CN107321383B - 一种纳米纤维负载钴银合金材料及其制备方法和应用 - Google Patents

一种纳米纤维负载钴银合金材料及其制备方法和应用 Download PDF

Info

Publication number
CN107321383B
CN107321383B CN201710469472.5A CN201710469472A CN107321383B CN 107321383 B CN107321383 B CN 107321383B CN 201710469472 A CN201710469472 A CN 201710469472A CN 107321383 B CN107321383 B CN 107321383B
Authority
CN
China
Prior art keywords
cobalt
nano
silver alloy
fiber
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710469472.5A
Other languages
English (en)
Other versions
CN107321383A (zh
Inventor
褚海亮
李年谱
邱树君
邹勇进
向翠丽
徐芬
孙立贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201710469472.5A priority Critical patent/CN107321383B/zh
Publication of CN107321383A publication Critical patent/CN107321383A/zh
Application granted granted Critical
Publication of CN107321383B publication Critical patent/CN107321383B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米纤维负载钴银合金材料,由静电纺丝法制备纳米纤维,再通过浸渍化学还原法制备钴粒子,然后通过氧化还原法制备钴银合金并负载到纳米纤维上制得。其制备方法包括以下步骤:1)静电纺丝法制备纳米纤维;2)通过浸渍化学还原法先制备钴粒子;3)通过氧化还原法制备钴银合金并负载到纳米纤维。本发明材料作为氨硼烷水解制氢催化剂的应用时,40 min完成放氢,放氢速率高,循环测试表明,具有优良的循环性能。本发明纳米纤维以圆柱状的形式存在,具有高比表面积,性质稳定,钴银合金均一、稳定地负载到纳米纤维上,分散均匀且不发生团聚,能快速地催化氨硼烷水解制氢,因此,在制氢、燃料电池等领域具有广阔的应用前景。

Description

一种纳米纤维负载钴银合金材料及其制备方法和应用
技术领域
本发明涉及静电纺丝技术和氨硼烷催化水解制氢技术领域,具体涉及一种纳米纤维负载钴银合金材料及其制备方法和应用。
背景技术
随着经济的迅速发展与人口的不断增长,能源的需求量在日益的膨胀。虽然化石燃料仍占据能源结构的大幅比例,但化石燃料是不可再生资源,并给环境带来一定的污染,由此产生的严重的能源危机问题日益突显。解决此类问题的关键因素是开发新型可再生低碳绿色能源及其高效清洁储存转化技术。
氢能作为一种储量丰富、能量密度高、使用方便、应用广泛的二次能源,受到了国内外科研工作者的广泛关注。氢能是一种理想的二次能源。氨硼烷(NH3BH3,AB)具有19.6 %(wt,质量分数)的氢含量而受到广泛关注。氨硼烷热分解放氢具有放氢诱导期较长、有挥发性副产物等缺点。近年来,人们成功研究出几种促进氨硼烷热分解放氢,抑制副产物生成和经济、高效的氨硼烷再生技术。这些令人瞩目的技术为氨硼烷作为储氢材料应用于车载系统提供了广阔的前景。
氨硼烷水解制氢的非贵金属催化剂中,金属钴表现出良好的催化性能,Yang等人运用原位合成的方法还原钴并负载在石墨烯上催化氨硼烷水解制氢研究,纯钴粒子催化氨硼烷制氢在55 min完成放氢,负载在石墨烯上的钴催化剂催化氨硼烷放氢约在10 min完成,该技术方案存在以下技术问题:1)制备氧化石墨烯条件复杂苛刻,共用了六步合成;2)使用大量石墨烯,成本高;3)制备出的催化剂,五次循环后,反应速率降为初次催化的50%,循环性能有待提高。
纳米纤维具有直径小、比表面积大以及易于实现表面功能化的优点,受到广泛的关注。在众多制备纳米纤维的方法中,静电纺丝法是一种高效的技术,该方法是通过高分子溶液在静电场中带电,变形拉伸并经过溶剂挥发而得到纳米纤维,其中同轴共纺技术由于能制备芯-壳(core-shell)结构的纳米纤维,也越来越引起人们的关注。静电纺丝技术在1934年首先由Formhals提出,到了20世纪80年代,才有人开始对该技术进行大量的实验和理论研究。近年来,随着纳米材料研究的兴起,人们发现,由静电纺丝法制得的纤维的直径可以达到纳米级,使得这种技术重新受到重视。目前,主要是从事化工和高分子领域的科学家在研究静电纺丝。
静电纺丝纳米纤维具有很多优点,例如大的比表面积、高的长径比和孔隙率等结构特点,还有制备简单、产率高的生产特点,这些对于学术界和工业界都极具吸引力。目前,已知的各种各样的纳米纤维可以被用在能源、环境、医疗、环境及国防等各个领域。
Sun等人通过聚丙烯晴高分子制备前驱体,运用静电纺丝的方法产生的纳米纤维负载金属Pd 在制氢领域有一定的突破。但是,该方法制备的催化剂约在90 min后放完氢气,而且放氢量不高,没有把氨硼烷里面的氢气完全释放。另外附着在纳米纤维表面的纳米粒子活性较低。因此,寻求一种制备方法简单、比表面积大、纤维分布均匀、表面活性强的高效催化的纳米纤维成为当前研究的热点。
发明内容
本发明的目的是通过静电纺丝的方法制备纳米纤维,并进行负载钴银合金,获得大的比表面积,让钴银合金能均匀分布在纤维上不发生团聚,从而能实现快速的催化氨硼烷制氢,并具有优良循环性能的纳米纤维负载钴银合金材料。
本发明的原理是通过静电纺丝的方法制备纳米纤维,产生分布均匀,纤维与纤维之间存在间隙,具有高比表面积,性质稳定,不团聚的纳米纤维,进而高效负载钴银合金,使其分散均匀且不发生团聚,从而提高催化氨硼烷高效制氢性能。
为了实现上述发明目的,本发明采用的技术方案为:
纳米纤维负载钴银合金材料,由静电纺丝法制备纳米纤维,再由氯化钴和硼氢化钠通过浸渍化学还原法制备钴粒子,然后添加硝酸银,通过氧化还原法制备钴银合金并负载到纳米纤维上制得;所述的纳米纤维以圆柱状的形式存在,纤维和纤维之前存在间隙,具有高比表面积,性质稳定;所述的钴银合金均一、稳定的负载到纳米纤维上,分散均匀且不发生团聚。
纳米纤维负载钴银合金材料的制备方法,包括以下步骤:
步骤1)静电纺丝法制备纳米纤维,以聚丙烯晴的溶质质量分数为10~20 wt%,聚丙烯晴和二甲基甲酰胺的质量比为1:4~9,将聚丙烯晴PAN加入到二甲基甲酰胺DMF中,溶液在水浴锅中持续搅拌,直到得到黄色均一的前驱体溶液,然后进行静电纺丝,将前驱体溶液放入针口为1 mm的纺丝管中,用10 ml的注射器装载溶液,设定纺丝电压为纺丝电压为10~12kV,接收距离为5~10 cm,推进速率为0.01~0.04 mm/min,进行静电纺丝10 h;
步骤2)通过浸渍化学还原法先制备钴粒子,以氯化钴和硼氢化钠的物质的量之比满足1:2关系,将浓度为0.05 mol/L的硼氢化钠溶液滴加入浓度为0.1 mol/L的氯化钴溶液,边加边搅拌,无气泡产生后,减压抽滤,使用水和酒精洗涤三次,在60℃真空干燥5 h,得到钴粒子;
步骤3)通过氧化还原法制备钴银合金并负载到纳米纤维,将制备好的纳米纤维放入三颈瓶中,以钴粒子和硝酸银的比例满足钴元素与银元素的物质的量之比为1:1,加入制备好的钴粒子和硝酸银溶液,在氩气条件下遮光反应,反应时间为6 h制备纳米纤维负载钴银合金材料,再使用水和酒精洗涤三次,在60℃真空干燥5~10 h即可。
静电纺丝纳米纤维负载钴银合金材料作为氨硼烷水解制氢催化剂的应用,当催化氨硼烷放氢时,40 min完成放氢,放氢速率达到95.8~244.95 ml min-1 g-1,经历五次循环后,放氢时间保持在40~92 min,放氢速率保持在95.8-244.95 ml min-1 g-1
本发明纳米纤维及纳米纤维负载钴银合金材料进行扫描电镜检测,纳米纤维以柱状的形态存在,纳米纤维与纤维之间分布均匀,不团聚,纤维表面看起来光滑顺畅,形成完美的束条状,钴银合金均匀的分散在纳米纤维上,钴银合金几乎不团聚。
本发明纳米纤维负载钴银合金材料进行能谱分析,纤维主要成分为碳,纤维表面存在很多钴粒子和银粒子,进一步证明了钴银合金成功负载在纳米纤维表面。
本发明纳米纤维负载钴银合金材料进行XRD分析,未负载的纳米纤维出现两个特征峰,负载了钴银合金的纳米纤维多出了5个特征峰,证明了钴银合金成功的负载在纳米纤维上。
本发明纳米纤维负载钴银合金材料进行傅里叶红外光谱分析,验证了PAN的存在,负载了钴银合金的纳米纤维出现新的峰,另外之前的峰强度有所减弱,同样验证了XRD和扫描电镜的准确性,说明钴银合金已经成功负载在纳米纤维上。
本发明纳米纤维负载钴银合金材料催化氨硼烷水解测试,测试结果40 min完成放氢,放氢速率达到95.8~244.95 ml min-1 g-1,经历五次循环后,放氢时间保持在40~92min,放氢速率保持在95.8-244.95 ml min-1 g-1
因此,本发明纳米纤维负载钴银合金材料对于现有技术,具有以下优点:
一、利用静电纺丝的方法合成纳米纤维,静电纺丝技术能产生纳米级别的纤维束,并能产生大的比表面,纤维与纤维之间分散不团聚,能高效的负载催化剂;
二、钴银合金能均匀的分散在纳米纤维表面不发生团聚,且钴银合金能稳定的存在于纤维表面;
三、制备钴粒子时选用氯化钴,能有效抑制氨硼烷分解为氨气、硼吖嗪等副产品的反应;
四、作为制氢催化剂的应用,在保持催化性能的条件下,使用非贵金属钴代替部分银,大幅减少原料成本,且所用原料市售可得,有利于实现大规模的标准化生产;
五、本发明材料可实现回收重复使用。
因此,本发明在制氢材料、燃料电池等领域具有广阔的应用前景。
附图说明:
图1 为实施例制备的纳米纤维扫面电镜图;
图2 为实施例制备的纳米纤维负载钴银合金材料扫描电镜图;
图3 为实施例制备的纳米纤维负载钴银合金材料扫描电镜能谱图;
图4为实施例制备的纳米纤维负载钴银合金材料XRD分析图;
图5为实施例制备的纳米纤维负载钴银合金材料傅里叶红外光谱图;
图6 为实施例制备的纳米纤维负载钴银合金材料催化水解释氢图;
图7为实施例制备的纳米纤维负载钴银合金材料五次催化释氢图。
具体实施方式
本发明通过实施例,结合说明书附图对本发明内容作进一步详细说明,但不是对本发明的限定。
实施例
一种纳米纤维负载钴银合金材料的制备方法如下:
步骤1)静电纺丝法制备纳米纤维,取1.5 g的聚丙烯晴PAN加入到8.5 g二甲基甲酰胺DMF中,溶液在60℃水浴锅中持续搅拌4 h,直到得到黄色均一的前驱体溶液,然后将前驱体溶液放入针口为1 mm的纺丝管中,用10 ml的注射器装载溶液,纺丝电压为10 kV,纺丝距离设定为12 cm,推进速率设为0.01 mm/min,纺丝10 h;
步骤2)通过浸渍化学还原法先制备钴粒子,取0.1 mol 的氯化钴,制备0.1 mol/L的氯化钴溶液,在磁力搅拌的条件下滴加入的0.05 mol/L硼氢化钠溶液,边加边搅拌,无气泡产生后减压过滤得到钴粒子,水和酒精洗涤三次,60℃真空干燥5 h,得到钴粒子;
步骤3)通过氧化还原法制备钴银合金并负载到纳米纤维,将制备好的纳米纤维放入三颈瓶中,加入制备好的0.5 g钴粒子,加入0.85 g的硝酸银AgNO3溶液,在氩气条件下遮光反应6 h,即得纳米纤维负载钴银合金材料,然后水和酒精洗涤三次,60℃真空干燥5 h。
对上述实施例制备的纳米纤维及纳米纤维负载钴银合金材料进行扫描电镜检测。
纳米纤维扫描电镜检测结果如图1所示,纳米纤维以柱状的形态存在,纳米纤维与纤维之间分布均匀,不团聚,纤维表面看起来光滑顺畅,形成完美的束条状;
纳米纤维负载钴银合金材料扫描电镜检测结果如图2所示,钴银合金均匀的分散在纳米纤维上,钴银合金几乎不团聚。
对上述实施例制备的纳米纤维负载钴银合金材料进行能谱分析,结果如图3所示,纤维主要成分为碳,纤维表面存在很多钴粒子和银粒子,进一步证明了钴银合金成功负载在纳米纤维表面。
对上述实施例制备的纳米纤维负载钴银合金材料进行XRD分析,结果如图4所示,未负载的纳米纤维出现两个特征峰,负载了钴银合金的纳米纤维多出了5个特征峰,证明了钴银合金成功的负载在纳米纤维上。
对上述实施例制备的纳米纤维负载钴银合金材料进行傅里叶红外光谱分析,如图5所示, 1450 cm-1和1670 cm-1为C=C双键伸缩振动,1090 cm-1为C-N键伸缩振动,2920 cm-1及2930 cm-1为C-H键伸缩振动,2250 cm-1为键伸缩振动。同样验证了PAN的存在,负载了钴银合金的纳米纤维出现新的峰,另外之前的峰强度有所减弱,同样验证了XRD和扫描电镜的准确性,说明钴银合金已经成功负载在纳米纤维上。
上述实施例制备的纳米纤维负载钴银合金材料催化氨硼烷水解反应方法,取氨硼烷50 mg,加入制好的纳米纤维负载钴银合金材料12 mg,加入磁性搅拌子,然后将盛有溶液的容器置于25℃的水浴锅内,容器与充满水的计量管相连;运用排水称重法测氢气,排出的水用精密天平测量,先检管道的气密性三次,然后向容器中加入10 mL去离子水,然后让磁性搅拌子一直搅拌,看到天平数字不在增加,结束反应。
测试结果,如图6所示,可以看出,大约在40 min放氢完成,放氢量达到100 ml左右,产氢率=86%,放氢速率r=244.95 ml min-1 g-1
上述实施例制备的纳米纤维负载钴银合金材料催化氨硼烷水解反应重复使用性能测试:将反应完后的纳米纤维负载钴银合金材料通过蒸馏水洗涤、过滤、烘干,取50 mg氨硼烷,加入烘干的纳米纤维负载钴银合金材料,然后进行重复性测试五次。测试结果,如图7所示,经过5次循环后,放氢时间为92 min,放氢量为88.16 ml,保持在第一次循环的88.78%,因此,具有优良的循环性能。

Claims (2)

1.一种纳米纤维负载钴银合金材料的制备方法,其特征在于包括以下步骤:
步骤1)静电纺丝法制备纳米纤维,以一定质量比,将聚丙烯腈PAN加入到二甲基甲酰胺DMF中,溶液在水浴锅中持续搅拌,直到得到黄色均一的前驱体溶液,然后进行静电纺丝,将前驱体溶液放入针口为1 mm、体积为10 ml的注射器中,设定一定的纺丝电压、接收距离、推进速率进行静电纺丝;
所述步骤1)配制的前驱体溶液中,聚丙烯腈的溶质质量分数为10~20 wt%,聚丙烯腈和二甲基甲酰胺的质量比为1:4~9;
所述步骤1)静电纺丝的纺丝电压为10~12 kV,接收距离为5~10 cm,推进速率为0.01~0.04 mm/min,纺丝10 h;
步骤2)通过化学还原法先制备钴粒子,以一定物质的量之比,将一定浓度的硼氢化钠溶液滴加入一定浓度的氯化钴溶液,边加边搅拌,无气泡产生后,过滤,洗涤,干燥,得到钴粒子;
所述步骤2)的氯化钴溶液浓度为0.1 mol/L,硼氢化钠溶液的浓度为0.05 mol/L,氯化钴和硼氢化钠的物质的量之比满足1:2关系,过滤的方法为减压抽滤,洗涤方法为使用水和酒精洗涤三次,干燥的条件为60℃真空干燥5 h;
步骤3)通过氧化还原法制备钴银合金并负载到纳米纤维,将制备好的纳米纤维放入三颈瓶中,以一定比例加入制备好的钴粒子和硝酸银溶液,在一定条件下进行反应制备纳米纤维负载钴银合金材料,再经洗涤,干燥即可;
所述步骤3)加入的钴粒子和硝酸银的比例满足钴元素与银元素的物质的量之比为1:1,反应条件为氩气条件下遮光反应,反应时间为6 h,洗涤方法为使用水和酒精洗涤三次,干燥的条件为60℃真空干燥5~10 h。
2.根据权利要求1所述制备方法所制得的纳米纤维负载钴银合金材料作为氨硼烷水解制氢催化剂的应用,其特征在于:催化氨硼烷放氢时,40 min完成放氢,放氢速率达到95.8~244.95 ml·min-1·g-1,经历五次循环后,放氢时间保持在40~92 min,放氢速率保持在95.8-244.95 ml·min-1·g-1
CN201710469472.5A 2017-06-20 2017-06-20 一种纳米纤维负载钴银合金材料及其制备方法和应用 Expired - Fee Related CN107321383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710469472.5A CN107321383B (zh) 2017-06-20 2017-06-20 一种纳米纤维负载钴银合金材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710469472.5A CN107321383B (zh) 2017-06-20 2017-06-20 一种纳米纤维负载钴银合金材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107321383A CN107321383A (zh) 2017-11-07
CN107321383B true CN107321383B (zh) 2020-08-28

Family

ID=60194456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710469472.5A Expired - Fee Related CN107321383B (zh) 2017-06-20 2017-06-20 一种纳米纤维负载钴银合金材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107321383B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091890B (zh) * 2017-12-21 2020-06-19 东华大学 一种基于银-钴-鸟嘌呤纳米片状材料的制备方法
CN110280247A (zh) * 2019-07-11 2019-09-27 辽宁石油化工大学 一种碳纤维材料负载CoB催化剂制备方法及其在硼氢化钠水解制氢方面的用途
CN114700105A (zh) * 2022-05-17 2022-07-05 桂林电子科技大学 一种Co-Mo-B/N-PCN复合纳米材料及其制备方法和应用
CN114950513B (zh) * 2022-05-17 2024-03-19 桂林电子科技大学 一种Co-B/SiC复合纳米材料制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762622A (zh) * 2005-09-09 2006-04-26 中国科学院上海硅酸盐研究所 一种通过置换反应制备银纳米空心球的方法
CN102965101A (zh) * 2012-11-28 2013-03-13 苏州大学 一种兼具表面增强拉曼散射性能和催化活性的材料、制备方法及应用
CN103586020A (zh) * 2013-11-22 2014-02-19 吉林大学 一种柔性纳米纤维基硼烷氨水解制氢催化剂及其制备方法
CN104372434A (zh) * 2014-11-15 2015-02-25 辽宁石油化工大学 PAN/CoCl2/CNTs复合纳米纤维的制备方法及在NaBH4制氢中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079768B2 (en) * 2011-02-08 2015-07-14 University Of Southern California Dehydrogenation of ammonia-borane by bifunctional catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762622A (zh) * 2005-09-09 2006-04-26 中国科学院上海硅酸盐研究所 一种通过置换反应制备银纳米空心球的方法
CN102965101A (zh) * 2012-11-28 2013-03-13 苏州大学 一种兼具表面增强拉曼散射性能和催化活性的材料、制备方法及应用
CN103586020A (zh) * 2013-11-22 2014-02-19 吉林大学 一种柔性纳米纤维基硼烷氨水解制氢催化剂及其制备方法
CN104372434A (zh) * 2014-11-15 2015-02-25 辽宁石油化工大学 PAN/CoCl2/CNTs复合纳米纤维的制备方法及在NaBH4制氢中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Cobalt@silver bimetallic nanoparticles: Solution based seedless surfactant assisted synthesis, optical properties, and morphology";Zaheer Khan et al.;《Journal of Molecular Liquids》;20160716;第222卷;第272-278页 *
"Effect of chemical composition and Co-core size on the magnetic and magneto-transport properties of CoyAg100-y core–shell nanocrystallites";S. S. Kalyan Kamal et al.;《 Journal of Experimental Nanoscience》;20161231;第11卷(第18期);前言和实验部分 *
"Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane";Yan Tong et al.;《Journal of Power Sources》;20140325;第261卷;第221-226页 *
"Facile fabrication of poly(amidoamine) (PAMAM) dendrimers-encapsulated Ag-Co bimetallic nanoparticles for highly efficient dehydrogenation of ammonia borane";Dandan Ke et al.;《International Journal of Hydrogen Energy》;20151228;第41卷;催化剂合成部分 *

Also Published As

Publication number Publication date
CN107321383A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
CN107321383B (zh) 一种纳米纤维负载钴银合金材料及其制备方法和应用
CN112941669B (zh) 一种金属-氮共掺杂的碳纳米纤维材料及其制备方法和应用
CN107069050B (zh) 一种Co/N/S掺杂的多孔碳纳米管及其制备方法
CN110124713B (zh) 一种氮掺杂碳纳米纤维负载空心结构Co3O4/CeO2纳米粒子材料的制备方法和应用
CN106915735B (zh) 一种氮或金属掺杂碳材料的制备方法
CN104923204A (zh) 一种石墨烯包覆金属纳米粒子催化剂的制备方法及其应用
CN102637533A (zh) 含氮的石墨化空心碳微球的制备方法
CN102891326A (zh) 氮掺杂中空碳球负载的钯基催化剂及其制备方法和应用该催化剂的乙醇燃料电池
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
CN109746008A (zh) 一种CoP纳米颗粒嵌入的氮掺杂多孔碳纳米管电解水催化剂及其制备方法
CN101811689A (zh) 一种三维网状纳米碳纤维及其制备方法和用途
CN114032576B (zh) 一种缺陷纳米纤维碳载体耦合铁单原子催化剂的制备方法
CN104701554B (zh) 一种石墨烯‑金属纳米粒子复合材料的制备方法
CN110517900B (zh) 一种超级电容器用氮掺杂低温碳纳米纤维电极材料的制备方法
CN104289249A (zh) 一种可用于聚合物燃料电池阴极催化剂的Fe、N共掺杂多孔碳纳米纤维的制备方法
CN104372434A (zh) PAN/CoCl2/CNTs复合纳米纤维的制备方法及在NaBH4制氢中的应用
CN106757539A (zh) 一种铁、氮共掺杂多孔碳的制备方法
CN107742733A (zh) 一种煤基碳纤维负载钯催化剂的制备方法
CN113318788A (zh) 一种Cu-NH2-MIL-125/TpPa-2复合材料的制备及光解水制氢
CN114420958B (zh) 一种串珠状钴-氮共掺杂碳纳米笼/碳纳米纤维复合催化剂及其制备方法
Gopiraman et al. Preparation, characterization, and applications of electrospun carbon nanofibers and its composites
CN108187749A (zh) 一种多功能电解水用海绵体催化剂的制备方法
CN113083272A (zh) 一种FeNx纳米颗粒掺杂竹节状碳纳米管的制备方法
CN105148918B (zh) 一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用
CN113699549A (zh) 一种钌&锡双金属氧化物电催化材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200828

CF01 Termination of patent right due to non-payment of annual fee