CN107473736A - 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 - Google Patents

一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 Download PDF

Info

Publication number
CN107473736A
CN107473736A CN201710041619.0A CN201710041619A CN107473736A CN 107473736 A CN107473736 A CN 107473736A CN 201710041619 A CN201710041619 A CN 201710041619A CN 107473736 A CN107473736 A CN 107473736A
Authority
CN
China
Prior art keywords
sintering
psz
ceramics
temperature
zirconia ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710041619.0A
Other languages
English (en)
Inventor
傅昊洋
王诗阳
朱小硕
李子峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710041619.0A priority Critical patent/CN107473736A/zh
Publication of CN107473736A publication Critical patent/CN107473736A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明针对氧化锆陶瓷烧结温度高、较难实现致密化的问题,提出了一种氧化锆陶瓷承烧板的低温冷烧结制备方法。采用纳米级部分稳定氧化锆粉末(3Y‑PSZ)为原始粉末,使用水或水溶液为溶剂,在低于200℃的预烧温度和较高单轴压力的作用下制备3Y‑PSZ陶瓷的预烧坯体;随后,分别采用无压烧结、热压烧结和热等静压烧结工艺,在极低的烧结温度(≤1100℃)下制备了致密的氧化锆陶瓷(致密度>94.0%);且制备的氧化锆陶瓷具有优异的力学性能和抗热震性能。该方法工艺简单、环境友好、能耗极低,可成为用于MnZn铁氧体烧制氧化锆陶瓷承烧板的理想制备方法,具有广阔的产业化应用前景。

Description

一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制 备方法
一、技术领域:
本发明提出了一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法。
二、技术背景:
高性能MnZn铁氧体的起始磁导率μi对Zn含量极为敏感。烧结过程中, Zn的烧损将导致μi的下降。Zn的烧损主要源于MnZn铁氧体烧结磁芯与耐火材料的接触。因此,用于MnZn铁氧体烧制承烧板的选材尤为重要。若使用不恰当的承烧板材料,如ZnAl2O4相,与其接触的磁芯易产生异相结晶,从而影响磁芯产品的外观与性能。
氧化锆(ZrO2)陶瓷具有较好的高温化学稳定性,但纯ZrO2陶瓷在1000℃以上会发生单斜相(m-ZrO2)和四方相(t-ZrO2)间的可逆转变,并伴随约7%的体积变化,而由体积变化产生的应力易引发材料的破坏。将半径与Zr+4离子半径相近的Y2O3掺入ZrO2中,形成的固溶体可抑制ZrO2的相变,降低ZrO2承烧板开裂的可能性。因此,3mol%Y2O3部分稳定的ZrO2(3Y-PSZ)优异的高温化学稳定性和抗热震性能使其成为MnZn铁氧体承烧板的首选材料。
3Y-PSZ陶瓷承烧板的致密度是影响其力学性能和抗热震性能的关键因素。对于陶瓷材料,烧结温度的提高、保温时间的延长均有利于其实现致密化;但会导致材料的晶粒尺寸随之增大(使力学性能等关键性能指标不可控),同时,高温烧结将带来极大的成本损耗,制约了其在工业上的批量生产。通常来说, 3Y-PSZ陶瓷的烧结温度高达1100-1500℃。近年来,研究者们对3Y-PSZ陶瓷的低温烧结工艺进行了不断的探索。G.Bernard-Granger等人采用放电等离子体烧结(SPS)工艺,在1125℃烧结温度下,制备了致密度大于90%的PSZ陶瓷。S. Nightingale等人采用微波场烧结工艺,在1500℃烧结温度下制备了致密度为 96.0%的PSZ陶瓷。M.Mazaheri等人采用两步烧结(TSS)工艺,两步烧结最低温度分别为1300℃和1150℃的条件下,最终制得了致密度大于98.0%的PSZ陶瓷。由此可见,即使采用先进的烧结工艺,致密PSZ陶瓷(>95%)的烧结温度仅可降至1100-1300℃。
针对3Y-PSZ陶瓷承烧板烧结温度高、较难实现致密化的问题,本发明提出了一种3Y-PSZ陶瓷承烧板的低温冷烧结制备方法。选用纳米级 (20-50nm)3Y-PSZ粉末为原始粉末,在低于200℃的预烧温度下获得PSZ陶瓷的预烧结坯体;随后,在极低的烧结温度(≤1100℃)下制备了致密的PSZ陶瓷(致密度>94.0%);制备的PSZ陶瓷具有优异的力学性能和抗热震性能。该方法工艺简单、环境友好、能耗极低,可成为用于MnZn铁氧体烧制的氧化锆陶瓷承烧板的理想制备方法,具有广阔的产业化应用前景。
三、发明内容:
本发明的目的是提供了一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板的低温冷烧结制备方法。具体的说,本发明的技术方案按照以下步骤进行:
1.根据制备ZrO2陶瓷承烧板的尺寸,计算所需3Y-PSZ粉末的质量。将 3Y-PSZ纳米级粉末(纯度>99.0%,平均粒径为20-40nm)中加入30wt.%的去离子水,超声分散并搅拌20-40min,在研钵中研磨10-30min。
2.将步骤1中研磨后的3Y-PSZ浆料倒入模具中,在室温环境中,在电加热压力机上进行冷压,压力为350-450MPa,保压时间为10-20min。此后,保持压力不变,将加热温度升高至180-200℃,升温速率5-10℃/min,保温时间为3h。制得PSZ陶瓷的预制坯体。
3.将步骤2中制备的PSZ陶瓷预制坯体移至鼓风干燥箱,200℃烘干 12-18h,使坯体完全干燥。
4.将干燥后的PSZ陶瓷预制坯体进行无压烧结,制得高致密度的PSZ陶瓷,烧结温度为1000-1100℃,烧结保温时间为3-5h,升温速率为5℃/min,烧结气氛为氩气、氮气或真空。
5.在以上步骤4中,烧结工艺也可采用热压烧结,烧结温度为950-1050℃,加压方式为单向或双向加压,施加压力为30-50MPa,烧结保温时间为2-4h,升温速率为20℃/min,烧结气氛为氩气、氮气或真空。
6.在以上步骤4中,烧结工艺也可采用热等静压烧结,烧结温度为 900-1000℃,压力为50-100MPa,烧结保温时间为1-3h,升温速率为20℃/min。
根据GB/T 4741-1999,测试制备PSZ陶瓷的抗弯强度;根据GB/T 23806 -2009,测试制备PSZ陶瓷的断裂韧性;根据YB/T 376.1-1995测试制备PSZ陶瓷的抗热震性能。经测试,采用本发明提出的低温冷烧结工艺制备的PSZ陶瓷具有优异的力学性能和抗热震性能,适用于制造MnZn铁氧体烧制的氧化锆陶瓷承烧板。
四、具体实施方式:
实施例1:
选取纯度为99.5%,平均粒径为40nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得3Y-PSZ的悬浮液,在研钵中研磨10min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压10min后,在180℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯180℃温度下烘干12h。采用权利要求4中的工艺进行真空无压烧结,工艺参数为:烧结温度1000℃,保温时间4h,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达94.5%,室温下材料的的抗弯强度为 573.5MPa,其断裂韧性为5.30MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震10次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例2:
选取纯度为99.5%,平均粒径为30nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌30min,制得 3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压15min后,在190℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯190℃温度下烘干12h。采用权利要求4中的工艺进行真空无压烧结,工艺参数为:烧结温度1050℃,保温时间4h,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达94.9%,室温下材料的的抗弯强度为 580.3MPa,其断裂韧性为5.42MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震15次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例3:
选取纯度为99.9%,平均粒径为20nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌40min,制得 3Y-PSZ的悬浮液,在研钵中研磨20min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干18h。采用权利要求4中的工艺进行真空无压烧结,工艺参数为:烧结温度1100℃,保温时间4h,氩气保护。
制得ZrO2陶瓷的致密度可达95.5%,室温下材料的的抗弯强度为615MPa,其断裂韧性为5.78MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例4:
选取纯度为99.5%,平均粒径为40nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得 3Y-PSZ的悬浮液,在研钵中研磨10min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压10min后,在180℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯180℃温度下烘干12h。采用权利要求4中的工艺进行真空热压烧结,工艺参数为:烧结温度950℃,保温时间4h,压力为50MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达94.8%,室温下材料的的抗弯强度为 578.6MPa,其断裂韧性为5.38MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震10次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例5:
选取纯度为99.9%,平均粒径为30nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌30min,制得 3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压15min后,在190℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯190℃温度下烘干12h。采用权利要求4中的工艺进行真空热压烧结,工艺参数为:烧结温度1000℃,保温时间4h,压力为40MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达95.8%,室温下材料的的抗弯强度为624MPa,其断裂韧性为5.84MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震15次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例6:
选取纯度为99.99%,平均粒径为20nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌30min,制得 3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干18h。采用权利要求4中的工艺进行热压烧结,工艺参数为:烧结温度1050℃,保温时间4h,压力为50MPa,氩气保护。
制得ZrO2陶瓷的致密度可达96.8%,室温下材料的的抗弯强度为648MPa,其断裂韧性为5.80MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例7:
选取纯度为99.5%,平均粒径为20nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得 3Y-PSZ的悬浮液,在研钵中研磨20min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为400MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干12h。采用权利要求4中的工艺进行真空热等静压烧结,工艺参数为:烧结温度1000℃,保温时间3h,压力为80MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达97.2%,室温下材料的的抗弯强度为675MPa,其断裂韧性为6.30MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
实施例8:
选取纯度为99.9%,平均粒径为30nm的3Y-PSZ粉末,根据权利要求1 中所计算的质量置入30wt.%的去离子水溶剂中,超声分散并搅拌20min,制得3Y-PSZ的悬浮液,在研钵中研磨15min。按照权利要求2中的步骤将制得的悬浮液倒入模具中,室温冷压20min后,在200℃下保温并保压3h,压力为450MPa。将3Y-PSZ陶瓷预烧坯200℃温度下烘干12h。采用权利要求4中的工艺进行真空热等静压烧结,工艺参数为:烧结温度900℃,保温时间3h,压力为50MPa,真空度为1.3×10-2Pa。
制得ZrO2陶瓷的致密度可达96.5%,室温下材料的的抗弯强度为635MPa,其断裂韧性为5.89MPa·m1/2;在通入惰性气体的气氛炉中,1100℃保温20min后,立即投入室温的水中,重复以上循环热震20次后,所制备的ZrO2陶瓷没有发生表层剥落及断裂失效等现象,其性能满足作为MnZn铁氧体承烧板材料的服役性能。
五、附图说明:
图1是实施例1中,3Y-PSZ陶瓷XRD图谱
图2是实施例4中,3Y-PSZ陶瓷的显微组织。

Claims (11)

1.一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法,其特征在于在低温预烧阶段,在高压、水或水溶液的蒸发和粉体颗粒的溶解沉淀过程共同作用下,制备了致密度密度较高(>95%)的3Y-PSZ预制坯体。
2.采用无压烧结、热压烧结或热等静压烧结工艺对3Y-PSZ制坯体进行低温烧结 (≤1100℃),即可制备出致密度较高(>94.0%)的氧化锆陶瓷,适用于制造MnZn铁氧体烧制的氧化锆陶瓷承烧板。
3.具体的说,本发明的技术方案按照以下步骤进行:
根据制备ZrO2陶瓷承烧板的尺寸,计算所需3Y-PSZ粉末的质量。
4.将3Y-PSZ纳米级粉末(纯度>99.0%,平均粒径为20-40nm) 中加入30 wt.%的去离子水,超声分散并搅拌20-40min,在研钵中研磨10-30min。
5.将步骤1中研磨后的3Y-PSZ浆料倒入模具中,在室温环境中,在电加热压力机上进行冷压,压力为350-450MPa,保压时间为 10-20min。
6.此后,保持压力不变,将加热温度升高至180-200℃,升温速率5-10℃/min,保温时间为3h。
7.制得PSZ陶瓷的预制坯体。
8.将步骤2中制备的PSZ陶瓷预制坯体移至鼓风干燥箱,200℃烘干12-18h,使坯体完全干燥。
9.将干燥后的PSZ陶瓷预制坯体进行无压烧结,制得高致密度的PSZ陶瓷,烧结温度为1000-1100℃,烧结保温时间为3-5h,升温速率为5℃/min,烧结气氛为氩气、氮气或真空。
10.在以上步骤4中,烧结工艺也可采用热压烧结,烧结温度为950-1050℃,加压方式为单向或双向加压,施加压力为30-50MPa,烧结保温时间为2-4h,升温速率为20℃/min,烧结气氛为氩气、氮气或真空。
11.在以上步骤4中,烧结工艺也可采用热等静压烧结,烧结温度为900-1000℃,压力为50-100MPa,烧结保温时间为1-3h,升温速率为20℃/min。
CN201710041619.0A 2017-01-22 2017-01-22 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法 Pending CN107473736A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710041619.0A CN107473736A (zh) 2017-01-22 2017-01-22 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710041619.0A CN107473736A (zh) 2017-01-22 2017-01-22 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法

Publications (1)

Publication Number Publication Date
CN107473736A true CN107473736A (zh) 2017-12-15

Family

ID=60593937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710041619.0A Pending CN107473736A (zh) 2017-01-22 2017-01-22 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法

Country Status (1)

Country Link
CN (1) CN107473736A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428967A (zh) * 2019-08-27 2019-11-08 四川大学 一种超低温冷烧结铁基纳米晶复合磁粉芯的制备方法及产品
CN113321520B (zh) * 2021-07-04 2022-05-27 湖南洛兰新材料有限公司 一种抗粘结耐高温承烧器及其制备方法
CN115849893A (zh) * 2023-02-16 2023-03-28 南昌大学 一种镍锌铁氧体及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039877A (zh) * 2004-09-01 2007-09-19 先进纳米技术有限公司 氧化锆陶瓷

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101039877A (zh) * 2004-09-01 2007-09-19 先进纳米技术有限公司 氧化锆陶瓷

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTIN TRUNEC: "Warm pressing of zirconia nanoparticles by the spark plasma sintering technique", 《SCRIPTA MATERIALIA》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428967A (zh) * 2019-08-27 2019-11-08 四川大学 一种超低温冷烧结铁基纳米晶复合磁粉芯的制备方法及产品
CN113321520B (zh) * 2021-07-04 2022-05-27 湖南洛兰新材料有限公司 一种抗粘结耐高温承烧器及其制备方法
CN115849893A (zh) * 2023-02-16 2023-03-28 南昌大学 一种镍锌铁氧体及其制备方法

Similar Documents

Publication Publication Date Title
CN112830782B (zh) 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
Manshor et al. Microwave sintering of zirconia-toughened alumina (ZTA)-TiO2-Cr2O3 ceramic composite: The effects on microstructure and properties
Wang et al. High optical quality Y2O3 transparent ceramics with fine grain size fabricated by low temperature air pre-sintering and post-HIP treatment
CN100503507C (zh) 低温烧结的99氧化铝陶瓷及其制造方法和用途
Gómez et al. Nanocrystalline yttria-doped zirconia sintered by fast firing
CN107673757A (zh) 一种陶瓷手机后盖及其制备方法
CN107473736A (zh) 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法
CN106587994A (zh) 一种钛酸钡铁电陶瓷的低温冷烧结制备方法
CN112321299B (zh) 超低损耗的钇铝石榴石微波介质陶瓷材料及其制备方法
CN101948315A (zh) 一种高性能氮化铝陶瓷的低温烧结方法
CN110436932A (zh) 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN114907124B (zh) 一种微波介质材料TmVO4及其制备方法
Agrawal Microwave sintering of ceramics, composites and metal powders
CN114956828B (zh) 碳化硅陶瓷及其制备方法和应用
Shen et al. Effect of debinding and sintering profile on the optical properties of DLP-3D printed YAG transparent ceramic
CN112062558B (zh) 氧化锆陶瓷的制备方法
Zhu et al. Preparation of complex-shaped Al2O3/SiCp/SiCw ceramic tool by two-step microwave sintering
CN103864419B (zh) 一种高致密锆酸钡陶瓷的制备方法
Feng et al. Deformation restraint of tape-casted transparent alumina ceramic wafers from optimized lamination
Ma et al. The energy storage properties of fine-grained Ba0. 8Sr0. 2Zr0. 1Ti0. 9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings
CN103951414B (zh) 具有低介电损耗巨电容率和压敏特性陶瓷材料的制造方法
Lee et al. The effect of yttrium nitrate addition on the densification behaviour of Y2O3 ceramics during the cold sintering process
CN112174645B (zh) 一种制备致密纳米晶粒陶瓷的方法
CN106891599A (zh) 一种釔稳定氧化锆陶瓷隔热材料的制备方法
CN100509692C (zh) 一种钨刚玉陶瓷材料及低温烧结方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171215

WD01 Invention patent application deemed withdrawn after publication