CN107394262A - 一种复合固态电解质的制备方法 - Google Patents

一种复合固态电解质的制备方法 Download PDF

Info

Publication number
CN107394262A
CN107394262A CN201710613010.6A CN201710613010A CN107394262A CN 107394262 A CN107394262 A CN 107394262A CN 201710613010 A CN201710613010 A CN 201710613010A CN 107394262 A CN107394262 A CN 107394262A
Authority
CN
China
Prior art keywords
solid electrolyte
peo
preparation
composite solid
pst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710613010.6A
Other languages
English (en)
Inventor
杨行
刘晓艳
王海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Anding New Energy Technology Development Co., Ltd.
Original Assignee
Shenzhen OptimumNano Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen OptimumNano Energy Co Ltd filed Critical Shenzhen OptimumNano Energy Co Ltd
Priority to CN201710613010.6A priority Critical patent/CN107394262A/zh
Publication of CN107394262A publication Critical patent/CN107394262A/zh
Priority to US16/044,568 priority patent/US20190036163A1/en
Priority to EP18185586.7A priority patent/EP3435468A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/105Compounds containing metals of Groups 1 to 3 or of Groups 11 to 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dispersion Chemistry (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种复合固态电解质的制备方法,包括如下步骤:步骤一:取聚氧化乙烯单体及添加剂溶于有机溶剂,一定温度下搅拌,过滤,制得高分子聚合物;步骤二:取步骤一的高分子聚合物及聚苯乙烯单体,加入Ru(Cp*)Cl(PPh3)2后溶入有机溶剂,一定温度下搅拌,过滤干燥后制得PEO‑PST两相聚合物;步骤三:取Li2S、P2S5、GeS2、Al2S3、BaS按一定比例球磨均匀,将球磨后的粉体压制成圆片,将圆片微波加热制得Al、Ba掺杂的固态电解质材料LABGPS;步骤四:将步骤二制得的PEO‑PST两相聚合物及步骤三制得的固态电解质材料LABGPS混合,加入锂盐,溶解分散溶剂四氢呋喃及丙酮的混合溶液中,搅拌至形成均匀溶胶后转移至模具中,干燥去除溶剂,进行真空干燥,制得最终的复合固态电解质PEO‑PST‑LABGPS。

Description

一种复合固态电解质的制备方法
【技术领域】
本发明涉及电池材料技术领域,尤其涉及一种复合固态电解质的制备方法。
【背景技术】
目前,锂离子电池使用的电解质为有机液体电解质,当锂离子电池被滥用、内部短路或过热时,很容易将有机液体引燃,导致锂离子电池起火爆炸。固态电解质具有安全性高、工作温度区间广、电化学窗口宽、循环性能好且可防止锂枝晶刺穿等特点受到广泛关注,固态电解质分为有机固态电解质和无机固态电解质两类。
PEO(聚氧化乙烯)基聚合物电解质作为有机固态电解质材料的一种,具有较好的的柔韧性及拉伸剪切性能,且易于制备成柔性可弯折电池,然而,PEO基聚合物电解质,室温的离子电导率偏低,难以满足室温下锂离子电池的应用。相对于聚合物固体电解质,无机固体电解质能够在宽的温度范围内保持较高的化学稳定性,电化学窗口宽,机械强度更高,其中,LGPS(无机陶瓷类电解质,Li10GeP2S12)型无机固态电解质具有较高的室温电导率,成为最有应用前景的电解质材料之一。然而,LGPS型无机固体电解质脆性较大、柔韧性差、制备工艺复杂、成本较高。
鉴于此,实有必要提供一种新型的复合固态电解质的制备方法以克服以上缺陷。
【发明内容】
本发明的目的是提供一种离子电导率高、电化学窗口宽、对金属锂结构稳定、机械加工性能好且界面稳定性好的复合固态电解质的制备方法。
为了实现上述目的,本发明提供一种复合固态电解质的制备方法,包括如下步骤:步骤一:取聚氧化乙烯单体及添加剂溶于有机溶剂中,一定温度下搅拌,过滤,制得高分子聚合物;步骤二:取步骤一制得的高分子聚合物及聚苯乙烯单体,加入Ru(Cp*)Cl(PPh3)2后溶入有机溶剂中,一定温度下搅拌,过滤干燥后制得PEO-PST两相聚合物;步骤三:取Li2S、P2S5、GeS2、Al2S3、BaS按照一定比例放入球磨罐中球磨均匀,将球磨后的粉体压制成圆片,将圆片微波加热后制得Al、Ba掺杂的固态电解质材料LABGPS;步骤四:将步骤二制得的PEO-PST两相聚合物及步骤三制得的固态电解质材料LABGPS混合,加入锂盐,溶解分散于溶剂四氢呋喃及丙酮的混合溶液中,搅拌至形成均匀溶胶后转移至模具中,干燥去除溶剂,然后转移至真空烘箱内进行真空干燥,制得最终的复合固态电解质PEO-PST-LABGPS。
在一个优选实施方式中,所述步骤一中的添加剂为PhCOCHCl2、RuCl2(PPh3)3及二丁胺的混合溶液。
在一个优选实施方式中,所述步骤一中的搅拌温度为80℃,搅拌时间为2h。
在一个优选实施方式中,所述步骤一及步骤二中的有机溶剂为甲苯溶液。
在一个优选实施方式中,所述步骤二中的搅拌温度为100℃,搅拌时间为4h。
在一个优选实施方式中,所述步骤三中的Li2S、P2S5、GeS2、Al2S3、BaS中的Ge、P、S三个元素的摩尔比为Ge:P:S=1:2:12,Li、Al、Ba三个元素的摩尔比为Li:Al:Ba=10-3x-2y:x:y,其中,0.01≤x≤0.2,0.05≤y≤0.3。
在一个优选实施方式中,所述步骤三中微波加热的温度为550℃,加热时间为4h。
在一个优选实施方式中,所述步骤四中混合的PEO-PST两相聚合物及固态电解质材料LABGPS的质量分数分别为30%及70%。
在一个优选实施方式中,所述步骤四中加入的锂盐为LiClO4;所述LiClO4中的锂元素与PEO-PST两相聚合物中的氧化乙烯单体的物质的量之比为0.03~0.08。
在一个优选实施方式中,所述步骤四中真空烘箱内的温度为120℃,真空干燥的时间为24h。
相比于现有技术,本发明提供的复合固态电解质的制备方法,所制备的复合固态电解质的离子电导率高、电化学窗口宽、对金属锂结构稳定、机械加工性能好且界面稳定性好,所对应的全固态锂电池的充放电性能及循环性能优异。
【附图说明】
图1为本发明实施例1所对应的Sample1电池在不同温度下的充放电曲线;
图2为本发明实施例2所对应的Sample2电池在不同温度下的充放电曲线;
图3为本发明实施例3所对应的Sample3电池在不同温度下的充放电曲线;
图4为本发明实施例4所对应的Sample4电池在不同温度下的充放电曲线;
图5为本发明实施例1所对应的Sample1电池在不同温度下的循环曲线图。
【具体实施方式】
为了使本发明的目的、技术方案和有益技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
本发明提供一种复合固态电解质的制备方法,包括如下步骤:
步骤一:取聚氧化乙烯单体及添加剂溶于有机溶剂中,一定温度下搅拌,过滤,制得高分子聚合物;
步骤二:取步骤一制得的高分子聚合物及聚苯乙烯(PST)单体,加入Ru(Cp*)Cl(PPh3)2后溶入有机溶剂中,一定温度下搅拌,过滤干燥后制得PEO-PST两相聚合物;
步骤三:取Li2S、P2S5、GeS2、Al2S3、BaS按照一定比例放入球磨罐中球磨均匀,将球磨后的粉体压制成圆片,将圆片微波加热后制得Al、Ba掺杂的固态电解质材料LABGPS;
步骤四:将步骤二制得的PEO-PST两相聚合物及步骤三制得的固态电解质材料LABGPS混合,加入锂盐,溶解分散于溶剂四氢呋喃及丙酮的混合溶液中,搅拌至形成均匀溶胶后转移至模具中,干燥去除溶剂,然后转移至真空烘箱内进行真空干燥,制得最终的复合固态电解质PEO-PST-LABGPS。
具体的,所述步骤一中的添加剂为PhCOCHCl2、RuCl2(PPh3)3及二丁胺的混合溶液。所述步骤一中的搅拌温度为80℃,搅拌时间为2h。所述步骤一及步骤二中的有机溶剂为甲苯溶液。所述步骤二中的搅拌温度为100℃,搅拌时间为4h。
具体的,所述步骤三中的Li2S、P2S5、GeS2、Al2S3、BaS中的Ge、P、S三个元素的摩尔比为Ge:P:S=1:2:12,Li、Al、Ba三个元素的摩尔比为Li:Al:Ba=10-3x-2y:x:y,其中,0.01≤x≤0.2,0.05≤y≤0.3。所述步骤三中微波加热的温度为550℃,加热时间为4h。所述步骤四中混合的PEO-PST两相聚合物及固态电解质材料LABGPS的质量分数分别为30%及70%。所述步骤四中加入的锂盐为LiClO4;所述LiClO4中的锂元素与PEO-PST两相聚合物中的氧化乙烯单体的物质的量之比为0.03~0.08。所述步骤四中真空烘箱内的温度为120℃,真空干燥的时间为24h。
实施例1:
(1)取聚氧化乙烯单体及PhCOCHCl2、RuCl2(PPh3)3、二丁胺溶于甲苯溶液中,在80℃下搅拌2h,然后在硅胶柱中过滤处理去除杂质,获得高分子聚合物(PEO);
(2)取步骤一获得的高分子聚合物(PEO)及聚苯乙烯(PST)单体,加入Ru(Cp*)Cl(PPh3)2后溶入甲苯溶液中,在100℃下搅拌4h,过滤干燥后制得PEO-PST两相聚合物;
(3)取Li2S、P2S5、GeS2、Al2S3、BaS按照一定比例(其中Ge:P:S三个元素的摩尔比为1:2:12,Li:Al:Ba三个元素的摩尔比为10-3x-2y:x:y,0.01≤x≤0.2,0.05≤y≤0.3)放入氧化锆的球磨罐中球磨均匀,将球磨后的粉体压制成圆片,将圆片在管式微波高温炉里在550℃下微波加热4h后制得Al、Ba掺杂的固态电解质材料LABGPS(Li10-3x-2yAlxBayGeP2S12,0.01≤x≤0.2,0.05≤y≤0.3);
(4)将步骤(2)制得的PEO-PST两相聚合物(质量分数为30%)及步骤(3)制得的固态电解质材料LABGPS(质量分数为70%)混合,加入LiClO4(LiClO4中的锂元素与PEO-PST两相聚合物中的氧化乙烯单体的物质的量之比为0.03~0.08),溶解分散于溶剂四氢呋喃及丙酮的混合溶液(四氢呋喃及丙酮的体积比为1:1)中,搅拌4h至形成均匀溶胶后转移至聚四氟乙烯模具中,干燥去除溶剂,然后转移至真空烘箱内120℃下真空干燥24h,制得最终的复合固态电解质PEO-PST-LABGPS。
实施例2:
(1)取聚氧化乙烯单体及PhCOCHCl2、RuCl2(PPh3)3、二丁胺溶于甲苯溶液中,在80℃下搅拌2h,然后在硅胶柱中过滤处理去除杂质,获得高分子聚合物(PEO);
(2)取Li2S、P2S5、GeS2、Al2S3、BaS按照一定比例(其中Ge:P:S三个元素的摩尔比为1:2:12,Li:Al:Ba三个元素的摩尔比为10-3x-2y:x:y,0.01≤x≤0.2,0.05≤y≤0.3)放入氧化锆的球磨罐中球磨均匀,将球磨后的粉体压制成圆片,将圆片在管式微波高温炉里在550℃下微波加热4h后制得Al、Ba掺杂的固态电解质材料LABGPS(Li10-3x-2yAlxBayGeP2S12,0.01≤x≤0.2,0.05≤y≤0.3);
(3)将步骤(1)制得的高分子聚合物PEO(质量分数为30%)及步骤(2)制得的固态电解质材料LABGPS(质量分数为70%)混合,加入LiClO4(LiClO4中的锂元素与高分子聚合物PEO中的氧化乙烯单体的物质的量之比为0.03~0.08),溶解分散于溶剂四氢呋喃及丙酮的混合溶液(四氢呋喃及丙酮的体积比为1:1)中,搅拌4h至形成均匀溶胶后转移至聚四氟乙烯模具中,干燥去除溶剂,然后转移至真空烘箱内120℃下真空干燥24h,制得最终的固态电解质PEO-LABGPS。
实施例3:
(1)取聚氧化乙烯单体及PhCOCHCl2、RuCl2(PPh3)3、二丁胺溶于甲苯溶液中,在80℃下搅拌2h,然后在硅胶柱中过滤处理去除杂质,获得高分子聚合物(PEO);
(2)取步骤一获得的高分子聚合物(PEO)及聚苯乙烯(PST)单体,加入Ru(Cp*)Cl(PPh3)2后溶入甲苯溶液中,在100℃下搅拌4h,过滤干燥后制得PEO-PST两相聚合物;
(3)取Li2S、P2S5、GeS2按照5:1:1的摩尔比放入氧化锆的球磨罐中球磨均匀,将球磨后的粉体压制成圆片,将圆片在管式微波高温炉里在550℃下微波加热4h后制得固态电解质材料Li10GeP2S12
(4)将步骤(2)制得的PEO-PST两相聚合物(质量分数为30%)及步骤(3)制得的固态电解质材料Li10GeP2S12(质量分数为70%)混合,加入LiClO4(LiClO4中的锂元素与PEO-PST两相聚合物中的氧化乙烯单体的物质的量之比为0.03~0.08),溶解分散于溶剂四氢呋喃及丙酮的混合溶液(四氢呋喃及丙酮的体积比为1:1)中,搅拌4h至形成均匀溶胶后转移至聚四氟乙烯模具中,干燥去除溶剂,然后转移至真空烘箱内120℃下真空干燥24h,制得最终的固态电解质PEO-PST-LGPS。
实施例4:
(1)取聚氧化乙烯单体及PhCOCHCl2、RuCl2(PPh3)3、二丁胺溶于甲苯溶液中,在80℃下搅拌2h,然后在硅胶柱中过滤处理去除杂质,获得高分子聚合物(PEO);
(2)取Li2S、P2S5、GeS2按照5:1:1的摩尔比放入氧化锆的球磨罐中球磨均匀,将球磨后的粉体压制成圆片,将圆片在管式微波高温炉里在550℃下微波加热4h后制得固态电解质材料Li10GeP2S12
(3)将步骤(1)制得的高分子聚合物PEO(质量分数为30%)及步骤(2)制得的固态电解质材料Li10GeP2S12(质量分数为70%)混合,加入LiClO4(LiClO4中的锂元素与高分子聚合物PEO中的氧化乙烯单体的物质的量之比为0.03~0.08),溶解分散于溶剂四氢呋喃及丙酮的混合溶液(四氢呋喃及丙酮的体积比为1:1)中,搅拌4h至形成均匀溶胶后转移至聚四氟乙烯模具中,干燥去除溶剂,然后转移至真空烘箱内120℃下真空干燥24h,制得最终的固态电解质PEO-LGPS。
扣式电池的组装与测试:
正极片的制备:按质量比为80:10:10分别称取正极材料LiMn2O4、乙炔黑和本发明实施例1~4制备的固态电解质,溶剂为无水乙腈,涂布在集流体铝箔上,80℃烘烤12h,用冲片机制成直径15mm的正极片。
扣式电池的组装:按照顺序:正极壳,正极片/固态电解质,锂片,弹片和负极壳,在氩气氛围下组装成纽扣电池(封口机压制密封、成形),分别制得与本发明提供的实施例1~4对应的电池样品,分别记为Sample1电池、Sample2电池、Sample3电池、Sample4电池。
对Sample1电池、Sample2电池、Sample3电池、Sample4电池进行性能测试,测试温度为25℃和80℃;测试电压区间为3.0~4.3V,充放电倍率为0.1C。
表1为Sample1电池、Sample2电池、Sample3电池、Sample4电池在25℃和80℃下的离子电导率对照表,如下:
表1
由表1可以看出,不论温度是在25℃下,还是在80℃下,Sample1电池(PEO-PST-LABGPS)均具有最高的离子电导率,表明本发明提供的实施例1中,通过对PEO的共聚改性、对LGPS的复合掺杂及两者的复合作用,均大幅度提高了电解质材料的离子电导率,改善了固态电解质的性能,提高了全固态电池的充放电稳定性和循环性能。
图1为本发明实施例1所对应的Sample1电池在不同温度下的充放电曲线;图2为本发明实施例2所对应的Sample2电池在不同温度下的充放电曲线;图3为本发明实施例3所对应的Sample3电池在不同温度下的充放电曲线;图4为本发明实施例4所对应的Sample4电池在不同温度下的充放电曲线;由图1~4可知,Sample1电池、Sample2电池、Sample3电池、Sample4电池具有类似的充放电平台,但Sample1电池具有最高的充放电比容量,展现了最好的电化学性能,这也得益于Sample1电池中的固态电解质材料(即本发明实施例1制备的固态电解质材料)具有较好的离子电导率。
图5为本发明实施例1所对应的Sample1电池在不同温度下的循环曲线图;由图5可知,在25℃和80℃下,Sample1电池表现出了很好的循环稳定性,容量衰减的趋势较为平缓,其中,在80℃下的放电比容量保持在110mAh/g左右,25℃下的放电比容量保持在85mAh/g左右,表明本发明实施例1中所制得的固态电解质在全固态电池中表现出了极好的电化学稳定性。
本发明提供的复合固态电解质的制备方法,首先,采用PEO与PST两相共聚后,先制备出了PEO-PST两相聚合物电解质,通过共聚的方式降低了PEO的结晶性,提高了PEO基聚合物的室温电导率;其次,通过Al、Ba对Li10GeP2S12的共同掺杂改性作用,通过机械球磨和微波加热相结合的方法制备出结晶度高、粒径小、结构更为稳定、电导率更高的LABGPS固态电解质材料,便于和PEO-PST两相聚合物电解质较好的均匀复合;最后,通过PEO-PST两相聚合物电解质和LABGPS固态电解质均匀复合,获得的有机-无机复合固态电解质材料PEO-PST-LABGPS,不仅充分发挥了PEO基聚合物机械加工性能好、可与锂金属电极稳定共处等优势,也充分发挥了LGPS型有机固态电解质室温电导率高的优势,全面提高了全固态锂电池的综合电化学性能。
本发明提供的复合固态电解质的制备方法,所制备的复合固态电解质的离子电导率高、电化学窗口宽、对金属锂结构稳定、机械加工性能好且界面稳定性好,所对应的全固态锂电池的充放电性能及循环性能优异。
本发明并不仅仅限于说明书和实施方式中所描述,因此对于熟悉领域的人员而言可容易地实现另外的优点和修改,故在不背离权利要求及等同范围所限定的一般概念的精神和范围的情况下,本发明并不限于特定的细节、代表性的设备和这里示出与描述的图示示例。

Claims (10)

1.一种复合固态电解质的制备方法,其特征在于:包括如下步骤:
步骤一:取聚氧化乙烯单体及添加剂溶于有机溶剂中,一定温度下搅拌,过滤,制得高分子聚合物;
步骤二:取步骤一制得的高分子聚合物及聚苯乙烯单体,加入Ru(Cp*)Cl(PPh3)2后溶入有机溶剂中,一定温度下搅拌,过滤干燥后制得PEO-PST两相聚合物;
步骤三:取Li2S、P2S5、GeS2、Al2S3、BaS按照一定比例放入球磨罐中球磨均匀,将球磨后的粉体压制成圆片,将圆片微波加热后制得Al、Ba掺杂的固态电解质材料LABGPS;
步骤四:将步骤二制得的PEO-PST两相聚合物及步骤三制得的固态电解质材料LABGPS混合,加入锂盐,溶解分散于溶剂四氢呋喃及丙酮的混合溶液中,搅拌至形成均匀溶胶后转移至模具中,干燥去除溶剂,然后转移至真空烘箱内进行真空干燥,制得最终的复合固态电解质PEO-PST-LABGPS。
2.如权利要求1所述的复合固态电解质的制备方法,其特征在于:所述步骤一中的添加剂为PhCOCHCl2、RuCl2(PPh3)3及二丁胺的混合溶液。
3.如权利要求2所述的复合固态电解质的制备方法,其特征在于:所述步骤一中的搅拌温度为80℃,搅拌时间为2h。
4.如权利要求3所述的复合固态电解质的制备方法,其特征在于:所述步骤一及步骤二中的有机溶剂为甲苯溶液。
5.如权利要求4所述的复合固态电解质的制备方法,其特征在于:所述步骤二中的搅拌温度为100℃,搅拌时间为4h。
6.如权利要求1所述的复合固态电解质的制备方法,其特征在于:所述步骤三中的Li2S、P2S5、GeS2、Al2S3、BaS中的Ge、P、S三个元素的摩尔比为Ge:P:S=1:2:12,Li、Al、Ba三个元素的摩尔比为Li:Al:Ba=10-3x-2y:x:y,其中,0.01≤x≤0.2,0.05≤y≤0.3。
7.如权利要求6所述的复合固态电解质的制备方法,其特征在于:所述步骤三中微波加热的温度为550℃,加热时间为4h。
8.如权利要求7所述的复合固态电解质的制备方法,其特征在于:所述步骤四中混合的PEO-PST两相聚合物及固态电解质材料LABGPS的质量分数分别为30%及70%。
9.如权利要求8所述的复合固态电解质的制备方法,其特征在于:所述步骤四中加入的锂盐为LiClO4;所述LiClO4中的锂元素与PEO-PST两相聚合物中的氧化乙烯单体的物质的量之比为0.03~0.08。
10.如权利要求9所述的复合固态电解质的制备方法,其特征在于:所述步骤四中真空烘箱内的温度为120℃,真空干燥的时间为24h。
CN201710613010.6A 2017-07-25 2017-07-25 一种复合固态电解质的制备方法 Pending CN107394262A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710613010.6A CN107394262A (zh) 2017-07-25 2017-07-25 一种复合固态电解质的制备方法
US16/044,568 US20190036163A1 (en) 2017-07-25 2018-07-25 Method for preparing composite solid state electrolyte
EP18185586.7A EP3435468A1 (en) 2017-07-25 2018-07-25 Method for preparing composite solid state electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710613010.6A CN107394262A (zh) 2017-07-25 2017-07-25 一种复合固态电解质的制备方法

Publications (1)

Publication Number Publication Date
CN107394262A true CN107394262A (zh) 2017-11-24

Family

ID=60336143

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710613010.6A Pending CN107394262A (zh) 2017-07-25 2017-07-25 一种复合固态电解质的制备方法

Country Status (3)

Country Link
US (1) US20190036163A1 (zh)
EP (1) EP3435468A1 (zh)
CN (1) CN107394262A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878961A (zh) * 2018-07-11 2018-11-23 桑德集团有限公司 硫化物固态电解质及其制备方法和设备
CN109065946A (zh) * 2018-09-17 2018-12-21 中南大学 一种固体电解质的制备方法
CN109755638A (zh) * 2018-12-29 2019-05-14 浙江南都电源动力股份有限公司 复合电解质膜、复合电解质膜的制备方法及其应用
CN109888373A (zh) * 2018-12-27 2019-06-14 山东大学 一种有机/无机复合固态电解质及其制备方法
CN110783567A (zh) * 2018-07-24 2020-02-11 丰田自动车工程及制造北美公司 硫代磷酸锂复合材料的微波合成
CN111129572A (zh) * 2019-12-23 2020-05-08 陈开兵 一种硫化物电解质及其制备方法
CN114524416A (zh) * 2022-02-21 2022-05-24 山东大学 一种硫化锂包覆硫化物固态电解质及其制备方法与应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009685B (zh) * 2019-12-24 2023-01-24 西安大工迅驰材料科技有限公司 一种含有分子筛的全固态复合聚合物电解质及其制备方法
CN111834663A (zh) * 2020-07-30 2020-10-27 天津赢慧科技咨询服务有限公司 一种用电化学氧化还原方法制备的半固态/固态电池及方法
CN112062991B (zh) * 2020-08-19 2023-03-28 上海纳米技术及应用国家工程研究中心有限公司 一种有机无机固态电解质的制备方法
CN112687945A (zh) * 2020-12-21 2021-04-20 南方科技大学 一种复合固态电解质浆料、薄膜、制备方法及全固态电池
CN113388081B (zh) * 2021-05-31 2022-06-24 南京理工大学 双链聚环氧乙烷修饰的共价有机框架、制备方法及其应用
CN113471528A (zh) * 2021-06-09 2021-10-01 上海大学 固体聚合物电解质及其制备方法
CN114006051B (zh) * 2021-10-26 2022-12-09 西安交通大学 一种氯化物全无机复合固态电解质及其制备方法
CN113991167A (zh) * 2021-10-26 2022-01-28 西安交通大学 一种卤化物固态电解质材料及其制备方法和应用
CN114421022A (zh) * 2022-01-17 2022-04-29 江苏蓝固新能源科技有限公司 一种提高固态电解质浆料产品稳定性的方法和浆料产品
CN117175037B (zh) * 2023-11-02 2024-03-26 宁德时代新能源科技股份有限公司 固态电解质浆料、固态电解质膜、固态电池及用电装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990413A (en) * 1989-01-18 1991-02-05 Mhb Joint Venture Composite solid electrolytes and electrochemical devices employing the same
KR100378004B1 (ko) * 1997-06-10 2003-06-09 삼성에스디아이 주식회사 유리-고분자복합전해질및그제조방법
JP2001316583A (ja) * 2000-05-02 2001-11-16 Tsutomu Minami リチウムイオン伝導性有機−無機コンポジット
CN103515649A (zh) * 2012-06-14 2014-01-15 东丽先端材料研究开发(中国)有限公司 有机/无机复合电解质及其制备方法
EP2997611A4 (en) * 2013-05-15 2016-12-14 Quantumscape Corp SEMICONDUCTOR CATHOLYTE OR ELECTROLYTE FOR A BATTERY USING THE LIAMPBSC (M = SI, GE, AND / OR SN)
JP6956641B2 (ja) * 2015-06-24 2021-11-02 クアンタムスケイプ バテリー, インク. 複合電解質
EP3398223B1 (en) * 2015-12-28 2021-06-30 Seeo, Inc Ceramic-polymer composite electrolytes for lithium polymer batteries

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878961A (zh) * 2018-07-11 2018-11-23 桑德集团有限公司 硫化物固态电解质及其制备方法和设备
CN110783567A (zh) * 2018-07-24 2020-02-11 丰田自动车工程及制造北美公司 硫代磷酸锂复合材料的微波合成
CN110783567B (zh) * 2018-07-24 2024-06-11 丰田自动车工程及制造北美公司 硫代磷酸锂复合材料的微波合成
CN109065946A (zh) * 2018-09-17 2018-12-21 中南大学 一种固体电解质的制备方法
CN109888373A (zh) * 2018-12-27 2019-06-14 山东大学 一种有机/无机复合固态电解质及其制备方法
CN109755638A (zh) * 2018-12-29 2019-05-14 浙江南都电源动力股份有限公司 复合电解质膜、复合电解质膜的制备方法及其应用
CN109755638B (zh) * 2018-12-29 2021-05-11 浙江南都电源动力股份有限公司 复合电解质膜、复合电解质膜的制备方法及其应用
CN111129572A (zh) * 2019-12-23 2020-05-08 陈开兵 一种硫化物电解质及其制备方法
CN114524416A (zh) * 2022-02-21 2022-05-24 山东大学 一种硫化锂包覆硫化物固态电解质及其制备方法与应用

Also Published As

Publication number Publication date
US20190036163A1 (en) 2019-01-31
EP3435468A1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
CN107394262A (zh) 一种复合固态电解质的制备方法
Wang et al. Lithium-salt-rich PEO/Li0. 3La0. 557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries
Gao et al. A sodium‐ion battery with a low‐cost cross‐linked gel‐polymer electrolyte
Zhang et al. Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries
Yu et al. A long cycle life, all-solid-state lithium battery with a ceramic–polymer composite electrolyte
Zhang et al. Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries
Li et al. A PEO-based gel polymer electrolyte for lithium ion batteries
Wang et al. Immobilization of anions on polymer matrices for gel electrolytes with high conductivity and stability in lithium ion batteries
Niu et al. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries
Sun et al. Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode
Chen et al. Electrospun cellulose polymer nanofiber membrane with flame resistance properties for lithium-ion batteries
Gonçalves et al. Solid polymer electrolytes based on lithium bis (trifluoromethanesulfonyl) imide/poly (vinylidene fluoride-co-hexafluoropropylene) for safer rechargeable lithium-ion batteries
Yao et al. Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-metal batteries
CN102709597B (zh) 一种复合全固态聚合物电解质锂离子电池及其制备方法
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
CN110911739A (zh) 一种固态聚合物电解质、其制备方法及锂电池
Oh et al. Intertwined nanosponge solid-state polymer electrolyte for rollable and foldable lithium-ion batteries
US20230098496A1 (en) All solid-state electrolyte composite based on functionalized metal-organic framework materials for lithium secondary battery and method for manufacturing the same
CN108933047A (zh) 一种用于锂离子电容器的预锂化凝胶电解质及其制备方法
Liu et al. Gel polymer electrolyte membranes boosted with sodium-conductive β-alumina nanoparticles: application for Na-ion batteries
Huang et al. Enhanced electrochemical properties of LiFePO4 cathode using waterborne lithiated ionomer binder in Li-ion batteries with low amount
Xu et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries
Shao et al. Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries
Beshahwured et al. Hierarchical interconnected hybrid solid electrolyte membrane for all-solid-state lithium-metal batteries based on high-voltage NCM811 cathodes
Ma et al. Interfacial optimization between cathode and 20 μm-thickness solid electrolyte membrane via in-situ polymerization for lithium metal batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20191101

Address after: 518000 Shenyu Science and Technology Park, No. 68 Lanjingbei Road, Laokeng Community, Longtian Street, Pingshan District, Shenzhen City, Guangdong Province, 101

Applicant after: Shenzhen Anding New Energy Technology Development Co., Ltd.

Address before: 518000 Guangdong Province, Shenzhen City Pingshan Pingshan community Zhu Keng Industrial Zone 9 1-3

Applicant before: Shenzhen Optimum Battery Co., Ltd.

WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171124