CN107349943A - 锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法 - Google Patents

锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法 Download PDF

Info

Publication number
CN107349943A
CN107349943A CN201710680115.3A CN201710680115A CN107349943A CN 107349943 A CN107349943 A CN 107349943A CN 201710680115 A CN201710680115 A CN 201710680115A CN 107349943 A CN107349943 A CN 107349943A
Authority
CN
China
Prior art keywords
agcl
silver
preparation
bismuth
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710680115.3A
Other languages
English (en)
Inventor
王田禾
赵晓娟
崔宏达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710680115.3A priority Critical patent/CN107349943A/zh
Publication of CN107349943A publication Critical patent/CN107349943A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法。所述方法首先将氧化铋和五水合四氯化锡通过高温固相法制备锡酸铋粉末,再将Bi2Sn2O7的氯化钠溶液与硝酸银通过沉积形成Bi2Sn2O7/AgCl复合物,最后光还原制备Bi2Sn2O7/Ag‑AgCl复合纳米材料。本发明方法工艺简单,易于控制,制备过程对环境无毒无害。本发明制得的锡酸铋/银‑氯化银等离子体纳米复合材料粒径均匀,分散性好,稳定性及重复利用性高,可见光吸收强,并且其电子空穴的分离效率高,对有机染料的催化降解性能优异,具有实际应用价值。

Description

锡酸铋/银-氯化银等离子体纳米复合光催化材料的制备方法
技术领域
本发明属于纳米半导体复合材料合成技术领域,具体涉及一种锡酸铋/银-氯化银等离子体纳米复合材料的制备方法。
背景技术
随着城市化与工业化的发展,水污染已经成为世界性的环境污染问题之一,严重威胁到人类社会的健康发展,困扰人类的可持续发展。半导体光催化技术作为一种绿色技术,可以利用太阳光解决水污染的问题,有望成为解决环境问题的有效途径之一。其中二氧化钛(TiO2)作为半导体光催化剂,具有稳定性好,比表面积大,对紫外光的吸收能力强,易于制备等优点,在太阳能电池、光催化降解污染物、裂解水制氢等领域具有广泛的应用潜能。但是,由于TiO2仅能被紫外光激发,而太阳光中紫外光的含量小于5%,对太阳光的利用率极低,严重限制了TiO2在实际生活中的应用。因此,为了有效利用太阳光及节省能源,需要研究开发新型的可见光响应的催化剂。
锡酸铋(Bi2Sn2O7)是一种新型半导体光催化材料,具有价廉、无毒、化学性质稳定等优点,但单一相的Bi2Sn2O7光催化活性低,不能满足工业实用的需求。Wu等(J.Mater.Chem.,2011,21,3872)制备单一相Bi2Sn2O7材料,并作为光催化剂降解甲基橙,然而其降解90%所需的时间为4.5小时,活性较低。因此需要对单一的Bi2Sn2O7进行改性。
作为等离子体光催化剂,Ag-AgCl成为近年的研究热点。由于纳米银的表面等离子共振效应,Ag-AgCl对可见光有很强的吸收。近几年来,Ag-AgCl广泛用于修饰半导体光催化剂,以提高光生电子和空穴的分离能力,进而改善光催化活性。Xu等(Applied CatalysisB:Environmental 191(2016)228-234)制备Ag/AgCl/NaTaO3复合材料,并分别测试其对甲基蓝与罗丹明B的催化降解情况,其中甲基蓝降解2小时其降解效率达到98%,罗丹明B降解2小时其降解效率达到95%,其催化活性较低。
发明内容
为了解决现有光催化剂存在的可见光利用率较低的问题,本发明提供了一种锡酸铋/银-氯化银等离子体纳米复合光催化材料的制备方法。
本发明的技术方案如下:
锡酸铋/银-氯化银等离子体纳米复合光催化材料的制备方法,具体包括以下步骤:
步骤1,制备Bi2Sn2O7粉末:取氧化铋和五水合四氯化锡,溶于盐酸中,在持续搅拌下缓慢滴加氨水,调节pH值至11~12,继续搅拌,过滤、洗涤、真空干燥,再在500~600℃下煅烧,得到纳米Bi2Sn2O7粉末;
步骤2,配制Bi2Sn2O7/AgCl复合物:取氯化钠溶于水中,加入Bi2Sn2O7粉末,搅拌使其分散均匀,持续搅拌中快速加入硝酸银溶液,继续搅拌,形成Bi2Sn2O7/AgCl复合物溶液;
步骤3,制备Bi2Sn2O7/Ag-AgCl复合材料:将Bi2Sn2O7/AgCl复合物溶液置于可见光下进行光还原反应,过滤,洗涤,干燥,得到Bi2Sn2O7/Ag-AgCl复合材料。
步骤1中,所述的氧化铋和五水合四氯化锡的摩尔比为1:1。
步骤1中,所述的盐酸的浓度为10mol/L。
步骤1中,所述的煅烧时间为3~5小时。
步骤2中,所述的氯化钠、硝酸银与锡酸铋的摩尔比为14:14:5。
步骤3中,所述的光还原反应采用的氙灯功率为300W,光还原时间为50分钟。
本发明制备的Bi2Sn2O7/Ag-AgCl复合材料光催化活性提升。一方面由于Bi2Sn2O7/Ag-AgCl复合材料可以吸收400~650nm的可见光,对可见光的响应增强;另一方面,在Bi2Sn2O7/Ag-AgCl复合材料中,光生电子与空穴得到有效分离,更多的电子与空穴参与到催化降解的氧化还原反应中,增强催化活性。
与现有技术相比,本发明具有以下优点:
(1)本发明方法工艺简单,易于控制,制备过程对环境无毒无害;
(2)本发明制得的Bi2Sn2O7/Ag-AgCl复合材料粒径均匀,分散性好,稳定性及重复利用性高,对有机染料的催化降解性能优异,具有实际应用价值。
附图说明
图1为Bi2Sn2O7及Bi2Sn2O7/Ag-AgCl复合材料的XRD图谱。
图2(a)Bi2Sn2O7/Ag-AgCl(NaCl)复合物(a1)和Ag-AgCl(NaCl)样品(a2)的SEM图;(b)Bi2Sn2O7/Ag-AgCl(CTAC)复合物的SEM图。
图3为单一相Bi2Sn2O7及Bi2Sn2O7/Ag-AgCl复合材料的紫外-可见吸收光谱。
图4为不同材料催化甲基橙(a)与亚甲基蓝(b)降解的降解曲线。
图5为Bi2Sn2O7/Ag-AgCl(NaCl)复合材料催化甲基橙溶液降解的重复性曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步详述。
实施例中使用的试剂有:五水合氯化锡(SnCl4·5H2O,分析纯),氧化铋(Bi2O3,分析纯),盐酸(HCl,分析纯),氨水(NH3·H2O,分析纯),氯化钠(NaCl,分析纯),硝酸银(AgNO3,分析纯)。
实施例1
以氯化钠为氯源,制备Bi2Sn2O7/Ag-AgCl(NaCl)复合材料:
称取1.41g氧化铋和2.1g五水合四氯化锡,溶于20mL盐酸(10mol/L)中,在不间断的强烈的磁力搅拌下缓慢滴加氨水至pH值为12,继续搅拌30分钟,然后过滤、洗涤、干燥得到淡黄色中间体,在高温马弗炉中600℃煅烧3小时,得到纳米Bi2Sn2O7粉末。
称取0.082g氯化钠溶解于100mL的去离子水中,并加入0.4g制备的纳米Bi2Sn2O7粉末于氯化钠溶液中,搅拌1小时使其分散均匀。然后,持续搅拌过程中快速加入14mL硝酸银溶液(0.1mol/L),继续搅拌1小时,形成Bi2Sn2O7/AgCl复合物。最后,混合液体置于300W氙灯下搅拌50分钟,使AgCl表面的部分Ag+还原为Ag0,得到Bi2Sn2O7/Ag-AgCl复合材料,标注为Bi2Sn2O7/Ag-AgCl(NaCl)。
对比例1
以氯化钠为氯源,制备Ag-AgCl(NaCl)复合材料:
称取0.082g氯化钠溶解于100mL的去离子水中,持续搅拌过程中快速加入14mL硝酸银溶液(0.1mol/L),继续搅拌1小时,形成AgCl。最后,混合液体置于300W氙灯下搅拌50分钟,得到Ag-AgCl复合材料,标注为Ag-AgCl(NaCl)。
对比例2
以十六烷基三甲基氯化铵(CTAC)为氯源,制备Bi2Sn2O7/Ag-AgCl(CTAC):
称取1.41g氧化铋和2.1g五水合四氯化锡,溶于20mL盐酸(10mol/L)中,在不间断的强烈的磁力搅拌下缓慢滴加氨水至pH值为12,继续搅拌30分钟,然后过滤、洗涤、干燥得到淡黄色中间体,在高温马弗炉中600℃煅烧3小时,得到纳米Bi2Sn2O7粉末。
称取0.448g十六烷基三甲基氯化铵溶解于100mL的去离子水中,并加入0.4g制备的纳米Bi2Sn2O7粉末于上述溶液中,搅拌1小时使其分散均匀。然后,持续搅拌过程中快速加入14mL硝酸银溶液(0.1mol/L),继续搅拌1小时,形成Bi2Sn2O7/AgCl复合物。最后,混合液体置于300W氙灯下搅拌50分钟,使AgCl表面的部分Ag+还原为Ag0,得到Bi2Sn2O7/Ag-AgCl复合材料,标注为Bi2Sn2O7/Ag-AgCl(CTAC)。
对比例3
以十六烷基三甲基氯化铵(CTAC)为氯源,制备Ag-AgCl(CTAC):
称取0.448g十六烷基三甲基氯化铵溶解于100mL的去离子水中,搅拌一小时使其分散均匀。然后,持续搅拌过程中快速加入14mL硝酸银溶液(0.1mol/L),继续搅拌1小时,形成AgCl。最后,混合液体置于300W氙灯下搅拌50分钟,使AgCl表面的部分Ag+还原为Ag0,得到Ag-AgCl复合材料,标注为Ag-AgCl(CTAC)。
实施例2
光催化降解实验:
甲基橙与亚甲基蓝作为目标降解物,研究实施例1制备的Bi2Sn2O7/Ag-AgCl(NaCl)复合材料、对比例2制备的Bi2Sn2O7/Ag-AgCl(CTAC)复合材料、对比例1制得的Ag-AgCl(NaCl)与Bi2Sn2O7的机械混合材料[Bi2Sn2O7+Ag-AgCl(NaCl)]、对比例3制得的Ag-AgCl(CTAC)与Bi2Sn2O7的机械混合材料[Bi2Sn2O7+Ag-AgCl(CTAC)]的可见光催化性能。光催化实验中取0.02g复合材料为光催化剂,取20mL的染料(10mg/L)为目标降解物。光源为300W氙灯(配有420nm滤波片),光催化实验在室温下进行。首先将反应系统置于黑暗环境中搅拌30分钟达到吸附平衡,然后打开光源进行光催化反应。反应过程中每5分钟从系统中取出1mL混合液,离心后利用紫外-可见分光光度计来检测染料的浓度并以此分析其降解情况。
图1是Bi2Sn2O7及Bi2Sn2O7/Ag-AgCl复合材料的XRD图谱,其中单一相Bi2Sn2O7显示出立方晶相锡酸铋(JCPDS no.87-0284)的特征峰。结晶性优异。观察两种Bi2Sn2O7/Ag-AgCl复合物,所有的峰都可以对应于Bi2Sn2O7和Ag-AgCl晶体的相关晶面,且主要特征峰较尖锐,说明成功制备出结晶性良好的立方晶相的AgCl晶体。另外,38.2°处的弱峰来自于立方晶相的纳米Ag(JCPDS 31-123),证明通过光还原法成功得到纳米银颗粒。谱图中没有任何杂质峰,说明制备的光催化材料无杂质。
图2是Bi2Sn2O7/Ag-AgCl复合物的扫描电镜图片。根据Bi2Sn2O7/Ag-AgCl(NaCl)复合物(图2a1)和Ag-AgCl(NaCl)样品(图2a2)的SEM图可以发现,Bi2Sn2O7纳米颗粒负载于Ag-AgCl表面,即Ag-AgCl被Bi2Sn2O7颗粒包覆。图b为Bi2Sn2O7/Ag-AgCl(CTAC)复合物的SEM图也可以发现Ag-AgCl被Bi2Sn2O7颗粒包覆。另外,Bi2Sn2O7/Ag-AgCl(NaCl)复合材料的颗粒大小约为600nm,而Bi2Sn2O7/Ag-AgCl(CTAC)复合材料的颗粒大小较大,且分布不均匀。
图3为单一相Bi2Sn2O7及两种Bi2Sn2O7/Ag-AgCl复合材料的紫外-可见吸收光谱。与单一相Bi2Sn2O7相比,Bi2Sn2O7/Ag-AgCl复合材料有更强的可见光吸收能力,吸收波长范围大约为470-580nm,说明复合物有能够更好地利用可见光催化降解有机污染物的能力。另外,Bi2Sn2O7/Ag-AgCl(NaCl)复合物对可见光的吸收比Bi2Sn2O7/Ag-AgCl(CTAC)复合物更强,这意味着Bi2Sn2O7/Ag-AgCl(NaCl)复合物能够更有效的利用可见光,具有最优异的光催化活性。
分别测定五种催化剂存在下甲基橙的降解情况,分别为单一相Bi2Sn2O7,Bi2Sn2O7/Ag-AgCl(CTAC)复合物及Bi2Sn2O7/Ag-AgCl(NaCl)复合物,同时为了对比,测定了Bi2Sn2O7与Ag-AgCl(CTAC)的机械混合物[Bi2Sn2O7+Ag-AgCl(CTAC)]及Bi2Sn2O7与Ag-AgCl(NaCl)的机械混合物[Bi2Sn2O7+Ag-AgCl(NaCl)]催化甲基橙降解的情况。图4(a)为使用不同催化剂时甲基橙的降解情况,可以发现在单一相Bi2Sn2O7做催化剂时,可见光照射20分钟之后仅有20.4%的甲基橙降解,而相同的反应时间,在Bi2Sn2O7与Ag-AgCl(CTAC)的机械混合物及Bi2Sn2O7与Ag-AgCl(NaCl)的机械混合物存在下,甲基橙的降解率略有提高,分别为23.6%和27.8%。然而在Bi2Sn2O7/Ag-AgCl复合物存在时,相同的实验条件下,甲基橙的降解率大大提高,Bi2Sn2O7/Ag-AgCl(CTAC)存在时为82%,Bi2Sn2O7/Ag-AgCl(NaCl)存在时为98.8%,因此可以发现Bi2Sn2O7/Ag-AgCl(NaCl)的光催化活性最高。图4(b)不同材料催化亚甲基蓝的降解情况,在可见光照射20分钟之后亚甲基蓝的降解程度分别仅有20.32%,23.6%及25.9%。然而,在Bi2Sn2O7/Ag-AgCl(CTAC)复合物及Bi2Sn2O7/Ag-AgCl(NaCl)复合物存在时,亚甲基蓝那的降解率分别高达81%和93.5%,说明Bi2Sn2O7/Ag-AgCl复合物的可见光催化活性更强。
实施例3
催化剂稳定性实验:
利用甲基橙溶液研究了Bi2Sn2O7/Ag-AgCl(NaCl)复合物的稳定性。取20mL,10mg/L的甲基橙溶液于反应容器中,然后称取0.02g光催化剂分散于上述甲基橙溶液中,进行第一次光催化实验,测量其降解情况。实验结束后,将光催化剂小心回收,用去离子水充分洗涤,常温下真空干燥2小时之后作为催化剂在相同环境中进行第二次光催化降解实验。同样的处理之后进行第三次及第四次重复实验,分析四次实验中甲基橙的降解情况。
催化剂的稳定性是决定实用性的重要的因素。由图5为可见光下Bi2Sn2O7/Ag-AgCl(NaCl)复合物催化甲基橙溶液降解的重复性实验结果。由图5(a)可以看出,四次重复实验中,Bi2Sn2O7/Ag-AgCl(NaCl)复合物的催化活性几乎没有降低,并且观察图5(b)可知,进行光催化实验之后,样品的XRD特征峰没有任何改变。因此,样品具有优异的可见光催化活性及稳定性,实用性高。

Claims (6)

1.锡酸铋/银-氯化银等离子体纳米复合光催化材料的制备方法,其特征在于,具体包括以下步骤:
步骤1,制备Bi2Sn2O7粉末:取氧化铋和五水合四氯化锡,溶于盐酸中,在持续搅拌下缓慢滴加氨水,调节pH值至11~12,继续搅拌,过滤、洗涤、真空干燥,再在500~600℃下煅烧,得到纳米Bi2Sn2O7粉末;
步骤2,配制Bi2Sn2O7/AgCl复合物:取氯化钠溶于水中,加入Bi2Sn2O7粉末,搅拌使其分散均匀,持续搅拌中快速加入硝酸银溶液,继续搅拌,形成Bi2Sn2O7/AgCl复合物溶液;
步骤3,制备Bi2Sn2O7/Ag-AgCl复合材料:将Bi2Sn2O7/AgCl复合物溶液置于可见光下进行光还原反应,过滤,洗涤,干燥,得到Bi2Sn2O7/Ag-AgCl复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的氧化铋和五水合四氯化锡的摩尔比为1:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的盐酸的浓度为10mol/L。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的煅烧时间为3~5小时。
5.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的氯化钠、硝酸银与锡酸铋的摩尔比为14:14:5。
6.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的光还原反应采用的氙灯功率为300W,光还原时间为50分钟。
CN201710680115.3A 2017-08-10 2017-08-10 锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法 Pending CN107349943A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710680115.3A CN107349943A (zh) 2017-08-10 2017-08-10 锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710680115.3A CN107349943A (zh) 2017-08-10 2017-08-10 锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法

Publications (1)

Publication Number Publication Date
CN107349943A true CN107349943A (zh) 2017-11-17

Family

ID=60287851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710680115.3A Pending CN107349943A (zh) 2017-08-10 2017-08-10 锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法

Country Status (1)

Country Link
CN (1) CN107349943A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146431A (zh) * 2020-02-11 2020-05-12 河南创力新能源科技股份有限公司 一种铁镍电池负极复合材料及其制备方法
CN111146407A (zh) * 2020-02-11 2020-05-12 河南创力新能源科技股份有限公司 一种铁镍电池负极添加剂的制备方法
CN111450858A (zh) * 2020-04-11 2020-07-28 天津工业大学 一种复合光催化剂Ag/AgCl@Co3O4的制备方法及由此制得的复合光催化剂
CN114515590A (zh) * 2022-03-11 2022-05-20 西安建筑科技大学 一种异质光催化材料及其制备和应用
CN114768839A (zh) * 2022-05-16 2022-07-22 陕西科技大学 一种铋系复合光催化剂及其制备方法和应用
CN116173951A (zh) * 2022-12-30 2023-05-30 浙江大学 用于治理挥发性空气污染物的光催化涂覆材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707632A (zh) * 2015-03-20 2015-06-17 东华大学 一种可见光响应的Ag-AgBr/Bi20TiO32复合光催化剂及其制备和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104707632A (zh) * 2015-03-20 2015-06-17 东华大学 一种可见光响应的Ag-AgBr/Bi20TiO32复合光催化剂及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOJUAN ZHAO ET AL.: "Novel synthesis of plasmonic Bi2Sn2O7/Ag-AgCl nanocomposite with enhanced visible light photocatalytic property", 《MATERIALS RESEARCH BULLETIN》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146431A (zh) * 2020-02-11 2020-05-12 河南创力新能源科技股份有限公司 一种铁镍电池负极复合材料及其制备方法
CN111146407A (zh) * 2020-02-11 2020-05-12 河南创力新能源科技股份有限公司 一种铁镍电池负极添加剂的制备方法
CN111146407B (zh) * 2020-02-11 2022-11-29 河南创力新能源科技股份有限公司 一种铁镍电池负极添加剂的制备方法
CN111450858A (zh) * 2020-04-11 2020-07-28 天津工业大学 一种复合光催化剂Ag/AgCl@Co3O4的制备方法及由此制得的复合光催化剂
CN114515590A (zh) * 2022-03-11 2022-05-20 西安建筑科技大学 一种异质光催化材料及其制备和应用
CN114768839A (zh) * 2022-05-16 2022-07-22 陕西科技大学 一种铋系复合光催化剂及其制备方法和应用
CN116173951A (zh) * 2022-12-30 2023-05-30 浙江大学 用于治理挥发性空气污染物的光催化涂覆材料的制备方法

Similar Documents

Publication Publication Date Title
CN107349943A (zh) 锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法
Jiang et al. Assembling polyoxo-titanium clusters and CdS nanoparticles to a porous matrix for efficient and tunable H2-evolution activities with visible light
Muthukutty et al. Innovation of novel stone-like perovskite structured calcium stannate (CaSnO3): synthesis, characterization, and application headed for sensing photographic developing agent metol
CN106914263B (zh) 一种复合可见光催化剂的制备方法
Huo et al. Visible-light photocatalytic degradation of glyphosate over BiVO4 prepared by different co-precipitation methods
CN104525182B (zh) 多孔纳米结构的铈铌锑基复合颗粒光催化剂、制备及应用
CN106824213A (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
CN102000584A (zh) 一种钴掺杂改性Beta-氧化铋光催化剂的制备方法
CN105289566B (zh) 氨基葡萄糖助晶化的TiO2@石墨烯复合纳米材料的合成方法
Wu et al. NiCo/ZnO/g-C3N4 Z-scheme heterojunction nanoparticles with enhanced photocatalytic degradation oxytetracycline
Zhang et al. UV-Vis-NIR-light-driven Ag2O/Ag2S/CuBi2O4 double Z-scheme configuration for enhanced photocatalytic applications
CN107175099A (zh) 一种V离子掺杂BiNb5O14光催化剂及其制备方法和应用
CN109317184A (zh) 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用
CN105148910A (zh) 一种六方片状氧化钼负载金纳米颗粒的制备方法
CN103736480B (zh) 一种用作光催化材料的四角星形钒酸铋及其制备方法
CN108620096A (zh) 一种可见光响应Ag/Bi3O4Cl复合材料及制备方法和用途
CN1775349B (zh) 氧化钨修饰的可见光活性的纳米氧化钛光催化剂及其方法
CN103272592A (zh) 一维载银二氧化钛纳米棒光催化剂的制备方法
CN105688923A (zh) 一种新型可见光响应的光催化剂Li3Ni2NbO6的制备方法及应用
Chen et al. Facile synthesis of AgBr@ ZIF-8 hybrid photocatalysts for degradation of Rhodamine B
CN100375649C (zh) 核壳结构可见光催化活性的纳米复合材料的制备方法
Baoum et al. Enhanced photocatalytic efficiency of highly effective and stable perovskite BaSnO3 with monoclinic Li2MnO3 nanoparticles: atrazine a case study of herbicide
Zhang et al. Coprecipitates synthesis of CaIn2O4 and its photocatalytic degradation of methylene blue by visible light irradiation
CN107138148A (zh) 一种Bi2Ti2O7/Bi4Ti3O12复合光催化剂及其制备方法
Lu et al. Facilely coupling CaTiO3 nanorods with Cu nanoparticles for enhanced photocatalytic hydrogen evolution through efficient charge separation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171117

RJ01 Rejection of invention patent application after publication