CN104445340B - 由纳米块自组装的八面体氧化铈的制备方法 - Google Patents

由纳米块自组装的八面体氧化铈的制备方法 Download PDF

Info

Publication number
CN104445340B
CN104445340B CN201410634145.7A CN201410634145A CN104445340B CN 104445340 B CN104445340 B CN 104445340B CN 201410634145 A CN201410634145 A CN 201410634145A CN 104445340 B CN104445340 B CN 104445340B
Authority
CN
China
Prior art keywords
cerium oxide
preparation
octahedra
assembly
nanometer blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410634145.7A
Other languages
English (en)
Other versions
CN104445340A (zh
Inventor
李晋平
郭天宇
杜建平
吴金婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Chenglongyi New Material Technology Co ltd
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201410634145.7A priority Critical patent/CN104445340B/zh
Publication of CN104445340A publication Critical patent/CN104445340A/zh
Application granted granted Critical
Publication of CN104445340B publication Critical patent/CN104445340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及纳米材料氧化铈的制备,具体为一种由纳米块自组装的八面体氧化铈的制备方法,包括如下步骤:(1)、将2.5-2.6g硝酸铈溶于45-50ml水和15-20ml乙醇中,充分溶解后,加入1g十六烷基三甲基溴化铵,继续搅拌至充分混合;(2)、将混合溶液转移入反应釜,在150℃恒温反应22-24h;(3)、反应釜冷却后,取出样品,经离心、洗涤和干燥处理后,即得到产品。上述方法设计合理,制备过程简单,操作方便,工艺参数易控制;合成的纳米氧化铈是由纳米块自组装成的八面体形貌的氧化铈。

Description

由纳米块自组装的八面体氧化铈的制备方法
技术领域
本发明涉及纳米材料氧化铈的制备,具体为一种由纳米块自组装的八面体氧化铈的制备方法。
背景技术
二氧化铈是一种廉价、用途极广的轻稀土氧化物,已被用于发光材料、抛光剂、紫外吸收剂、汽车尾气净化催化剂、玻璃的化学脱色剂、耐辐射玻璃、电子陶瓷等。二氧化铈的物理化学性质可能直接影响材料的性能,如超细二氧化铈的加入不但可以降低陶瓷的烧结温度,还可以增加陶瓷的密度,大比表面积可以提高催化剂的催化活性;且由于铈具有变价性,对发光材料也具有重要意义。
近年来,随着稀土新材料的迅速发展与广泛应用,人们发现超细粉末二氧化铈具有新的优异的性能。20世纪90年代初期,关于超细二氧化铈制备,仅有Rhone-Poulene公司所申请的两篇专利,其内容是利用硝酸亚铈铵水解法和碱性硫酸铈盐热解法制备了比表面积大于100m2/g的二氧化铈。20世纪90年代中期以来,对该领域的研究日益增多,关于纳米二氧化铈的制备方法和应用研究取得了较大的进展。制备纳米二氧化铈的方法有固相烧结法、液相法和气相法。
发明内容
本发明的目的在于提供一种过程简单、操作方便的制备纳米氧化铈的方法,形成八面体纳米氧化铈。
本发明是采用如下技术方案实现的:
一种由纳米块自组装的八面体氧化铈的制备方法,包括如下步骤:
(1)、将2.5-2.6g硝酸铈溶于由45-50ml水和15-20ml乙醇构成的乙醇溶液中,充分溶解后,加入1g十六烷基三甲基溴化铵,继续搅拌至充分混合;
(2)、将混合溶液转移入反应釜,在150℃恒温反应22-24h;
(3)、反应釜冷却后,取出样品,经离心、洗涤和干燥处理后,即得到产品。
在上述条件下,采用规定的原料种类,合理的原料配比,严格制定优化的反应温度和时间。其中,有机溶剂乙醇一方面与硝酸铈反应生成纳米氧化铈颗粒,一方面提供有机溶剂环境,有利于协同十六烷基三甲基溴化铵(CTAB)的结构定向作用,实现了纳米氧化铈从纳米颗粒到纳米块和最终目标产物的自组装。上述方法中的原料配比、实验温度和时间等参数均是申请人经过了长期摸索和大量实验,得到特殊的八面状纳米氧化铈的所需特定参数,后续处理保证了本产品的纯度。
上述方法得到的纳米材料-纳米块自组装的八面体氧化铈负载贵金属钯催化剂可用于较低浓度甲烷氧化反应,效果显著。催化剂负载量0.5%,空速130000/h,250度开始反应,300度甲烷转化率达到5%,400度转化率达到51%,500度转化率达到91%,具有温度升高,转化率快速增加和高温活性高的优点。
本发明设计合理,合成的纳米氧化铈是由纳米块自组装成的八面体形貌的氧化铈,制备过程简单,操作方便,工艺参数易控制,成本低,具有较好的应用前景。
附图说明
图1是纳米块自组装的八面体纳米氧化铈的X射线衍射图。
图2是纳米块自组装的八面体状纳米氧化铈的扫描电镜图。
具体实施方式
下面对本发明的具体实施例进行详细说明。
实施例1
一种由纳米块自组装的八面体氧化铈的制备方法,包括如下步骤:
(1)、将2.5g硝酸铈溶于由50ml水和18ml乙醇构成的乙醇溶液中,充分溶解后,加入1g十六烷基三甲基溴化铵,继续搅拌30min至充分混合;
(2)、将混合溶液转移入反应釜,在150℃恒温反应22h;
(3)、反应釜冷却后,取出样品,经离心、洗涤和干燥处理后,即得到产品-纳米块自组装的八面体氧化铈。
实施例2
一种由纳米块自组装的八面体氧化铈的制备方法,包括如下步骤:
(1)、将2.55g硝酸铈溶于由45ml水和20ml乙醇构成的乙醇溶液中,充分溶解后,加入1g十六烷基三甲基溴化铵,继续搅拌30min至充分混合;
(2)、将混合溶液转移入反应釜,在150℃恒温反应24h;
(3)、反应釜冷却后,取出样品,经离心、洗涤和干燥处理后,即得到产品-纳米块自组装的八面体氧化铈。
实施例3
一种由纳米块自组装的八面体氧化铈的制备方法,包括如下步骤:
(1)、将2.6g硝酸铈溶于由42ml水和15ml乙醇构成的乙醇溶液中,充分溶解后,加入1g十六烷基三甲基溴化铵,继续搅拌30min至充分混合;
(2)、将混合溶液转移入反应釜,在150℃恒温反应23h;
(3)、反应釜冷却后,取出样品,经离心、洗涤和干燥处理后,即得到产品-纳米块自组装的八面体氧化铈。

Claims (1)

1.一种由纳米块自组装的八面体氧化铈的制备方法,其特征在于:包括如下步骤:
(1)、将2.5-2.6g硝酸铈溶于由45-50mL水和15-20mL乙醇构成的乙醇溶液中,充分溶解后,加入1g十六烷基三甲基溴化铵,继续搅拌至充分混合;
(2)、将混合溶液转移入反应釜,在150℃恒温反应22-24h;
(3)、反应釜冷却后,取出样品,经离心、洗涤和干燥处理后,即得到产品。
CN201410634145.7A 2014-11-12 2014-11-12 由纳米块自组装的八面体氧化铈的制备方法 Active CN104445340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410634145.7A CN104445340B (zh) 2014-11-12 2014-11-12 由纳米块自组装的八面体氧化铈的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410634145.7A CN104445340B (zh) 2014-11-12 2014-11-12 由纳米块自组装的八面体氧化铈的制备方法

Publications (2)

Publication Number Publication Date
CN104445340A CN104445340A (zh) 2015-03-25
CN104445340B true CN104445340B (zh) 2016-04-27

Family

ID=52892202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410634145.7A Active CN104445340B (zh) 2014-11-12 2014-11-12 由纳米块自组装的八面体氧化铈的制备方法

Country Status (1)

Country Link
CN (1) CN104445340B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325525A (zh) * 2018-03-01 2018-07-27 中国科学技术大学 一种催化氧化低浓度甲烷的催化剂及其制备方法以及应用
CN111467324B (zh) * 2020-05-15 2021-01-05 吉林大学 复合材料及其制备方法、纳米药物、应用
CN115160935B (zh) * 2022-08-26 2023-08-25 江南大学 一种八面体氧化铈磨粒抛光液及其制备方法、应用
CN115472445B (zh) * 2022-09-29 2024-03-29 贵州民族大学 一种利用二氧化铈制备超级电容电极材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
溶剂热法合成CeO2纳米微晶;于丽丽 等;《山东大学学报(工学版)》;20100831;第40卷(第4期);第75-79页 *
超声模板法制备纳米二氧化铈的研究;范方强 等;《功能材料》;20101231;第41卷(第1期);第135-138页 *

Also Published As

Publication number Publication date
CN104445340A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
Li et al. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 pn heterojunction photocatalysts for enhanced photocatalytic activity
Wang et al. Preparation of Ag2O/Ag2CO3/MWNTs composite photocatalysts for enhancement of ciprofloxacin degradation
CN103341633B (zh) 一种导电油墨纳米铜的制备方法
Wang et al. Fabrication of novel ternary heterojunctions of Pd/g-C3N4/Bi2MoO6 hollow microspheres for enhanced visible-light photocatalytic performance toward organic pollutant degradation
Pan et al. Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis
Cheng et al. Green synthesis of plasmonic Ag nanoparticles anchored TiO2 nanorod arrays using cold plasma for visible-light-driven photocatalytic reduction of CO2
Khalid et al. Graphene modified Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation
Xu et al. Ternary system of ZnO nanorods/reduced graphene oxide/CuInS2 quantum dots for enhanced photocatalytic performance
CN103252227B (zh) 一种四针状氧化锌/石墨烯复合材料及其制备方法
CN103991903B (zh) 一种混相二氧化钛纳米片光催化剂的制备方法
Shui et al. Green sonochemical synthesis of cupric and cuprous oxides nanoparticles and their optical properties
CN104445340B (zh) 由纳米块自组装的八面体氧化铈的制备方法
CN102160995A (zh) 纳米金属氧化物/石墨烯复合光催化剂的制备方法
CN102698775A (zh) 一种BiOI-石墨烯可见光催化剂及其制备方法
Wu et al. Microwave-assisted preparation and enhanced photocatalytic activity of Bi2WO6/BiOI heterojunction for organic pollutants degradation under visible-light irradiation
CN103691433A (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
Abdulhusain et al. Silver and zinc oxide decorated on reduced graphene oxide: Simple synthesis of a ternary heterojunction nanocomposite as an effective visible-active photocatalyst
CN102886279B (zh) 在纳米二氧化钛表面负载金属纳米粒子的制备方法
CN105521809B (zh) 一种Cu:ZnO/N:rGO复合光催化剂的制备方法
CN105923625B (zh) 一种石墨烯负载均匀单一氧化物量子点的制备方法
Dai et al. Fabrication of a nano-sized Ag 2 CO 3/reduced graphene oxide photocatalyst with enhanced visible-light photocatalytic activity and stability
Harish et al. Functional properties and enhanced visible light photocatalytic performance of V3O4 nanostructures decorated ZnO nanorods
CN107308929A (zh) 一种石墨烯‑纳米二氧化钛复合物光催化剂的制备方法
CN104826628A (zh) 一种在可见光下具有高催化降解活性的石墨烯–铁掺杂TiO2纳米线的制法
Xu et al. A review in visible-light-driven BiVO 4 photocatalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Guo Tianyu

Inventor after: Li Jinping

Inventor after: Du Jianping

Inventor after: Wu Jinting

Inventor before: Li Jinping

Inventor before: Guo Tianyu

Inventor before: Du Jianping

Inventor before: Wu Jinting

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211126

Address after: 471000 Room 202, second floor, building 1, No. 18, Yanguang Road, high tech Zone, Luoyang City, Henan Province

Patentee after: Henan chenglongyi New Material Technology Co.,Ltd.

Address before: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze

Patentee before: Taiyuan University of Technology