CN105521809B - 一种Cu:ZnO/N:rGO复合光催化剂的制备方法 - Google Patents

一种Cu:ZnO/N:rGO复合光催化剂的制备方法 Download PDF

Info

Publication number
CN105521809B
CN105521809B CN201610072627.7A CN201610072627A CN105521809B CN 105521809 B CN105521809 B CN 105521809B CN 201610072627 A CN201610072627 A CN 201610072627A CN 105521809 B CN105521809 B CN 105521809B
Authority
CN
China
Prior art keywords
zno
rgo
composite photo
catalysts
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610072627.7A
Other languages
English (en)
Other versions
CN105521809A (zh
Inventor
潘新花
周宇嵩
吕斌
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610072627.7A priority Critical patent/CN105521809B/zh
Publication of CN105521809A publication Critical patent/CN105521809A/zh
Application granted granted Critical
Publication of CN105521809B publication Critical patent/CN105521809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Cu掺杂ZnO纳米棒和N掺杂还原氧化石墨烯(rGO)构成的p‑n结型Cu:ZnO/N:rGO复合光催化剂的制备方法,该催化剂由N掺杂的n型rGO包覆Cu掺杂的p型ZnO纳米棒组成。其制备方法如下:先利用水热法制备Cu掺杂的ZnO纳米棒,然后将其和氧化石墨烯(GO)利用水热还原法组装在一起形成Cu:ZnO/rGO复合光催化剂,最后对Cu:ZnO/rGO在NH3气氛下退火处理进行掺N得到Cu:ZnO/N:rGO复合光催化剂。此方法制备的光催化剂在紫外光下具有很高的光催化活性,且能抑制ZnO的光腐蚀现象,使催化剂的稳定性大大提高,在污水处理领域有重要的潜在应用价值。

Description

一种Cu:ZnO/N:rGO复合光催化剂的制备方法
技术领域
本发明涉及一种光催化剂的制备方法,属于半导体纳米光催化材料技术领域。
背景技术
能源短缺与环境污染问题是人类未来将要面临的最主要挑战,而光催化分解水及降解污染物被认为是解决这两个问题的有效方法。相比传统的TiO2,同为宽禁带半导体的ZnO拥有更丰富的来源和更高的量子效率,被认为是有潜力替代TiO2的材料之一。ZnO是一种原材料丰富,环境友好的半导体材料,带隙宽(Eg≈3.3eV),在紫外光照射下能够产生具有很强氧化还原能力的空穴和电子。因此,ZnO理论上具有与TiO2相近的光催化能力。然而,由于光生载流子的迅速复合导致ZnO光催化性能降低和光腐蚀造成的自身结构不稳定,这两个问题严重制约了ZnO在光催化领域的发展。
将石墨烯与ZnO进行复合制备ZnO/rGO复合光催化剂是一种有效提高ZnO光催化性能和光腐蚀抗性的方法。现有技术中尚未见对ZnO和rGO同时进行掺杂后再复合的研究和报道。本发明通过Cu掺杂制备出p型ZnO,然后与N掺杂的n型rGO复合形成纳米p-n结型复合光催化剂,利用rGO优良的电子传递性能和p-n结存在的内建电场抑制光生载流子的复合,有效提高光催化性能。
发明内容
本发明的目的是提供一种制备成本低、工艺简单的Cu:ZnO/N:rGO复合光催化剂的制备方法。
本发明的Cu:ZnO/N:rGO复合光催化剂,由Cu掺杂的ZnO纳米棒和包覆于上述纳米棒外的N掺杂还原氧化石墨烯(rGO)构成。制备方法包括以下步骤:
1)将Zn(CH3COOH)2·2H2O、HMTA和Cu(CH3COO)2溶于去离子水中,使Zn(CH3COOH)2·2H2O和HMTA的浓度均为30mM,Cu(CH3COO)2浓度为0.3mM~0.9mM,获得混合溶液,将混合溶液置于反应釜中在90℃下保温4h,将得到的沉淀物离心洗净并干燥,获得Cu掺杂的ZnO纳米棒;
2)将步骤1)的Cu掺杂ZnO纳米棒分散在去离子水中,然后加入5wt%的GO溶液,充分搅拌1h后,转移至水热釜中120℃水热保温12h,将得到的沉淀物离心洗净并干燥,获得Cu:ZnO/rGO粉末;
3)将步骤2)的Cu:ZnO/rGO粉末置于石英舟中,先通5min NH3和Ar混合气,其中NH3体积含量为10%,然后以20℃/min的速度升温至200℃,随即在5min内匀速升温至300℃~500℃后随炉降温至室温,取出样品得到Cu:ZnO/N:rGO复合光催化剂。
本发明的Cu:ZnO/N:rGO复合光催化剂提升ZnO光催化性能和光腐蚀抗性的原理是:Cu掺杂使本征n型ZnO变为p型,与N掺杂的rGO复合后比表面积增大,光催化反应活性位点增多,反应速率增大;其次p型ZnO与n型rGO形成纳米级别的p-n结,由于内建电场的存在,光生载流子能够迅速地从ZnO转移至N:rGO上,抑制了光生载流子的复合,使光催化性能提高。提高光腐蚀抗性的原因主要有:rGO与ZnO之间C-O的强烈杂化作用能够有效抑制ZnO表面O原子的活性,增强ZnO的稳定性;包覆在ZnO表面的rGO起到类似壁垒的作用,防止ZnO因光腐蚀而结构被破坏;rGO巨大的比表面积能够吸附染料分子,而染料分子能够捕获空穴,与导致ZnO光腐蚀的反应形成竞争,降低了ZnO光腐蚀程度。
本发明的有益效果在于:
1)本发明Cu:ZnO/N:rGO复合光催化剂制备方法简单,可重复性好,产率较高,制备出的复合光催化剂结构稳定,性能优良。
2)Cu:ZnO/N:rGO复合光催化剂对常见污染物有很高的光催化降解活性,而且比常见的未掺杂ZnO-rGO光催化剂的性能更好,能够在更短的时间内完成对污水的光催化净化。
3)本发明的Cu:ZnO/N:rGO复合光催化剂具有优秀的光腐蚀抗性,经过多次光催化循环降解实验后仍能保持较高的光催化活性。
附图说明
图1为Cu:ZnO/N:rGO的XRD衍射图片。
图2为Cu:ZnO/N:rGO的SEM图片。
图3为Cu:ZnO/N:rGO的TEM图片。
图4为Cu:ZnO/N:rGO的Mott-Schottky曲线。
图5为Cu:ZnO/N:rGO和ZnO的N2吸附脱附曲线。
图6为Cu:ZnO/N:rGO、ZnO-rGO和ZnO的光催化降解RhB性能对比图,其中纵坐标C/C0表示剩余浓度与初始浓度的比值。
图7为Cu:ZnO/N:rGO和ZnO的循环光催化降解RhB测试。
具体实施方式
实施例1
(1)将0.659g Zn(CH3COOH)2·2H2O、0.42g HMTA、6mg Cu(CH3COO)2·2H2O加入到100ml去离子水中,持续搅拌至充分溶解,取70ml混合溶液置于100ml反应釜中在90℃下保温4h,将得到的沉淀物离心洗净并干燥获得Cu掺杂的ZnO纳米棒;
(2)将步骤(1)所制备的Cu掺杂ZnO纳米棒分散在去离子水中,然后加入5wt%的GO溶液,充分搅拌1h后将混合溶液转移至水热釜中120℃水热保温12h,然后将得到的沉淀物离心洗净并干燥获得Cu:ZnO/rGO粉末。
(3)所步骤(2)制备的Cu:ZnO/rGO粉末置于石英舟中,先通5min NH3体积含量为10%的NH3和Ar混合气,然后以20℃/min的速度升温至200℃,随即在5min内匀速升温至500℃,然后随炉降温至室温,取出样品得到Cu:ZnO/N:rGO复合光催化剂。
图1为Cu:ZnO/N:rGO的XRD衍射图谱,ZnO的衍射峰与标准图谱匹配,由于rGO含量很少,未出现明显的rGO衍射峰。
图2为Cu:ZnO/N:rGO的SEM图片,可清晰地看出ZnO纳米棒直径约为50nm,长度为1μm至几μm,且rGO很好地包覆在ZnO纳米棒表面。
图3为Cu:ZnO/N:rGO的TEM图片,图中看出ZnO纳米棒是沿[001]晶向生长,rGO均匀地包覆着ZnO纳米棒。
图4为Cu:ZnO/N:rGO的Mott-Schottky曲线,典型的倒“V”型曲线表明形成了p-n结结构。
图5为Cu:ZnO/N:rGO和ZnO的N2吸附脱附曲线,从曲线中可看出Cu:ZnO/N:rGO复合光催化剂比表面积比ZnO大大提高。
图6为Cu:ZnO/N:rGO、ZnO-rGO和ZnO的光催化性能对比图,表明p-n结结构的Cu:ZnO/N:rGO复合光催化剂拥有更好的光催化性能。
图7为Cu:ZnO/N:rGO和ZnO的循环光催化降解实验,说明Cu:ZnO/N:rGO复合光催化剂的光腐蚀抗性明显提高。
实施例2
(1)将0.659g Zn(CH3COOH)2·2H2O、0.42g HMTA、12mg Cu(CH3COO)2·2H2O加入到100ml去离子水中,持续搅拌至充分溶解,取70ml混合溶液置于100ml反应釜中在90℃下保温4h,将得到的沉淀物离心洗净并干燥获得Cu掺杂的ZnO纳米棒;
(2)将步骤(1)所制备的Cu掺杂ZnO纳米棒分散在去离子水中,然后加入5wt%的GO溶液,充分搅拌1h后将混合溶液转移至水热釜中120℃水热保温12h,然后将得到的沉淀物离心洗净并干燥获得Cu:ZnO/rGO粉末。
(3)将步骤(2)所制备的Cu:ZnO/rGO粉末置于石英舟中,先通5min NH3体积含量为10%的NH3和Ar混合气,然后以20℃/min的速度升温至200℃,随即在5min内匀速升温至300℃,然后随炉降温至室温,取出样品得到Cu:ZnO/N:rGO复合光催化剂。
实施例3
(1)将0.659g Zn(CH3COOH)2·2H2O、0.42g HMTA、18mg Cu(CH3COO)2·2H2O加入到100ml去离子水中,持续搅拌至充分溶解,取70ml混合溶液置于100ml反应釜中在90℃下保温4h,将得到的沉淀物离心洗净并干燥获得Cu掺杂的ZnO纳米棒;
(2)将步骤(1)所制备的Cu掺杂ZnO纳米棒分散在去离子水中,然后加入5wt%的GO溶液,充分搅拌1h后将混合溶液转移至水热釜中120℃水热保温12h,然后将得到的沉淀物离心洗净并干燥获得Cu:ZnO/rGO粉末。
(3)将步骤(2)所制备的Cu:ZnO/rGO粉末置于石英舟中,先通5min NH3体积含量为10%的NH3和Ar混合气,然后以20℃/min的速度升温至200℃,随即在5min内匀速升温至400℃,然后随炉降温至室温,取出样品得到Cu:ZnO/N:rGO复合光催化剂。

Claims (1)

1.一种Cu:ZnO/N:rGO复合光催化剂的制备方法,该复合光催化剂由Cu掺杂的ZnO纳米棒和包覆在上述纳米棒外的N掺杂rGO构成,其特征在于,该复合光催化剂的制备方法包括以下步骤:
1)将Zn(CH3COOH)2·2H2O、HMTA和Cu(CH3COO)2溶于去离子水中,使Zn(CH3COOH)2·2H2O和HMTA的浓度均为30mM,Cu(CH3COO)2浓度为0.3mM~0.9mM,获得混合溶液,将混合溶液置于反应釜中在90℃下保温4h,将得到的沉淀物离心洗净并干燥,获得Cu掺杂的ZnO纳米棒;
2)将步骤1)的Cu掺杂ZnO纳米棒分散在去离子水中,然后加入5wt%的GO溶液,充分搅拌1h后,转移至水热釜中120℃水热保温12h,将得到的沉淀物离心洗净并干燥,获得Cu:ZnO/rGO粉末;
3)将步骤2)的Cu:ZnO/rGO粉末置于石英舟中,先通5min NH3和Ar混合气,其中NH3体积含量为10%,然后以20℃/min的速度升温至200℃,随即在5min内匀速升温至300℃~500℃后随炉降温至室温,取出样品得到Cu:ZnO/N:rGO复合光催化剂。
CN201610072627.7A 2016-02-01 2016-02-01 一种Cu:ZnO/N:rGO复合光催化剂的制备方法 Active CN105521809B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610072627.7A CN105521809B (zh) 2016-02-01 2016-02-01 一种Cu:ZnO/N:rGO复合光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610072627.7A CN105521809B (zh) 2016-02-01 2016-02-01 一种Cu:ZnO/N:rGO复合光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN105521809A CN105521809A (zh) 2016-04-27
CN105521809B true CN105521809B (zh) 2018-01-26

Family

ID=55764531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610072627.7A Active CN105521809B (zh) 2016-02-01 2016-02-01 一种Cu:ZnO/N:rGO复合光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN105521809B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107114407B (zh) * 2017-05-26 2020-01-17 中国石油大学(华东) 纳米铜锌复合抗菌材料的制备方法及应用
CN108321404B (zh) * 2018-03-01 2021-07-23 哈尔滨工业大学 一种掺杂型石墨烯核壳型催化剂载体及其制备方法和应用
CN109402703A (zh) * 2018-10-08 2019-03-01 太原理工大学 一种耐光腐蚀的二氧化钛/硒化镉/石墨烯薄膜的制备方法
CN110052272B (zh) * 2019-04-23 2020-10-27 北京化工大学 Co掺杂ZnO纳米花材料的制备方法及其应用
CN110813293A (zh) * 2019-10-31 2020-02-21 曲阜师范大学 Cu NPs-rGO电催化剂的制备方法及其应用
CN112619642A (zh) * 2020-12-18 2021-04-09 江苏懂醛检测技术有限公司 一种微光反应氧催媒石墨烯材料及基于其的空气治理系统
CN113061421B (zh) * 2021-03-25 2022-04-12 西北工业大学 一种ZnO/N掺杂的中空介电型吸波材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182307A (zh) * 2013-03-05 2013-07-03 华南理工大学 一种Cu掺杂ZnO/石墨烯复合光催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026906A2 (en) * 2006-05-23 2009-02-25 Dow Corning Corporation Borane catalyst complexes with amide functional polymers and curable compositions made therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182307A (zh) * 2013-03-05 2013-07-03 华南理工大学 一种Cu掺杂ZnO/石墨烯复合光催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation;Xun Zhou等;《Applied Surface Science》;20120305;第258卷;第6204-6211页 *

Also Published As

Publication number Publication date
CN105521809A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN105521809B (zh) 一种Cu:ZnO/N:rGO复合光催化剂的制备方法
Cao et al. Ingenious design of CoAl-LDH pn heterojunction based on CuI as holes receptor for photocatalytic hydrogen evolution
Zhang et al. A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application
Zou et al. In situ synthesis of C-doped TiO2@ g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution
Fajrina et al. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture
Wang et al. Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation
Ong et al. Facet‐dependent photocatalytic properties of TiO2‐based composites for energy conversion and environmental remediation
Guo et al. Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value‐Added Chemicals
Jiang et al. Facile in-situ Solvothermal Method to synthesize double shell ZnIn2S4 nanosheets/TiO2 hollow nanosphere with enhanced photocatalytic activities
Chen et al. Synthesis of CuO/Co3O4 coaxial heterostructures for efficient and recycling photodegradation
Xu et al. Ternary system of ZnO nanorods/reduced graphene oxide/CuInS2 quantum dots for enhanced photocatalytic performance
CN106944116A (zh) 氮化碳/二氧化钛纳米片阵列异质结光催化剂及制备方法
Li et al. Surface and interface modification strategies of CdS-based photocatalysts
Abdulhusain et al. Silver and zinc oxide decorated on reduced graphene oxide: Simple synthesis of a ternary heterojunction nanocomposite as an effective visible-active photocatalyst
Zheng et al. Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity
Shao et al. In-situ irradiated XPS investigation on 2D/1D Cd0. 5Zn0. 5S/Nb2O5 S-scheme heterojunction photocatalysts for simultaneous promotion of antibiotics removal and hydrogen evolution
CN103861618A (zh) 一种SnO2基复合可见光光催化剂的制备方法
CN109012731A (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN103691433A (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
Jiao et al. Sulfur/phosphorus doping-mediated morphology transformation of carbon nitride from rods to porous microtubes with superior photocatalytic activity
CN110227453A (zh) 一种Ag/ZnO/GO复合可见光催化剂的制备方法
CN106622202A (zh) 石墨烯‑TiO2纳米管/FTO双层复合膜的制备方法
Jin et al. Enhanced photocatalytic hydrogen evolution over semi-crystalline tungsten phosphide
Lin et al. Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye
Wu et al. Solvothermal synthesis of Bi2O3/BiVO4 heterojunction with enhanced visible-light photocatalytic performances

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant