CN107376928A - 一种一步法合成α‑Fe2O3/Bi复合物的方法 - Google Patents

一种一步法合成α‑Fe2O3/Bi复合物的方法 Download PDF

Info

Publication number
CN107376928A
CN107376928A CN201710665675.1A CN201710665675A CN107376928A CN 107376928 A CN107376928 A CN 107376928A CN 201710665675 A CN201710665675 A CN 201710665675A CN 107376928 A CN107376928 A CN 107376928A
Authority
CN
China
Prior art keywords
compounds
added
step synthesis
stirring
stir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710665675.1A
Other languages
English (en)
Inventor
毛巍威
许新
姚启富
李兴鳌
王兴福
楚亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201710665675.1A priority Critical patent/CN107376928A/zh
Publication of CN107376928A publication Critical patent/CN107376928A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种一步法合成α相氧化铁(α‑Fe2O3)/单质铋(Bi)复合物的方法,属于功能材料制备工艺技术领域。本发明采用Fe(NO3)3·9H2O和Bi(NO3)3·5H2O为原料,称取适量比例的原料溶于乙二醇,再加入KOH溶液获得前驱沉淀物,并加入适量十二烷基苯磺酸钠(SDBS)和丙三醇,充分搅拌均匀后移入水热反应釜,在170摄氏度反应50小时。待反应结束后,自然冷却至室温,离心清洗后,即可获得α‑Fe2O3/Bi复合物。本发明具有制备成本低,一步合成,工艺简单等优点。

Description

一种一步法合成α-Fe2O3/Bi复合物的方法
技术领域
本发明具体是一种一步法合成α-Fe2O3/Bi复合物的方法,属于功能材料制备工艺技术领域。
背景技术
α相氧化铁(α-Fe2O3)是一种典型的n型半导体金属氧化物,是最为稳定的铁氧化物,其带隙窄,大约为2.1eV,在可见光区域具有很强的光吸收能力,而且具有较强的光生空穴能力,因此,已被广泛用作可见光催化剂。而且,比表面积大的α-Fe2O3纳米材料是也可用作传感、气敏材料,具有较好的稳定性和较强的附着力强,可用于检测多种气体以及生物传感。另外,作为典型的铁氧化物,α-Fe2O3纳米材料具有矫顽力高、超顺磁性等特点,可以应用于各种磁性元件和磁性仪器方面。
虽然光电分解水制氢和光催化降解有机物都是α-Fe2O3重要应用,但是α-Fe2O3导带位置太低,不能够分解水制氧,而且光催化性能也不够理想。近些年的研究发现,通过引入贵金属材料如Ag,Au和Pt等可以作为增敏剂来构建复合材料,不仅可以提高半导体金属氧化物的光催化活性,而且可以提高气敏性能。不过贵金属材料成本较高,因此探索低成本的复合材料成为研究的重点。铋(Bi)元素位于元素周期表第6周期,第5主族,原子序数为83,Bi是一个不具有明显放射性的重元素,是所有已知稳定元素中原子质量最高的,而且,Bi元素处于周期表中金属区与半导体区之间,因此具有典型的半金属特征。大量的研究发现很多Bi基氧化物(如:Bi2WO6、Bi2MoO6、BiVO4等)都具有较高的光催化活性,这主要由于Bi的6s轨道于周围氧的2p轨道杂化形成的价带,能够使带隙变窄,同时可以増强光生空穴在价带上的迁移率。作为Bi基氧化物的重要组成,Bi单质也具有光催化活性,研究发现,Bi单质不仅对液相污染物有较好的光催化降解活性,对气体污染物也有一定的降解效果。因此,制备高质量的α-Fe2O3/Bi复合物具有极大的应用潜力。
发明内容
技术问题:本发明要解决的问题在于提供一种一步法合成α-Fe2O3/Bi复合物的方法,本制备工艺简单、结晶度较高,便于获得性能良好的α-Fe2O3/Bi复合物。
技术方案:本发明合成α-Fe2O3/Bi复合物的制备方法具体为:
称取适量比例的硝酸铁Fe(NO3)3·9H2O和硝酸铋Bi(NO3)3·5H2O,加入到20mL乙二醇中,搅拌至澄清前驱液。将氢氧化钾(KOH)溶液,缓慢逐滴滴入前驱液中,再加入表面活性剂,常温下搅拌12小时。将溶液配成37mL移入45mL的水热反应釜中,170摄氏度水热反应50小时,自然冷却后,经多次离心清洗,即可获得。
附图说明
图1是本发明的α-Fe2O3/Bi复合物的XRD图谱;
图2是本发明的α-Fe2O3/Bi复合物的SEM图谱,其中(a)为Fe(NO3)3·9H2O和Bi(NO3)3·5H2O的摩尔比1:1,(b)为Fe(NO3)3·9H2O和Bi(NO3)3·5H2O的摩尔比1:2,(c)为Fe(NO3)3·9H2O和Bi(NO3)3·5H2O的摩尔比2:1。
具体实施方式
下面结合实施实例和有关图表对本发明进行详细阐述,但本发明不限于所给实例:
实例1:
(1)Fe(NO3)3·9H2O和Bi(NO3)3·5H2O的摩尔比选用1:1,分别称取1.2093g的Fe(NO3)3·9H2O和2.4255g的Bi(NO3)3·5H2O加入到20mL乙二醇中,在磁力搅拌器上搅拌1小时,获得澄清前驱液。
(2)称取6.5g的KOH,超声溶于8mL去离子水中。在搅拌的情况下,将KOH溶液缓慢逐滴滴入上一步配置的前驱液中。
(3)在获得的悬浮液中加入0.2g十二烷基苯磺酸钠(SDBS)和0.5mL丙三醇,继续搅拌12个小时。
(4)将搅拌均匀的悬浮液添加适量去离子水,配置成37mL,移入45mL的水热反应釜中。将反应釜置入干燥箱中,170摄氏度温度下反应50个小时后,自然冷却至室温。将反应釜中的沉淀物离心清洗,即获得所需的α-Fe2O3/Bi复合物。
图1为所制备的α-Fe2O3/Bi复合物的XRD图谱,从图中可以看出样品的结晶度良好,基本没有杂相。其中“●”符号标出的α-Fe2O3,PDF标准卡为:89-0597;“◆”符号标出的Bi单质,PDF标准卡为:85-1329。图2(a)为样品的SEM图谱,图中尺寸较大的多边形为Bi单质,其上附着的絮状多空纳米颗粒为α-Fe2O3,其尺寸较小,附着的并不均匀。
实例2:
(1)Fe(NO3)3·9H2O和Bi(NO3)3·5H2O的摩尔比选用2:1,分别称取2.4186g的Fe(NO3)3·9H2O和2.4255g的Bi(NO3)3·5H2O加入到20mL乙二醇中,在磁力搅拌器上搅拌1小时,获得澄清前驱液。
(2)称取6.5g的KOH,超声溶于8mL去离子水中。在搅拌的情况下,将KOH溶液缓慢逐滴滴入上一步配置的前驱液中。
(3)在获得的悬浮液中加入0.2g十二烷基苯磺酸钠(SDBS)和0.5mL丙三醇,继续搅拌12个小时。
(4)将搅拌均匀的悬浮液添加适量去离子水,配置成37mL,移入45mL的水热反应釜中。将反应釜置入干燥箱中,170摄氏度温度下反应50个小时后,自然冷却至室温。将反应釜中的沉淀物离心清洗,即获得所需的α-Fe2O3/Bi复合物。
图2(c)为样品的SEM图谱,图中尺寸较大的多边形为Bi单质表面完全附着的絮状多空纳米颗粒为α-Fe2O3,附着的相对均匀。

Claims (1)

1.一种一步法合成α-Fe2O3/Bi复合物的方法,其特征在于,包括以下步骤:
1)称取适量比例的硝酸铁Fe(NO3)3·9H2O和硝酸铋Bi(NO3)3·5H2O,加入到20mL乙二醇中,搅拌至澄清前驱液;
2)称取6.5g的KOH,超声溶于8mL去离子水中,在搅拌的情况下,将KOH溶液缓慢逐滴滴入上一步配置的前驱液中,获得的沉淀物为反应的前驱体;
3)在上述获得的悬浮液中加入0.2g十二烷基苯磺酸钠(SDBS)和0.5mL丙三醇,搅拌12个小时;
4)将搅拌均匀的前驱体悬浮液添加适量去离子水,配置成37mL,移入45mL的水热反应釜中;将反应釜置入干燥箱中,170摄氏度温度下反应50个小时后,自然冷却至室温;将反应釜中的沉淀物离心清洗,即获得所需的α-Fe2O3/Bi复合物。
CN201710665675.1A 2017-08-04 2017-08-04 一种一步法合成α‑Fe2O3/Bi复合物的方法 Pending CN107376928A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710665675.1A CN107376928A (zh) 2017-08-04 2017-08-04 一种一步法合成α‑Fe2O3/Bi复合物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710665675.1A CN107376928A (zh) 2017-08-04 2017-08-04 一种一步法合成α‑Fe2O3/Bi复合物的方法

Publications (1)

Publication Number Publication Date
CN107376928A true CN107376928A (zh) 2017-11-24

Family

ID=60343969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710665675.1A Pending CN107376928A (zh) 2017-08-04 2017-08-04 一种一步法合成α‑Fe2O3/Bi复合物的方法

Country Status (1)

Country Link
CN (1) CN107376928A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034286A (zh) * 2019-03-25 2019-07-19 天津大学 制备三氧化二铁-铋金属碳纤维复合材料及方法
CN112156768A (zh) * 2020-09-29 2021-01-01 重庆工商大学 复合光催化剂的制备方法及其应用
CN114655992A (zh) * 2020-12-23 2022-06-24 哈尔滨工业大学(深圳) 一种铁酸铋纳米片材料及其制备方法及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102642A1 (en) * 2002-11-27 2004-05-27 Brazdil James F Preparation of vanadium antimony oxide based catalysts using nano-scale iron
CN104707594A (zh) * 2015-03-19 2015-06-17 西南大学 Bi/Aurivillius型氧化物复合材料及其制备方法和应用
CN105449230A (zh) * 2015-11-10 2016-03-30 中南大学 一种LaCoO3/N-rGO复合物及其制备和应用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040102642A1 (en) * 2002-11-27 2004-05-27 Brazdil James F Preparation of vanadium antimony oxide based catalysts using nano-scale iron
CN104707594A (zh) * 2015-03-19 2015-06-17 西南大学 Bi/Aurivillius型氧化物复合材料及其制备方法和应用
CN105449230A (zh) * 2015-11-10 2016-03-30 中南大学 一种LaCoO3/N-rGO复合物及其制备和应用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHENGHUA XIAO等: "Enhanced Photocatalytic Activity of Bi-doped α-Fe2O3", 《JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES》 *
仲昭义 等: "低温水热法制备形貌可控纳米α-Fe2O3的研究", 《材料导报B:研究篇》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034286A (zh) * 2019-03-25 2019-07-19 天津大学 制备三氧化二铁-铋金属碳纤维复合材料及方法
CN110034286B (zh) * 2019-03-25 2022-03-15 天津大学 制备三氧化二铁-铋金属碳纤维复合材料及方法
CN112156768A (zh) * 2020-09-29 2021-01-01 重庆工商大学 复合光催化剂的制备方法及其应用
CN112156768B (zh) * 2020-09-29 2022-06-14 重庆工商大学 复合光催化剂的制备方法及其应用
CN114655992A (zh) * 2020-12-23 2022-06-24 哈尔滨工业大学(深圳) 一种铁酸铋纳米片材料及其制备方法及用途

Similar Documents

Publication Publication Date Title
Li et al. A correlated series of Au/Ag nanoclusters revealing the evolutionary patterns of asymmetric Ag doping
Nalwa Handbook of nanostructured materials and nanotechnology, five-volume set
US8628691B2 (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
Yang et al. Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles
Lai et al. Doping γ-Fe2O3 nanoparticles with Mn (III) suppresses the transition to the α-Fe2O3 structure
CN111729675B (zh) ZIF-67衍生的Co3S4与ZnIn2S4形成的复合光催化剂的制备方法及应用
CN107376928A (zh) 一种一步法合成α‑Fe2O3/Bi复合物的方法
CN104607650B (zh) 作为新型试剂的零价金属与氢化物的稳定复合物
Son et al. Thermogravimetric analysis of copper oxide for chemical-looping hydrogen generation
Wu et al. Structure and chemical transformation in cerium oxide nanoparticles coated by surfactant cetyltrimethylammonium bromide (CTAB): an X-ray absorption spectroscopic study
Ahmad et al. Lanthanum-zinc binary oxide nanocomposite with promising heterogeneous catalysis performance for the active conversion of 4-nitrophenol into 4-aminophenol
Ngnintedem Yonti et al. Green synthesis of iron-doped cobalt oxide nanoparticles from palm kernel oil via co-precipitation and structural characterization
Thangudu et al. Enhanced photofixation of dinitrogen to ammonia over a biomimetic metal (Fe, Mo)-doped mesoporous MCM-41 zeolite catalyst under ambient conditions
Li et al. Magnetism of atomically precise gold and doped nanoclusters: delocalized spin and interparticle coupling
Weber et al. From a cerium-doped polynuclear bismuth oxido cluster to β-Bi2O3: Ce
Maji et al. Ferrite Nanoparticles as Catalysts in Organic Reactions: A Mini Review
Liu et al. Single-crystalline indium hydroxide and indium oxide microcubes: synthesis and characterization
Anwar et al. Synthesis of tetragonally stabilized lanthanum doped bismuth vanadium oxide nanoparticles and its enhanced visible light induced photocatalytic performance
Xiong et al. Metal ions (Li, Mg, Zn, Ce) doped into La2O3 nanorod for boosting catalytic oxidative coupling of methane
Xue et al. Hollow rods of nanocrystalline NiGa2O4: hydrothermal synthesis, formation mechanism, and application in photocatalysis
AlDhawi et al. Highly efficient magnetically separable SrFe12O19 for photo-assisted oxidation of benzylic alcohol derivatives under visible light
CN105880629A (zh) 一种硼碳氮纳米片负载金属纳米粒子杂化材料的制备方法
Liu et al. Local structural evolution of Co-doped ZnO nanoparticles upon calcination studied by in situ quick-scan XAFS
Yang et al. Host–Guest Chemistry in Discrete Polyoxo-12-Palladate (II) Cubes [MO8Pd12L8] n−(M= ScIII, CoII, CuII, L= AsO43–; M= CdII, HgII, L= PhAsO32–): Structure, Magnetism, and Catalytic Hydrogenation
Arapova et al. Efficient catalysts of ethanol steam reforming based on perovskite-fluorite nanocomposites with supported Ni: effect of the synthesis methods on the activity and stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171124