采用权利要求4中的工艺进行真空无压烧结,工艺参数为:烧结温度1000℃,保温时间4h,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达94.5%,室温下材料的的抗弯强度为 573.5MPa,其断裂韧性为5.30MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震10次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例2:
选取纯度为99.5%,平均粒径为30nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌30min,制得 3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压15min后,在190℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯190℃温度下烘干12h。采用权利要求4中的工艺进行真空无压烧结,工艺参数为:烧结温度1050℃,保温时间4h,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达94.9%,室温下材料的的抗弯强度为 580.3MPa,其断裂韧性为5.42MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震15次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例3:
选取纯度为99.9%,平均粒径为20nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌40min,制得 3Y-PSZ的悬浮液,在研钵中研磨20min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干18h。采用权利要求4中的工艺进行真空无压烧结,工艺参数为:烧结温度1100℃,保温时间4h,氩气保护。
制得ZrO2陶瓷的致密度可达95.5%,室温下材料的的抗弯强度为615MPa,其断裂韧性为5.78MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例4:
选取纯度为99.5%,平均粒径为40nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得 3Y-PSZ的悬浮液,在研钵中研磨10min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压10min后,在180℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯180℃温度下烘干12h。采用权利要求4中的工艺进行真空热压烧结,工艺参数为:烧结温度950℃,保温时间4h,压力为50MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达94.8%,室温下材料的的抗弯强度为 578.6MPa,其断裂韧性为5.38MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震10次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例5:
选取纯度为99.9%,平均粒径为30nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌30min,制得 3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压15min后,在190℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯190℃温度下烘干12h。采用权利要求4中的工艺进行真空热压烧结,工艺参数为:烧结温度1000℃,保温时间4h,压力为40MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达95.8%,室温下材料的的抗弯强度为624MPa,其断裂韧性为5.84MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震15次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例6:
选取纯度为99.99%,平均粒径为20nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌30min,制得 3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干18h。采用权利要求4中的工艺进行热压烧结,工艺参数为:烧结温度1050℃,保温时间4h,压力为50MPa,氩气保护。
制得ZrO2陶瓷的致密度可达96.8%,室温下材料的的抗弯强度为648MPa,其断裂韧性为5.80MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例7:
选取纯度为99.5%,平均粒径为20nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得 3Y-PSZ的悬浮液,在研钵中研磨20min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干12h。采用权利要求4中的工艺进行真空热等静压烧结,工艺参数为:烧结温度1000℃,保温时间3h,压力为80MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达97.2%,室温下材料的的抗弯强度为675MPa,其断裂韧性为6.30MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例8:
选取纯度为99.9%,平均粒径为30nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干12h。采用权利要求4中的工艺进行真空热等静压烧结,工艺参数为:烧结温度900℃,保温时间3h,压力为50MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达96.5%,室温下材料的的抗弯强度为635MPa,其断裂韧性为5.89MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
五、附图说明:
图1是实施例1中,3Y-PSZ陶瓷XRD图谱
图2是实施例4中,3Y-PSZ陶瓷的显微组织。
Claims (11)
1.一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法,其特征在于在低温预烧阶段,在高压、水或水溶液的蒸发和粉体颗粒的溶解沉淀过程共同作用下,制备了致密度密度较高(>95%)的3Y-PSZ预制坯体。
2.采用无压烧结、热压烧结或热等静压烧结工艺对3Y-PSZ制坯体进行低温烧结 (≤1100℃),即可制备出致密度较高(>94.0%)的氧化锆陶瓷,适用于制造MnZn铁氧体烧制的氧化锆陶瓷承烧板。
3.具体的说,本发明的技术方案按照以下步骤进行:
根据制备ZrO2陶瓷承烧板的尺寸,计算所需3Y-PSZ粉末的质量。
4.将3Y-PSZ纳米级粉末(纯度>99.0%,平均粒径为20-40nm) 中加入30 wt.%的去离子水,超声分散并搅拌20-40min,在研钵中研磨10-30min。
5.将步骤1中研磨后的3Y-PSZ浆料倒入模具中,在室温环境中,在电加热压力机上进行冷压,压力为350-450MPa,保压时间为 10-20min。
6.此后,保持压力不变,将加热温度升高至180-200℃,升温速率5-10℃/min,保温时间为3h。
7.制得PSZ陶瓷的预制坯体。
8.将步骤2中制备的PSZ陶瓷预制坯体移至鼓风干燥箱,200℃烘干12-18h,使坯体完全干燥。
9.将干燥后的PSZ陶瓷预制坯体进行无压烧结,制得高致密度的PSZ陶瓷,烧结温度为1000-1100℃,烧结保温时间为3-5h,升温速率为5℃/min,烧结气氛为氩气、氮气或真空。
10.在以上步骤4中,烧结工艺也可采用热压烧结,烧结温度为950-1050℃,加压方式为单向或双向加压,施加压力为30-50MPa,烧结保温时间为2-4h,升温速率为20℃/min,烧结气氛为氩气、氮气或真空。
11.在以上步骤4中,烧结工艺也可采用热等静压烧结,烧结温度为900-1000℃,压力为50-100MPa,烧结保温时间为1-3h,升温速率为20℃/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710041619.0A CN107473736A (zh) | 2017-01-22 | 2017-01-22 | 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710041619.0A CN107473736A (zh) | 2017-01-22 | 2017-01-22 | 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107473736A true CN107473736A (zh) | 2017-12-15 |
Family
ID=60593937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710041619.0A Pending CN107473736A (zh) | 2017-01-22 | 2017-01-22 | 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107473736A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110428967A (zh) * | 2019-08-27 | 2019-11-08 | 四川大学 | 一种超低温冷烧结铁基纳米晶复合磁粉芯的制备方法及产品 |
CN113321520B (zh) * | 2021-07-04 | 2022-05-27 | 湖南洛兰新材料有限公司 | 一种抗粘结耐高温承烧器及其制备方法 |
CN115849893A (zh) * | 2023-02-16 | 2023-03-28 | 南昌大学 | 一种镍锌铁氧体及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101039877A (zh) * | 2004-09-01 | 2007-09-19 | 先进纳米技术有限公司 | 氧化锆陶瓷 |
-
2017
- 2017-01-22 CN CN201710041619.0A patent/CN107473736A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101039877A (zh) * | 2004-09-01 | 2007-09-19 | 先进纳米技术有限公司 | 氧化锆陶瓷 |
Non-Patent Citations (1)
Title |
---|
MARTIN TRUNEC: "Warm pressing of zirconia nanoparticles by the spark plasma sintering technique", 《SCRIPTA MATERIALIA》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110428967A (zh) * | 2019-08-27 | 2019-11-08 | 四川大学 | 一种超低温冷烧结铁基纳米晶复合磁粉芯的制备方法及产品 |
CN113321520B (zh) * | 2021-07-04 | 2022-05-27 | 湖南洛兰新材料有限公司 | 一种抗粘结耐高温承烧器及其制备方法 |
CN115849893A (zh) * | 2023-02-16 | 2023-03-28 | 南昌大学 | 一种镍锌铁氧体及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112830782B (zh) | 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法 | |
Manshor et al. | Microwave sintering of zirconia-toughened alumina (ZTA)-TiO2-Cr2O3 ceramic composite: The effects on microstructure and properties | |
Wang et al. | High optical quality Y2O3 transparent ceramics with fine grain size fabricated by low temperature air pre-sintering and post-HIP treatment | |
CN100503507C (zh) | 低温烧结的99氧化铝陶瓷及其制造方法和用途 | |
Gómez et al. | Nanocrystalline yttria-doped zirconia sintered by fast firing | |
CN107673757A (zh) | 一种陶瓷手机后盖及其制备方法 | |
CN107473736A (zh) | 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 | |
CN106587994A (zh) | 一种钛酸钡铁电陶瓷的低温冷烧结制备方法 | |
CN112321299B (zh) | 超低损耗的钇铝石榴石微波介质陶瓷材料及其制备方法 | |
CN101948315A (zh) | 一种高性能氮化铝陶瓷的低温烧结方法 | |
CN110436932A (zh) | 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法 | |
CN114907124B (zh) | 一种微波介质材料TmVO4及其制备方法 | |
Agrawal | Microwave sintering of ceramics, composites and metal powders | |
CN114956828B (zh) | 碳化硅陶瓷及其制备方法和应用 | |
Shen et al. | Effect of debinding and sintering profile on the optical properties of DLP-3D printed YAG transparent ceramic | |
CN112062558B (zh) | 氧化锆陶瓷的制备方法 | |
Zhu et al. | Preparation of complex-shaped Al2O3/SiCp/SiCw ceramic tool by two-step microwave sintering | |
CN103864419B (zh) | 一种高致密锆酸钡陶瓷的制备方法 | |
Feng et al. | Deformation restraint of tape-casted transparent alumina ceramic wafers from optimized lamination | |
Ma et al. | The energy storage properties of fine-grained Ba0. 8Sr0. 2Zr0. 1Ti0. 9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings | |
CN103951414B (zh) | 具有低介电损耗巨电容率和压敏特性陶瓷材料的制造方法 | |
Lee et al. | The effect of yttrium nitrate addition on the densification behaviour of Y2O3 ceramics during the cold sintering process | |
CN112174645B (zh) | 一种制备致密纳米晶粒陶瓷的方法 | |
CN106891599A (zh) | 一种釔稳定氧化锆陶瓷隔热材料的制备方法 | |
CN100509692C (zh) | 一种钨刚玉陶瓷材料及低温烧结方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171215 |
|
WD01 | Invention patent application deemed withdrawn after publication |