CN112341185B - 一种超高品质因素的铝酸盐系微波介电材料及其制备方法 - Google Patents

一种超高品质因素的铝酸盐系微波介电材料及其制备方法 Download PDF

Info

Publication number
CN112341185B
CN112341185B CN202011370600.9A CN202011370600A CN112341185B CN 112341185 B CN112341185 B CN 112341185B CN 202011370600 A CN202011370600 A CN 202011370600A CN 112341185 B CN112341185 B CN 112341185B
Authority
CN
China
Prior art keywords
ball milling
microwave dielectric
aluminate
dielectric material
quality factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011370600.9A
Other languages
English (en)
Other versions
CN112341185A (zh
Inventor
赖元明
杨帆
曾一明
韩娇
贾勇
钟晓玲
刘明哲
胡昌义
陈家林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Sino Platinum Metals Co Ltd
Original Assignee
Chengdu Univeristy of Technology
Sino Platinum Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology, Sino Platinum Metals Co Ltd filed Critical Chengdu Univeristy of Technology
Priority to CN202011370600.9A priority Critical patent/CN112341185B/zh
Publication of CN112341185A publication Critical patent/CN112341185A/zh
Application granted granted Critical
Publication of CN112341185B publication Critical patent/CN112341185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种超高品质因素的铝酸盐系微波介电材料,属于微波电子陶瓷材料及其制造领域,该材料的化学组成为:MgAl2‑x (Zn0.5Ti0.5) x O4,其中,0<x≤0.5,本发明还公开了上述材料的制备方法,包括称量、球磨、烘料、煅烧、二次球磨、烘料、造粒、成型、排胶及烧结等步骤;本发明提供的微波介质材料,具有低的介电常数(6.95~9.89)和超高的Q×f值(最高达263900 GHz),在新一代移动通信及毫米波通信领域具有较高应用前景。

Description

一种超高品质因素的铝酸盐系微波介电材料及其制备方法
技术领域
本发明涉及微波电子陶瓷材料及其制造领域,尤其涉及一种超高 品质因素的铝酸盐系微波介电材料及其制备方法。
背景技术
随着新一代移动通信的快速发展,对信号传输速度和器件小型化 提出了更高的要求。相比传统材料,低介电常数(εr<10)的微波介 质陶瓷由于具有使用频率高且传输速度快的优势,成为毫米波的重要 基础材料。
在低介电常数的微波陶瓷中,铝酸盐由于具有良好的综合性能而 被广泛研究。MgAl2O4微波陶瓷不仅具有低介电常数(εr≈7.9) (Takahashi S,Ogawa H,KanA.Electronic states and cation distributions of MgAl2O4 and Mg0.4Al2.4O4microwave dielectric ceramics. J Eur Ceram Soc.2018;38(2):593–598.),而且与集成电路中的Si具有 相同的立方晶体结构和相近的线膨胀系数(Mi S,Zhang R,Lu L,LiuM,Wang H,Jia C.Atomic-scale structure and formation of antiphase boundariesinα-Li0.5Fe2.5O4 thin films on MgAl2O4(001)substrates.Acta Mater.2017;127:178–184.Egorov S V,Sorokin AA,Ilyakov IE, Shishkin BV,Parshin VV,Balabanov SS,Belyaev AV.Low loss MgAl2O4 ceramics for terahertz windows.EPJ Web Conf.2018;187:01004.)。因此,由MgAl2O4微波陶瓷制作的微波介质基板及器 件不仅能满足毫米波通信系统对其性能的要求,而且能实现与现今广 泛使用的Si集成电路的良好相容性。
然而,现有MgAl2O4微波陶瓷的较低的品质因素(Q×f)成为它 在毫米波通信系统中广泛应用的限制条件之一。因此,如何在维持低 介电常数的同时,实现MgAl2O4微波陶瓷的高Q×f值是一个亟待解 决的问题。Takahashi等(Takahashi S,Kan A,OgawaH.Microwave dielectric properties and crystal structures of spinel-structuredMgAl2O4 ceramics synthesized by a molten-salt method.J Eur Ceram Soc.2017; 37(3):1001–1006.)通过熔盐法制备MgAl2O4微波陶瓷,虽然获得了 高Q×f值(201690GHz),但熔盐法制备过程较复杂,不适合大批量 生产。Kan等(Kan A,Okazaki H,Takahashi S,Ogawa H.Microwave dielectric properties and cation distribution of spinel-structured Mg0.4Al2.4-xGaxO4 ceramics with cation defect.Jpn J Appl Phys.2018;57(11):11UE03.)采用Ga3+替代Al3+非化学计量的Mg0.4Al2.4-xGaxO4微 波陶瓷,也获得了较高的Q×f值(191340GHz),但原料Ga3+价格昂 贵,不适合大规模生产。
发明内容
本发明的目的就在于提供一种原料廉价、低介电常数、超高Q×f 值的MgAl2O4盐系微波介电材料,以解决上述问题。
为了实现上述目的之一,本发明采用的技术方案是这样的:一种 超高品质因素的铝酸盐系微波介电材料,其化学组成为: MgAl2-x(Zn0.5Ti0.5)xO4,其中,0<x≤0.5。
作为优选的技术方案:x=0.5。当x取值为0.5时,所得的材料 在保证介电常数εr<10的同时,品质因素可以达到263 900GHz。
本发明的目的之二,在于提供一种上述的超高品质因素的铝酸盐 系微波介电材料的制备方法,采用的技术方案为,包括以下步骤:
(1)称量原料:以MgO、Al2O3、ZnO和TiO2为原料,根据对应 摩尔比进行称量,一次球磨,烘料,得烘干料;
(2)预烧:将步骤(1)中所得烘干料,按照2~5℃/min的升温 速率升至1100~1450℃,并保温3~6h,冷却至室温,获得煅烧后 的MgAl2-x(Zn0.5Ti0.5)xO4预烧料;
(3)二次球磨:将步骤(2)所得进行二次球磨;
(4)造粒:将步骤(3)所得球磨后的料浆烘干至恒重,进行造粒, 得到样品;
(5)制备生坯:将步骤(4)所得样品,按照2~5℃/min的升温 速率升至400~600℃并保温3~6h,冷却至室温,得到排胶后的生 坯样品;
(6)烧结:将步骤(5)所得生坯样品,按照2~5℃/min的升温 速率升至1100~1600℃并保温3~6h,再冷却至室温,得到超高品 质因素的铝酸盐微波介电材料。
作为优选的技术方案,步骤(3)中,采用氧化锆磨球和去离子水 进行二次球磨。
作为优选的技术方案,步骤(4)中,造粒时加入20wt%~30wt% 的PVA溶液。
作为优选的技术方案,步骤(4)中造粒时压力为20MPa,并压 制成直径12mm、厚度4-6mm的圆柱。
本发明基于MgAl2-x(Zn0.5Ti0.5)xO4化学计量比,主要成分为 MgAl2O4和MgTiO3的微波介质陶瓷,通过固相反应法获得低介超高 Q×f值的铝酸盐微波介质陶瓷;
通过本发明的固相反应法制备出材料根据x值的不同,在x≤0.04 时,样品主要含MgAl2O4相;当x>0.04时,样品含MgAl2O4和MgTiO3两相,其中主相为MgAl2O4、次相为MgTiO3
需要说明的是,本领域技术人员知晓:XRD检测的物相,同一 种相结构的材料XRD图直观上差别很微小,在这里Zn进入晶格里, (Zn0.5Ti0.5)先占据Al位置,在(Zn0.5Ti0.5)高含量时,形成MgTiO3后, Zn填补Mg位置,但都没有单独形成一个新的物相,所以虽然原料中加入了Zn,但宏观上XRD峰数量和位置与MgAl2O4的并没有明显 差别。
与现有技术相比,本发明的优点在于:本发明通过贱金属复合离 子(Zn0.5Ti0.5)3+替代MgAl2O4中Al3+离子,在不增加成本基础上,获得 低的介电常数(6.95~9.89)和超高的Q×f值(最高达263 900GHz) 微波介质材料。超高的Q×f值主要源于部分(Zn0.5Ti0.5)3+进入MgAl2O4晶格后,改变其晶胞体积,从而使其填充率发生变化,最终使Q×f值 得到极大提升。由于微波介质材料具有超高的Q×f值的同时,还具有 低介电常数,因此,在新一代移动通信及毫米波通信领域具有较高应 用前景。
附图说明
图1为不同x值的样品XRD图谱(其中,x=0作为对照样品);
图2为1550℃烧结时,实施例1中x不同取值对应的εr值和Q×f 值(x=0作为对照样品);
图3为不同x值的样品的微波介电性能图。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1:
一种上述的超高品质因素的铝酸盐系微波介电材料,其化学组成 为MgAl2-x(Zn0.5Ti0.5)xO4,其制备方法包括:
步骤1:按照摩尔比MgO:ZnO:TiO2:Al2O3=1:0.5x:0.5x:(2-x)称料配 置原料(x=0~0.5);将配好的原料置于球磨罐,以锆球为研磨球, 以去离子水为球磨介质,在250rpm的转速下球磨4h,球磨结束后 将料浆置于恒温干燥箱,烘干至恒重备用;
步骤2:将步骤1所得的烘干后结块的粉料在研钵中捣碎,放入 坩埚中压实,按2℃/min的升温速率升至100℃,再以5℃/min升 至1000℃,然后在以2℃/min升至1450℃进行预烧,保温4h后以 5℃/min降至500℃,再随炉冷却至室温得到MgAl2-x(Zn0.5Ti0.5)xO4预烧料,进一步将预烧料放入球磨罐中进行二次球磨,球磨工艺同一次 球磨,球磨完成后烘干至恒重备用;
步骤3:将步骤2所得粉料加入20wt%的PVA溶液作为粘结剂, 进行造粒并在20MPa下单轴干压成直径×厚度=12mm×6mm圆柱;
步骤4:将步骤3所得生坯样品放入高温烧结炉中,按2℃/min 的升温速率升至100℃,再继续升温至600℃并保温4h,然后以 5℃/min降至500℃后随炉冷却至室温,获得排胶后的生坯样品;
步骤5:将步骤4所得排胶后的生坯样品再次放入高温烧结炉中, 按2℃/min的升温速率升至100℃,再以5℃/min升至1000℃,然 后以2℃/min升至1550℃并保温4h进行烧结,保温结束后以5℃/min 降至500℃再随炉冷却至室温,获得低介超高Q×f值的铝酸盐微波介 电陶瓷样品;
当x=0(作为对照样品),0.04,0.12,0.20,0.30,0.40和0.50 时,不同x值的样品XRD图谱如图1所示,从图1中可以看出:在 x≤0.04时,样品主要含MgAl2O4相,当x>0.04时,样品含MgAl2O4和MgTiO3两相的特征峰,其中主相MgAl2O4和次相MgTiO3
不同x值的样品的微波介电性能如图2所示(x=0作为对照样 品),从图2中可以看出,x=0~0.50时,εr=8.14~9.86,Q×f=42 600~263 900GHz,且当x=0.50时,εr=9.86、Q×f=263 900GHz。
实施例2:
一种上述的超高品质因素的铝酸盐系微波介电材料,其化学组成 为MgAl2-x(Zn0.5Ti0.5)xO4,其制备方法包括:
步骤1:按照摩尔比MgO:ZnO:TiO2:Al2O3=1:0.5x:0.5x:(2-x)称料配 置原料(x=0~0.5);将配好的原料置于球磨罐,以锆球为研磨球, 以去离子水为球磨介质,在250rpm的转速下球磨4h,球磨结束后 将料浆置于恒温干燥箱,烘干至恒重备用;
步骤2:将步骤1所得的烘干后结块的粉料在研钵中捣碎,放入 坩埚中压实,按2℃/min的升温速率升至100℃,再以5℃/min升 至1000℃,然后在以2℃/min升至1450℃进行预烧,保温4h后以 5℃/min降至500℃,再随炉冷却至室温得到MgAl2-x(Zn0.5Ti0.5)xO4预烧料,进一步将预烧料放入球磨罐中进行二次球磨,球磨工艺同一次 球磨,球磨完成后烘干至恒重备用;
步骤3:将步骤2所得粉料加入20wt%的PVA溶液作为粘结剂, 进行造粒并在20MPa下单轴干压成直径×厚度=12mm×6mm圆柱;
步骤4:将步骤3所得生坯样品放入高温烧结炉中,按2℃/min 的升温速率升至100℃,再继续升温至600℃并保温4h,然后以 5℃/min降至500℃后随炉冷却至室温,获得排胶后的生坯样品;
步骤5:将步骤4所得排胶后的生坯样品再次放入高温烧结炉中, 按2℃/min的升温速率升至100℃,再以5℃/min升至1000℃,然 后以2℃/min升至1450℃并保温4h进行烧结,保温结束后以5℃/min 降至500℃再随炉冷却至室温,获得低介超高Q×f值的铝酸盐微波介 电陶瓷样品;
不同x值的样品的微波介电性能如图3所示(x=0作为对照样 品),从图3中可以看出,x=0~0.50时,εr=6.95~9.77,Q×f=49 00~103 300GHz,且当x=0.20时,εr=8.61、Q×f=103 300GHz。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明, 凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明的保护范围之内。

Claims (6)

1.一种超高品质因素的铝酸盐系微波介电材料,其特征在于,其化学组成为:MgAl2-x (Zn0.5Ti0.5) x O4,其中,0.4<x≤0.5,其烧结温度为1550℃。
2.根据权利要求1所述的一种超高品质因素的铝酸盐系微波介电材料,其特征在于,x= 0.5。
3.权利要求1或2所述的超高品质因素的铝酸盐系微波介电材料的制备方法,其特征在于,包括以下步骤:
(1)称量原料:以MgO、Al2O3、ZnO和TiO2为原料,根据对应摩尔比进行称量,一次球磨,烘料,得烘干料;
(2)预烧:将步骤(1)中所得烘干料,按照2~5℃/min的升温速率升至1100~1450℃,并保温3~6 h,冷却至室温,获得煅烧后的MgAl2-x (Zn0.5Ti0.5) x O4预烧料;
(3)二次球磨:将步骤(2)所得进行二次球磨;
(4)造粒:将步骤(3)所得球磨后的料浆烘干至恒重,进行造粒,得到样品;
(5)制备生坯:将步骤(4)所得样品,按照2~5℃/min的升温速率升至400~600℃并保温3~6 h,冷却至室温,得到排胶后的生坯样品;
(6)烧结:将步骤(5)所得生坯样品,按照2~5℃/min的升温速率升至1550℃并保温3~6 h,再冷却至室温,得到超高品质因素的铝酸盐微波介电材料。
4.根据权利要求3所述的超高品质因素的铝酸盐系微波介电材料的制备方法,其特征在于,步骤(3)中,采用氧化锆磨球和去离子水进行二次球磨。
5.根据权利要求3所述的超高品质因素的铝酸盐系微波介电材料的制备方法,其特征在于,步骤(4)中,造粒时加入20 wt%~30 wt%的PVA溶液。
6.根据权利要求3所述的超高品质因素的铝酸盐系微波介电材料的制备方法,其特征在于,步骤(4)中造粒时压力为20MPa,并压制成直径12mm、厚度4-6mm的圆柱。
CN202011370600.9A 2020-11-30 2020-11-30 一种超高品质因素的铝酸盐系微波介电材料及其制备方法 Active CN112341185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011370600.9A CN112341185B (zh) 2020-11-30 2020-11-30 一种超高品质因素的铝酸盐系微波介电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011370600.9A CN112341185B (zh) 2020-11-30 2020-11-30 一种超高品质因素的铝酸盐系微波介电材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112341185A CN112341185A (zh) 2021-02-09
CN112341185B true CN112341185B (zh) 2023-02-03

Family

ID=74365093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011370600.9A Active CN112341185B (zh) 2020-11-30 2020-11-30 一种超高品质因素的铝酸盐系微波介电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112341185B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387695A (zh) * 2021-06-08 2021-09-14 杭州电子科技大学 一种5g通信用低介高品质微波介质陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107434411A (zh) * 2017-08-29 2017-12-05 电子科技大学 低介高品质因数ltcc微波介质材料及其制备方法
CN110272263A (zh) * 2018-03-13 2019-09-24 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷介质材料及其制备方法
CN111410528A (zh) * 2020-05-15 2020-07-14 昆山卡德姆新材料科技有限公司 一种微波介电陶瓷及一种微波介电陶瓷的制作方法
CN111635223A (zh) * 2020-06-16 2020-09-08 广东国华新材料科技股份有限公司 一种复合微波介质陶瓷及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268286B2 (en) * 2008-11-06 2012-09-18 General Electric Company High strength, fine grained spinel for window applications, methods of manufacture thereof and articles comprising the same
US11643333B2 (en) * 2018-10-23 2023-05-09 Kent State University High surface area crystalline metal aluminates and a method of manufacture thereof at lower temperature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107434411A (zh) * 2017-08-29 2017-12-05 电子科技大学 低介高品质因数ltcc微波介质材料及其制备方法
CN110272263A (zh) * 2018-03-13 2019-09-24 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷介质材料及其制备方法
CN111410528A (zh) * 2020-05-15 2020-07-14 昆山卡德姆新材料科技有限公司 一种微波介电陶瓷及一种微波介电陶瓷的制作方法
CN111635223A (zh) * 2020-06-16 2020-09-08 广东国华新材料科技股份有限公司 一种复合微波介质陶瓷及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
(1-x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications;K.P.Surendran等;《Applied Physics A–Materials Science & Processing》;20050607;第81卷;第823-826页 *
Improved sinterability and microwave dielectric properties of [Zn0.5Ti0.5]3+ -doped ZnAl2O4 spinel solid solution;Lan Xue-kai等;《Journal of the American Ceramic Society》;20190326;第102卷(第10期);第5952-5957页 *
The structure evolution and microwave dielectric properties of MgAl2-x(Mg0.5Ti0.5)xO4 solid solutions;Qin Tianying 等;《Ceramics International》;20200504;第46卷;第19046-19051页 *
Ultra-high quality factor and low dielectric constant of (Zn0.5Ti0.5)3+ co-substituted MgAl2O4 ceramic;Yang Fan 等;《Ceramics International》;20210511;第47卷;第22522-22529页 *

Also Published As

Publication number Publication date
CN112341185A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
Wang et al. A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature
CN101429015A (zh) 一种Mg2SiO4低介电常数微波介质陶瓷及其制备方法
CN111635222B (zh) 一种基于单斜相的低介微波介质陶瓷材料及其制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
Zhang et al. Microwave dielectric properties of a low firing and temperature stable lithium magnesium tungstate (Li4MgWO6) ceramic with a rock-salt variant structure
Dong et al. Microwave dielectric properties of Li (Mg1− xNix) PO4 ceramics for LTCC applications
CN112341185B (zh) 一种超高品质因素的铝酸盐系微波介电材料及其制备方法
CN101429009A (zh) 一种低介电常数高品质微波介质陶瓷及其制备方法
Bijumon et al. Influence of glass additives on the microwave dielectric properties of Ca5Nb2TiO12 ceramics
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN113307615B (zh) 一种微波介质陶瓷材料及其制备方法
Song et al. Crystal structure and microwave dielectric properties of garnet-type Ca2YZr2-xTixAl3O12 ceramics for dual-band bandpass filters
CN111908897B (zh) MgO基微波陶瓷介质材料及其制备方法
CN108727023A (zh) 一种钼酸铝基微波介质复合陶瓷及其制备方法
Kamutzki et al. A comparison of syntheses approaches towards functional polycrystalline silicate ceramics
Yue et al. Phases, microstructure and microwave dielectric properties of hexagonal perovskite Ca (La1− xNdx) 4Ti4O15 ceramics
CN110903078A (zh) 一种超低介ltcc微波陶瓷材料及其制备方法
CN112500155B (zh) 一种镧掺杂钛酸钡靶材的制备方法
Agathopoulos Influence of B2O3 on sintering behavior and the dielectric properties of Li2MgSiO4 ceramics
Li et al. Phase formation and dielectric properties of ultralow temperature sintered Li4Mo5O17 ceramics
KR101436468B1 (ko) 고강도 질화알루미늄(AlN) 소결체 및 이의 저온 소결방법
CN112079631A (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN110818413A (zh) 一种极低温烧结的钼酸铝基微波介质复合陶瓷及其制备方法
Su et al. Ca3ZnAl4O10: A novel Al-rich microwave dielectric ceramic with low-εr
CN115433008B (zh) 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant