CN107263671B - 一种双晶须复合改性耐收缩型氮化铝基片的制备方法 - Google Patents

一种双晶须复合改性耐收缩型氮化铝基片的制备方法 Download PDF

Info

Publication number
CN107263671B
CN107263671B CN201710503533.5A CN201710503533A CN107263671B CN 107263671 B CN107263671 B CN 107263671B CN 201710503533 A CN201710503533 A CN 201710503533A CN 107263671 B CN107263671 B CN 107263671B
Authority
CN
China
Prior art keywords
parts
aluminium nitride
resistance
modified
curtain coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710503533.5A
Other languages
English (en)
Other versions
CN107263671A (zh
Inventor
吴义峰
季美
潘宏梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Dena chemical Limited by Share Ltd
Original Assignee
Jiangsu Dena Chemical Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Dena Chemical Ltd By Share Ltd filed Critical Jiangsu Dena Chemical Ltd By Share Ltd
Priority to CN201710503533.5A priority Critical patent/CN107263671B/zh
Publication of CN107263671A publication Critical patent/CN107263671A/zh
Application granted granted Critical
Publication of CN107263671B publication Critical patent/CN107263671B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/29Producing shaped prefabricated articles from the material by profiling or strickling the material in open moulds or on moulding surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种双晶须复合改性耐收缩型氮化铝基片的制备方法,属于电子封装材料制备技术领域。本发明将取高岭土、硫酸钠混磨过筛并烧结,再经洗涤干燥后用氢氟酸溶液浸泡、过滤,得滤饼后洗涤干燥,得改性晶须,再将氯化镁、硼酸钠和氯化钾溶液混合煅烧,得烧结料后用去离子水浸泡过滤,将滤渣与改性晶须混合,并与聚乙烯醇缩丁醛等混合制成改性坯料,将其球磨过筛后与氮化铝粉末、氧化钇经混磨、脱泡后流延成型,得流延基体,将其经排胶处理后烧结成型,即可得双晶须复合改性耐收缩型氮化铝基片,本发明所得氮化铝基片具有密度大、耐收缩、翘曲度小的特点,同时基片具有优良的热传导性,是一种理想的电子封装材料。

Description

一种双晶须复合改性耐收缩型氮化铝基片的制备方法
技术领域
本发明公开了一种双晶须复合改性耐收缩型氮化铝基片的制备方法,属于电子封装材料制备技术领域。
背景技术
电子封装材料主要包括基板、布线、框架、层间介质和密封材料。其中,电子封装基片材料是一种底座电子元件,主要为电子元器件及其相互联线提供机械承载支撑、气密性保护和促进电气设备的散热。电子封装基片材料的种类很多,常用基片主要分为塑料封装基片、金属封装基片和陶瓷封装基片3大类。其中,陶瓷封装基片材料作为一种气密性封装,热导率较高,是目前使用最广、综合性能较好的封装材料。氮化铝基片材料是一种综合性能优良新型陶瓷封装基片材料。它具有优良的热传导性、可靠的电绝缘性、低的介电常数和介电损耗、无毒以及与硅相匹配的热膨胀系数等一系列优良特性,被认为是新一代高集程度半导体基片和电子器件封装的理想材料。氮化铝基片作为基板和封装材料,可用于混合集成电路、半导体功率器件、电力电子器件、光电器件、半导体制冷堆、微波器件等多个领域。
目前,氮化铝陶瓷基片主要是采用氮化铝粉为原料,成型技术主要有干压法、热等静压法、轧膜法和有机流延法等。其中,使用最广的是流延法,如1996年2月的《电子元件与材料》,吴音,周和平,缪卫国发表的“流延法制AlN陶瓷基片工艺”,该工艺是把微细的氮化铝粉料均匀分散于由溶剂、粘结剂、增塑剂和分散剂组成的粘合剂中,形成流延浆料,将浆料经除泡等处理后倒入料斗,经由刮刀口,形成表面光滑、厚度均匀附着于输送带上的薄层,再经干燥制成具有良好韧性的坯片,经过排胶、烧成而制得基片。该方法生产效率较高,易于实现生产的连续化和自动化,有效降低了生产成本。但是该方法也存在一定缺陷,主要是流延的素坯有机胶含量大,素坯相对密度低,在烧结过程中收缩较大,容易翘曲。因此,如何克服现有技术不足,研制一种密度高、耐收缩性能好、不易翘曲的氮化铝陶瓷基片材料,成为电子封装领域亟待解决的问题。
发明内容
本发明主要解决的技术问题:针对目前使用流延法制备氮化铝陶瓷基片的过程中,流延的的素坯有机胶含量大,素坯相对密度低,在烧结过程中收缩较大,容易翘曲的缺陷,提供了一种双晶须复合改性耐收缩型氮化铝基片的制备方法。
为了解决上述技术问题,本发明所采用的技术方案是:
(1)按重量份数计,分别称量45~55份高岭土粉末、10~15份硫酸铝和15~20份硫酸钠置于球磨罐中,球磨并过300目筛,得混合球磨粉末,将混合球磨粉末保温烧结,静置冷却至室温,洗涤、干燥,得煅烧坯料;
(2)按质量比1:10,将煅烧坯料与氢氟酸混合,浸泡后过滤得滤饼,洗涤、干燥得改性晶须;按质量比1:1:3,将氯化镁、硼酸钠和氯化钾溶液混合并置于模具中,预烧后保温煅烧、静置冷却室温,得烧结料;
(3)按质量比1:10,将烧结料与去离子水混合,过滤得滤渣,按质量比1:1,将改性晶须与滤渣混合,得混合料,按重量份数计,分别称量45~50份去离子水、5~10份混合料、1~2份聚乙烯醇缩丁醛和1~2份邻苯二甲酸二丁酯搅拌混合并置于模具中,干燥得改性坯料,将改性坯料破碎并球磨,得改性球磨粉末;
(4)按重量份数计,分别称量45~50份氮化铝粉末、1~2份氧化钇、10~15份改性球磨粉末、65~70份二甲苯、45~50份丁醇和1~2份OP-10搅拌混合,再球磨过筛得混合浆料,真空脱泡并将混合浆料置于流延机中,流延制备得流延生坯,将流延生坯置于管式气氛炉中,保温烧结后冷却至室温,即可制备得一种双晶须复合改性耐收缩型氮化铝基片。
步骤(1)所述的保温烧结温度为1250~1300℃。
步骤(2)所述的预烧温度为120~130℃。
步骤(2)所述的煅烧温度为900~1000℃。
步骤(4)所述的流延制备步骤为:控制刮刀高度为0.2~0.3mm,流延带速为0.3~0.5m/min,干燥温度为75℃,待干燥完成后收集得流延基体,将流延基体置于连续式排胶炉中,在550~600℃下排胶处理10~15h,收集得流延生坯。
步骤(4)所述的保温烧结条件为:在氮气气氛、1550~1600℃条件下保温烧结2~3h。
本发明的有益效果是:
(1)本发明通过高岭土制备莫来石晶须和硼酸镁晶须复合,经混合球磨使两种晶须相互缠绕形成颗粒状的集合体,通过晶须颗粒状集合体填充至氮化铝基片内部孔隙结构,改善氮化铝陶瓷基片整体强度,同时高岭土制备的莫来石晶须使材料内部形成CSH凝胶机械强度相,使陶瓷基片结构更加密实,进一步增强氮化铝陶瓷强度;
(2)本发明通过形成的缠绕状颗粒集合体具有超高的高比表面积和超细微分效应,能够有效的降低陶瓷基片内部的孔径和联通孔的数量,使得因毛细管效应产生的收缩力大大减少,提高了材料的耐收缩性能,同时在氮化铝陶瓷基片收缩时,缠绕的晶须颗粒形成桥接作用,有效提高材料的耐收缩性能。
具体实施方式
取高岭土并破碎,得高岭土碎块,收集高岭土碎块并置于球磨罐中,在450~500r/min下球磨3~5h,过200目得高岭土粉末,按重量份数计,分别称取45~55份高岭土粉末、10~15份硫酸铝和15~20份硫酸钠置于球磨罐中,球磨并过300目筛,得混合球磨粉末,将混合球磨粉末置于石墨坩埚中,在250~300℃下预烧25~30min,再按15℃/min升温至1250~1300℃,保温烧结25~30min后,静置冷却至室温,用去离子水冲洗3~5次后,在100~110℃烘箱中干燥至恒重,得煅烧坯料,按质量比1:10,将煅烧坯料与质量分数25%氢氟酸溶液溶液混合,浸泡3~5h后过滤得滤饼,用去离子水洗涤至洗涤液呈中性后,再在100~110℃下干燥至恒重,得改性晶须,按质量比1:1:3,将氯化镁、硼酸钠和质量分数15%氯化钾溶液搅拌混合并置于模具中,在120~130℃下预烧25~30min后,再按10℃/min升温至900~1000℃,保温煅烧6~8h后,静置冷却室温,得烧结料,按质量比1:10,将烧结料与去离子水混合,浸泡6~8h后,过滤得滤渣,按质量比1:1,将改性晶须与滤渣混合,得混合料,按重量份数计,分别称量45~50份去离子水、5~10份混合料、1~2份聚乙烯醇缩丁醛和1~2份邻苯二甲酸二丁酯置于烧杯中,搅拌混合并置于模具中,在100~110℃下干燥至恒重后得改性坯料,将改性坯料破碎并球磨过200目筛,得改性球磨粉末,按重量份数计,分别称量45~50份氮化铝粉末、1~2份氧化钇、10~15份改性球磨粉末、65~70份二甲苯、45~50份丁醇和1~2份OP-10置于烧杯中,搅拌混合并球磨3~5h,过500目筛得混合浆料,真空脱泡并将混合浆料置于流延机中,控制刮刀高度为0.2~0.3mm,流延带速为0.3~0.5m/min,干燥温度为75℃,待干燥完成后收集得流延基体,将流延基体置于连续式排胶炉中,在550~600℃下排胶处理10~15h,随后收集得流延生坯,将流延生坯置于管式气氛炉中,通氮气排除空气,在氮气气氛、1550~1600℃条件下保温烧结2~3h,静置冷却至室温,即可制备得一种双晶须复合改性耐收缩型氮化铝基片。
实例1
取高岭土并破碎,得高岭土碎块,收集高岭土碎块并置于球磨罐中,在450r/min下球磨3h,过200目得高岭土粉末,按重量份数计,分别称取45份高岭土粉末、10份硫酸铝和15份硫酸钠置于球磨罐中,球磨并过300目筛,得混合球磨粉末,将混合球磨粉末置于石墨坩埚中,在250℃下预烧25min,再按15℃/min升温至1250℃,保温烧结25min后,静置冷却至室温,用去离子水冲洗3次后,在100℃烘箱中干燥至恒重,得煅烧坯料,按质量比1:10,将煅烧坯料与质量分数25%氢氟酸溶液混合,浸泡3h后过滤得滤饼,用去离子水洗涤至洗涤液呈中性后,再在100℃下干燥至恒重,得改性晶须,按质量比1:1:3,将氯化镁、硼酸钠和质量分数15%氯化钾溶液搅拌混合并置于模具中,在120℃下预烧25min后,再按10℃/min升温至900℃,保温煅烧6h后,静置冷却室温,得烧结料,按质量比1:10,将烧结料与去离子水混合,浸泡6h后,过滤得滤渣,按质量比1:1,将改性晶须与滤渣混合,得混合料,按重量份数计,分别称量45份去离子水、5份混合料、1份聚乙烯醇缩丁醛和1份邻苯二甲酸二丁酯置于烧杯中,搅拌混合并置于模具中,在100℃下干燥至恒重后得改性坯料,将改性坯料破碎并球磨过200目筛,得改性球磨粉末,按重量份数计,分别称量45份氮化铝粉末、1份氧化钇、10份改性球磨粉末、65份二甲苯、45份丁醇和1份OP-10置于烧杯中,搅拌混合并球磨3h,过500目筛得混合浆料,真空脱泡并将混合浆料置于流延机中,控制刮刀高度为0.2mm,流延带速为0.3m/min,干燥温度为75℃,待干燥完成后收集得流延基体,将流延基体置于连续式排胶炉中,在550℃下排胶处理10h,随后收集得流延生坯,将流延生坯置于管式气氛炉中,通氮气排除空气,在氮气气氛、1550℃条件下保温烧结2h,静置冷却至室温,即可制备得一种双晶须复合改性耐收缩型氮化铝基片。
实例2
取高岭土并破碎,得高岭土碎块,收集高岭土碎块并置于球磨罐中,在475r/min下球磨4h,过200目得高岭土粉末,按重量份数计,分别称取50份高岭土粉末、13份硫酸铝和18份硫酸钠置于球磨罐中,球磨并过300目筛,得混合球磨粉末,将混合球磨粉末置于石墨坩埚中,在275℃下预烧28min,再按15℃/min升温至1275℃,保温烧结28min后,静置冷却至室温,用去离子水冲洗4次后,在105℃烘箱中干燥至恒重,得煅烧坯料,按质量比1:10,将煅烧坯料与质量分数25%氢氟酸溶液混合,浸泡4h后过滤得滤饼,用去离子水洗涤至洗涤液呈中性后,再在105℃下干燥至恒重,得改性晶须,按质量比1:1:3,将氯化镁、硼酸钠和质量分数15%氯化钾溶液搅拌混合并置于模具中,在125℃下预烧28min后,再按10℃/min升温至950℃,保温煅烧7h后,静置冷却室温,得烧结料,按质量比1:10,将烧结料与去离子水混合,浸泡7h后,过滤得滤渣,按质量比1:1,将改性晶须与滤渣混合,得混合料,按重量份数计,分别称量48份去离子水、8份混合料、1份聚乙烯醇缩丁醛和1份邻苯二甲酸二丁酯置于烧杯中,搅拌混合并置于模具中,在105℃下干燥至恒重后得改性坯料,将改性坯料破碎并球磨过200目筛,得改性球磨粉末,按重量份数计,分别称量48份氮化铝粉末、1份氧化钇、13份改性球磨粉末、68份二甲苯、48份丁醇和1份OP-10置于烧杯中,搅拌混合并球磨4h,过500目筛得混合浆料,真空脱泡并将混合浆料置于流延机中,控制刮刀高度为0.2mm,流延带速为0.4m/min,干燥温度为75℃,待干燥完成后收集得流延基体,将流延基体置于连续式排胶炉中,在575℃下排胶处理13h,随后收集得流延生坯,将流延生坯置于管式气氛炉中,通氮气排除空气,在氮气气氛、1575℃条件下保温烧结2h,静置冷却至室温,即可制备得一种双晶须复合改性耐收缩型氮化铝基片。
实例3
取高岭土并破碎,得高岭土碎块,收集高岭土碎块并置于球磨罐中,在500r/min下球磨5h,过200目得高岭土粉末,按重量份数计,分别称取55份高岭土粉末、15份硫酸铝和20份硫酸钠置于球磨罐中,球磨并过300目筛,得混合球磨粉末,将混合球磨粉末置于石墨坩埚中,在300℃下预烧30min,再按15℃/min升温至1300℃,保温烧结30min后,静置冷却至室温,用去离子水冲洗5次后,在110℃烘箱中干燥至恒重,得煅烧坯料,按质量比1:10,将煅烧坯料与质量分数25%氢氟酸溶液混合,浸泡5h后过滤得滤饼,用去离子水洗涤至洗涤液呈中性后,再在110℃下干燥至恒重,得改性晶须,按质量比1:1:3,将氯化镁、硼酸钠和质量分数15%氯化钾溶液搅拌混合并置于模具中,在130℃下预烧30min后,再按10℃/min升温至1000℃,保温煅烧8h后,静置冷却室温,得烧结料,按质量比1:10,将烧结料与去离子水混合,浸泡8h后,过滤得滤渣,按质量比1:1,将改性晶须与滤渣混合,得混合料,按重量份数计,分别称量50份去离子水、10份混合料、2份聚乙烯醇缩丁醛和2份邻苯二甲酸二丁酯置于烧杯中,搅拌混合并置于模具中,在110℃下干燥至恒重后得改性坯料,将改性坯料破碎并球磨过200目筛,得改性球磨粉末,按重量份数计,分别称量50份氮化铝粉末、2份氧化钇、15份改性球磨粉末、70份二甲苯、50份丁醇和2份OP-10置于烧杯中,搅拌混合并球磨5h,过500目筛得混合浆料,真空脱泡并将混合浆料置于流延机中,控制刮刀高度为0.3mm,流延带速为0.5m/min,干燥温度为75℃,待干燥完成后收集得流延基体,将流延基体置于连续式排胶炉中,在600℃下排胶处理15h,随后收集得流延生坯,将流延生坯置于管式气氛炉中,通氮气排除空气,在氮气气氛、1600℃条件下保温烧结3h,静置冷却至室温,即可制备得一种双晶须复合改性耐收缩型氮化铝基片。
对比例:深圳某电子科技有限公司生产的氮化铝陶瓷基片。
对本发明实例1~3制得的双晶须复合改性耐收缩型氮化铝基片和对比例的氮化铝陶瓷基片进行性能检测,其检测结果如表1所示:
表1
综上所述,本发明所得双晶须复合改性耐收缩型氮化铝基片具有密度大、耐收缩、翘曲度小的特点,同时基片具有优良的热传导性,是一种理想的电子封装材料。

Claims (6)

1.一种双晶须复合改性耐收缩型氮化铝基片的制备方法,其特征在于具体制备步骤为:
(1)按重量份数计,分别称量45~55份高岭土粉末、10~15份硫酸铝和15~20份硫酸钠置于球磨罐中,球磨并过300目筛,得混合球磨粉末,将混合球磨粉末保温烧结,静置冷却至室温,洗涤、干燥,得煅烧坯料;
(2)按质量比1:10,将煅烧坯料与氢氟酸混合,浸泡后过滤得滤饼,洗涤、干燥得改性晶须;按质量比1:1:3,将氯化镁、硼酸钠和氯化钾溶液混合并置于模具中,预烧后保温煅烧、静置冷却室温,得烧结料;
(3)按质量比1:10,将烧结料与去离子水混合,过滤得滤渣,按质量比1:1,将改性晶须与滤渣混合,得混合料,按重量份数计,分别称量45~50份去离子水、5~10份混合料、1~2份聚乙烯醇缩丁醛和1~2份邻苯二甲酸二丁酯搅拌混合并置于模具中,干燥得改性坯料,将改性坯料破碎并球磨,得改性球磨粉末;
(4)按重量份数计,分别称量45~50份氮化铝粉末、1~2份氧化钇、10~15份改性球磨粉末、65~70份二甲苯、45~50份丁醇和1~2份OP-10搅拌混合,再球磨过筛得混合浆料,真空脱泡并将混合浆料置于流延机中,流延制备得流延生坯,将流延生坯置于管式气氛炉中,保温烧结后冷却至室温,即可制备得一种双晶须复合改性耐收缩型氮化铝基片。
2.根据权利要求1所述的一种双晶须复合改性耐收缩型氮化铝基片的制备方法,其特征在于:步骤(1)所述的保温烧结温度为1250~1300℃。
3.根据权利要求1所述的一种双晶须复合改性耐收缩型氮化铝基片的制备方法,其特征在于:步骤(2)所述的预烧温度为120~130℃。
4.根据权利要求1所述的一种双晶须复合改性耐收缩型氮化铝基片的制备方法,其特征在于:步骤(2)所述的煅烧温度为900~1000℃。
5.根据权利要求1所述的一种双晶须复合改性耐收缩型氮化铝基片的制备方法,其特征在于,步骤(4)所述的流延制备步骤为:控制刮刀高度为0.2~0.3mm,流延带速为0.3~0.5m/min,干燥温度为75℃,待干燥完成后收集得流延基体,将流延基体置于连续式排胶炉中,在550~600℃下排胶处理10~15h,收集得流延生坯。
6.根据权利要求1所述的一种双晶须复合改性耐收缩型氮化铝基片的制备方法,其特征在于,步骤(4)所述的保温烧结条件为:在氮气气氛、1550~1600℃条件下保温烧结2~3h。
CN201710503533.5A 2017-06-27 2017-06-27 一种双晶须复合改性耐收缩型氮化铝基片的制备方法 Active CN107263671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710503533.5A CN107263671B (zh) 2017-06-27 2017-06-27 一种双晶须复合改性耐收缩型氮化铝基片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710503533.5A CN107263671B (zh) 2017-06-27 2017-06-27 一种双晶须复合改性耐收缩型氮化铝基片的制备方法

Publications (2)

Publication Number Publication Date
CN107263671A CN107263671A (zh) 2017-10-20
CN107263671B true CN107263671B (zh) 2019-06-18

Family

ID=60070113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710503533.5A Active CN107263671B (zh) 2017-06-27 2017-06-27 一种双晶须复合改性耐收缩型氮化铝基片的制备方法

Country Status (1)

Country Link
CN (1) CN107263671B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911706B (zh) * 2018-08-20 2021-06-22 南京工业大学 一种粉煤灰基陶瓷微滤膜的共烧结制备方法
CN110963800A (zh) * 2019-12-31 2020-04-07 广东华科新材料研究院有限公司 一种氮化铝陶瓷基片及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207247C (zh) * 2001-09-07 2005-06-22 北京航空材料研究院 一种制备氮化铝陶瓷基片的方法
CN104649677A (zh) * 2013-11-18 2015-05-27 北京大学 一种凝胶流延制备氮化铝陶瓷基片的方法
CN104313695B (zh) * 2014-10-31 2017-06-06 成都理工大学 一种以硫铁尾矿为原料制备的莫来石纳米晶须及其制备方法
CN106467396B (zh) * 2015-04-20 2019-05-21 福建华清电子材料科技有限公司 一种不易变形的大尺寸氮化铝陶瓷基板的制备方法
CN105236991A (zh) * 2015-09-08 2016-01-13 陈斌 添加三元复合烧结剂制备高导热氮化铝陶瓷基片的方法
CN106116589B (zh) * 2016-06-28 2018-11-06 潮州三环(集团)股份有限公司 一种氮化铝陶瓷基板的制备方法

Also Published As

Publication number Publication date
CN107263671A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
JP6852198B2 (ja) ボロアルミノシリケート鉱物材料、低温同時焼成セラミック複合材料、低温同時焼成セラミック、複合基板及びその製造方法
CN106904950A (zh) 一种低温烧结的95氧化铝陶瓷材料
CN101260001A (zh) 新型高q微波介质陶瓷材料及其制备方法
CN113105237B (zh) 一种ab2o6型钽酸盐陶瓷及其制备方法
CN107263671B (zh) 一种双晶须复合改性耐收缩型氮化铝基片的制备方法
CN101583579B (zh) 无玻璃微波介电陶瓷及其制法
CN110451936A (zh) 一种复相陶瓷及其制备方法和应用
CN103819195A (zh) 添加三元复合烧结剂制备高导热氮化铝陶瓷基片的方法
CN114349493B (zh) 一种铜离子掺杂硅酸钙微波介质陶瓷及其制备方法
CN108083797A (zh) 高机械品质因数锆钛酸钡钙基陶瓷及其低温烧结制备方法
CN112467198A (zh) 一种锂离子电池用氧化物固态电解质及其制备方法
CN110683837A (zh) 导热的低温共烧陶瓷材料及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN104844195A (zh) 一种制备钛酸铜铋钠陶瓷的方法
CN106365654B (zh) 一种添加ZrN-SiAlON的抗锂电材料侵蚀耐火坩埚
CN111056846A (zh) 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
CN104557024A (zh) 高居里温度无铅钛酸钡基ptcr陶瓷材料及制备和应用
JP2004269350A (ja) Y2o3焼結体及びその製造方法
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN109053189A (zh) 一种低介电常数高性能微波介质陶瓷材料、制备方法及应用
CN106658954A (zh) 一种带电路凹槽的陶瓷基板及其制备方法
CN103539457A (zh) 一种微电子封装用AlN陶瓷基板的制备方法
CN112341185B (zh) 一种超高品质因素的铝酸盐系微波介电材料及其制备方法
CN109761618A (zh) 一种高致密碳化硼增强氮化铝复合陶瓷制备方法
CN102821550B (zh) 一种纳米结构复合led陶瓷基板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190426

Address after: 210048 No. 2 Bailong Road, Nanjing Chemical Industrial Park, Jiangsu Province

Applicant after: Jiangsu Dena chemical Limited by Share Ltd

Address before: 213102 Ruijing Huating 1-1,1-2,1-3,1-4,1-5, Chaoyang, Tianning District, Changzhou City, Jiangsu Province

Applicant before: Jiangsu Hua Hua Decoration Engineering Co., Ltd.

GR01 Patent grant
GR01 Patent grant