CN107244918A - 一种TiB‑TiC‑TiB2‑B4C‑Al复合陶瓷的快速制备方法 - Google Patents

一种TiB‑TiC‑TiB2‑B4C‑Al复合陶瓷的快速制备方法 Download PDF

Info

Publication number
CN107244918A
CN107244918A CN201710535954.6A CN201710535954A CN107244918A CN 107244918 A CN107244918 A CN 107244918A CN 201710535954 A CN201710535954 A CN 201710535954A CN 107244918 A CN107244918 A CN 107244918A
Authority
CN
China
Prior art keywords
tib
powder
ball
tic
composite ceramicses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710535954.6A
Other languages
English (en)
Other versions
CN107244918B (zh
Inventor
张朝晖
程兴旺
胡正阳
王富耻
王虎
李昇霖
宋奇
李云凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201710535954.6A priority Critical patent/CN107244918B/zh
Publication of CN107244918A publication Critical patent/CN107244918A/zh
Application granted granted Critical
Publication of CN107244918B publication Critical patent/CN107244918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种TiB‑TiC‑TiB2‑B4C‑Al复合陶瓷的快速制备方法,属于功能防护材料制备领域。该方法是将TC4粉、Al粉、TiB2粉和B4C粉加入球磨罐中,加入球磨介质,球磨至混合均匀,干燥,得到混合粉体;采用放电等离子烧结系统对所述混合粉体进行烧结处理,得到所述复合陶瓷;该方法制备得到的复合陶瓷致具有更高的强度,高温硬度,断裂韧性和耐磨性,总体性能提升很大,是未来复合防护材料中陶瓷材料的理想选择。

Description

一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法
技术领域
本发明涉及一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,属于功能防护材料制备领域。
背景技术
金属陶瓷既保持陶瓷的高强度,高硬度,耐高温,化学稳定性强等优点,又有较好的韧性以及可塑性,是一类非常重要的工具材料和结构材料。其用途极其广泛,几乎涉及到国民经济的各个部门和现代技术的各个领域,对工业的发展和生产率的提高起着重要的推动作用。
其中,碳化钛和硼化钛是近年来发展较快的两类金属陶瓷。熔点高,耐磨性好,硬度大等一系列优点使得碳化钛(TiCp)在切削工具,喷沙嘴等结构材料等方面广泛使用。钛的硼化物(TiBw)具有较高熔点,高硬度,良好的导电性,可用电加工手段成型,但是硼化钛自扩散系数低,使得其可烧结性受到很大影响且断裂韧性比较差,在很大程度上限制了应用。
最近研究表明在陶瓷材料中添加金属(铝),这部分金属颗粒可通过塑性变形、剥离、拔出,可阻止裂纹扩展作用,使陶瓷材料的室温与高温韧性提高,金属与陶瓷基体新生相的钉扎也能阻止裂纹扩展,提高韧性。此外,钉扎效应还可抑制颗粒的异常长大,细化复合材料晶粒,提高高温强度,提高致密度和比强度。
但是,由于TiB-TiC-TiB2-B4C-Al复相陶瓷制备工艺复杂,成本高,产物成品率不高,截止目前为止,还没有将其应用到防护材料的报导。
发明内容
有鉴于此,本发明的目的是提供一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法采用放电等离子烧结系统,通过TC4粉、Al粉、TiB2和B4C粉在较低的温度下发生的原位反应,实现TiB-TiC-TiB2-B4C-Al复合陶瓷的快速可控低成本制备。最终的烧结产物兼具TiB、TiB2与TiC单相陶瓷的优点,而且与单相陶瓷相比,具有更高的强度,高温硬度,断裂韧性和耐磨性,总体性能提升很大,是未来复合防护材料中陶瓷材料的理想选择。
本发明的目的由以下技术方案实现。
一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法步骤如下:
(1)将TC4粉、Al粉、TiB2粉和B4C粉加入球磨罐中,球磨至混合均匀,得到混合泥浆,干燥,得到混合粉体;
其中,TC4粉、B4C粉和TiB2粉的质量比为1:(1.5~8):(7.5~1);Al粉的质量为混合粉体质量的0.3%~30%;
优选TC4粉的粒径≤60μm;优选TiB2粉的粒径≤20μm;优选B4C粉的粒径≤15μm;优选Al粉的粒径≤80μm;
优选球磨采用SM-QB行星式球磨机;
优选球磨参数为:球磨介质为无水乙醇;球料比为3:1;球磨机转速为300r/min,球磨时间为0.5h~1h;
优选磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm;
优选干燥为:
先将混合泥浆于70℃~80℃下真空干燥至球磨介质挥发完毕,再于30℃~80℃干燥0.5h~1h;
优选真空干燥采用真空旋转蒸发仪,转速为40r/min~100r/min;
(2)采用放电等离子烧结系统对混合粉体进行烧结处理,得到本发明所述TiB-TiC-TiB2-B4C-Al复合陶瓷。
其中,烧结过程为:
在初始真空度<15Pa,初始压力为0.2MPa~1MPa下,以60℃/min~120℃/min的升温速率升温;当温度升至600℃~630℃时,调节升温速率为20℃/min以下;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为30℃/min~100℃/min;当温度升至800℃~850℃时,调节升温速率为10℃/min~20℃/min,当温度高于1000℃且真空度<15Pa时,调节升温速率为30℃/min~60℃/min,并同时加压,待温度升至1050℃~1750℃,压力达5MPa~50MPa后,保温保压3min~15min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,随炉冷却至100℃以下。
有益效果
1.本发明提供了一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法选用TC4粉、Al粉、TiB2粉和B4C粉的混合粉末为原料,采用放电等离子烧结系统进行烧结,电场会在烧结过程中清洁和活化所述混合粉末的颗粒表面,使混合粉末在较低的烧结温度下充分反应,烧结得到的TiB-TiC-TiB2-B4C-Al复合陶瓷致密度高,韧性好,强度高,综合性能良好;所述TiB-TiC-TiB2-B4C-Al复合陶瓷致密度高达99.3%,动态压缩强度值高达1900MPa,可应用于防护材料领域;
2.本发明提供了一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法简单易行,周期短,实用性强,有利于工业化。
附图说明
图1为实施例1~6中制备的TiB-TiC-TiB2-B4C-Al复合陶瓷的厚度与致密度值。
具体实施方式
下面结合附图和具体实施例对本发明作详细的阐述。
以下实施例中所述TC4粉由北京泰欣隆有限公司生产,平均粒径为45μm,纯度≥99.8%;其中各组分及质量分数(wt%)如表1所示:
表1
所述B4C粉由牡丹江金刚钻碳化硼有限公司生产,其平均粒径为10μm,纯度为99.8%;
所述Al粉由河南远洋铝业有限公司生产,平均粒径为20μm,纯度为99.5%;其中各组分及质量分数(wt%)如表2所示:
表2
所述TiB2粉由丹东日进科技有限公司生产,平均粒径为3μm,纯度为99.8%。
所述无水乙醇由北京市通广精细化工公司生产。
所述复合陶瓷理论密度计算公式:
其中,M为混合粉总质量,MTiB、MTiB2、MAl、MB4C和MTiC依次分别为TiB、TiB2、Al、B4C和TiC的理论质量,ρTiB=4.50g/cm3,ρTiB2=4.51g/cm3,ρAl=2.7g/cm3,ρB4C=2.52g/cm3,ρTiC=4.93g/cm3
所述动态压缩强度的测量采用分离式Hopkinson压杆装置(SHPB)。
所述实际密度根据国标GB/T 1423-1996《贵金属及其合金密度的测试方法》中规定的方法进行。
所述致密度D的计算公式为:D=ρ实际理论×100%,其中,ρ实际表示实际密度,ρ理论表示理论密度。
实施例1
一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法步骤如下:
(1)将9.97g TC4粉、64.80g B4C粉、24.93g TiB2粉和0.3g Al粉加入SM-QB行星式球磨机的球磨罐中,并按球料比为3:1加入磨球和过量的无水乙醇;在300r/min的转速下,球磨0.5h混合均匀,得到混合泥浆;将所述混合泥浆倒入真空旋转蒸发仪中,在转速为100r/min、水浴温度为80℃条件下转蒸0.5h,得到混合粉末前体;将混合粉末前体放入电热恒温鼓风干燥箱中,于60℃下干燥1h,得到混合粉末。
其中,磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
(2)将100g混合粉末放入内径为60mm的石墨模具中,再用石棉毡包裹石墨模具,放入放电等离子烧结系统中,设置炉腔内初始真空度<15Pa,初始压力为0.2MPa,先以60℃/min的升温速率进行升温,当温度升至600℃时,调节升温速率为10℃/min;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为30℃/min;当温度升至800℃时,原位反应开始发生,此阶段有明显放气现象,炉腔内气压值升高,调节升温速率为10℃/min,当温度高于1000℃、且真空度<15Pa时,调节升温速率为60℃/min,并同时加压,待温度升至1650℃,压力达20MPa后,保温保压3min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,再随炉冷却至100℃以下,取出烧结后的陶瓷块体,使用乙醇和去离子水清洗陶瓷的表面,得到TiB-TiC-TiB2-B4C-Al复合陶瓷。
所述TiB-TiC-TiB2-B4C-Al复合陶瓷的实际密度为2.94g/cm3,理论密度为2.96g/cm3;如图1所示,TiB-TiC-TiB2-B4C-Al复合陶瓷的厚度为12.0mm,致密度为99.3%,动态压缩强度值为1350MPa。
实施例2
一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法步骤如下:
(1)将7g TC4粉、45.5g B4C粉、17.5g TiB2粉和30g Al粉加入SM-QB行星式球磨机的球磨罐中,并按球料比为3:1加入磨球和过量的无水乙醇;在300r/min的转速下,球磨0.5h混合均匀,得到混合泥浆;将所述混合泥浆倒入真空旋转蒸发仪中,在转速为100r/min、水浴温度为80℃条件下转蒸0.5h,得到混合粉末前体;将混合粉末前体放入电热恒温鼓风干燥箱中,于60℃下干燥1h,得到混合粉末。
其中,磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
(2)将100g混合粉末放入内径为60mm的石墨模具中,再用石棉毡包裹石墨模具,放入放电等离子烧结系统中,设置炉腔内初始真空度<15Pa,初始压力为1MPa,先以120℃/min的升温速率升温,当温度升至630℃时,调节升温速率为20℃/min;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为100℃/min;当温度升至800℃时,原位反应开始发生,此阶段有明显放气现象,炉腔内气压值升高,调节升温速率为20℃/min,当温度高于1000℃、且真空度<15Pa时,调节升温速率为60℃/min,并同时加压,待温度升至1550℃,压力达20MPa后,保温保压15min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,再随炉冷却至100℃以下,取出烧结后的陶瓷块体,使用乙醇和去离子水清洗陶瓷的表面,得到TiB-TiC-TiB2-B4C-Al复合陶瓷。
所述TiB-TiC-TiB2-B4C-Al复合陶瓷的实际密度为2.92g/cm3,理论密度为2.94g/cm3;如图1所示,TiB-TiC-TiB2-B4C-Al复合陶瓷的厚度为12.1mm,致密度为99.3%,动态压缩强度值为1900MPa。
实施例3
一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法步骤如下:
(1)将9.97g TC4粉、14.96g B4C粉、74.77g TiB2粉和0.3g Al粉加入SM-QB行星式球磨机的球磨罐中,并按球料比为3:1加入磨球和过量的无水乙醇;在300r/min的转速下,球磨0.5h混合均匀,得到混合泥浆;将所述混合泥浆倒入真空旋转蒸发仪中,在转速为100r/min、水浴温度为80℃条件下转蒸0.5h,得到混合粉末前体;将混合粉末前体放入电热恒温鼓风干燥箱中,于60℃下干燥1h,得到混合粉末。
其中,磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
(2)将100g混合粉末放入内径为60mm的石墨模具中,再用石棉毡包裹石墨模具,放入放电等离子烧结系统中,设置炉腔内初始真空度<15Pa,初始压力为0.2MPa,先以60℃/min的升温速率升温,当温度升至600℃时,调节升温速率为10℃/min;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为30℃/min;当温度升至800℃时,原位反应开始发生,此阶段有明显放气现象,炉腔内气压值升高,调节升温速率为10℃/min,当温度高于1000℃、且真空度<15Pa时,调节升温速率为60℃/min,并同时加压,待温度升至1750℃,压力达50MPa后,保温保压3min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,再随炉冷却至100℃以下,取出烧结后的陶瓷块体,使用乙醇和去离子水清洗陶瓷的表面,得到TiB-TiC-TiB2-B4C-Al复合陶瓷。
所述TiB-TiC-TiB2-B4C-Al复合陶瓷的实际密度为3.96g/cm3,理论密度为4.03g/cm3;如图1所示,TiB-TiC-TiB2-B4C-Al复合陶瓷的厚度为8.9mm,致密度为98.3%。
实施例4
一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法步骤如下:
(1)将7g TC4粉、10.5g B4C粉、52.5g TiB2粉和30g Al粉加入SM-QB行星式球磨机的球磨罐中,并按球料比为3:1加入磨球和过量的无水乙醇;在300r/min的转速下,球磨0.5h混合均匀,得到混合泥浆;将所述混合泥浆倒入真空旋转蒸发仪中,在转速为100r/min、水浴温度为80℃条件下转蒸0.5h,得到混合粉末前体;将混合粉末前体放入电热恒温鼓风干燥箱中,于60℃下干燥1h,得到混合粉末。
其中,磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
(2)将100g混合粉末放入内径为60mm的石墨模具中,再用石棉毡包裹石墨模具,放入放电等离子烧结系统中,设置炉腔内初始真空度<15Pa,初始压力为1MPa,先以120℃/min的升温速率进行升温,当温度升至630℃时,调节升温速率为20℃/min;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为100℃/min;当温度升至800℃时,原位反应开始发生,此阶段有明显放气现象,炉腔内气压值升高,调节升温速率为20℃/min,当温度高于1000℃、且真空度<15Pa时,调节升温速率为60℃/min,并同时加压,待温度升至1750℃,压力达5MPa后,保温保压15min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,再随炉冷却至100℃以下,取出烧结后的陶瓷块体,使用乙醇和去离子水清洗陶瓷的表面,得到TiB-TiC-TiB2-B4C-Al复合陶瓷。
所述TiB-TiC-TiB2-B4C-Al复合陶瓷的实际密度为3.49g/cm3,理论密度为3.51g/cm3;如图1所示,TiB-TiC-TiB2-B4C-Al复合陶瓷的厚度为10.1mm,致密度为99.4%。
实施例5
一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法步骤如下:
(1)将9.97g TC4粉、79.76g B4C粉、9.97g TiB2粉和0.3g Al粉加入SM-QB行星式球磨机的球磨罐中,并按球料比为3:1加入磨球和过量的无水乙醇;在300r/min的转速下,球磨0.5h混合均匀,得到混合泥浆;将所述混合泥浆倒入真空旋转蒸发仪中,在转速为100r/min、水浴温度为80℃条件下转蒸0.5h,得到混合粉末前体;将混合粉末前体放入电热恒温鼓风干燥箱中,于60℃下干燥1h,得到混合粉末。
其中,磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
(2)将100g混合粉末放入内径为60mm的石墨模具中,再用石棉毡包裹石墨模具,放入放电等离子烧结系统中,设置炉腔内初始真空度<15Pa,初始压力为1MPa,先以120℃/min的升温速率进行升温,当温度升至630℃时,调节升温速率为20℃/min;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为100℃/min;当温度升至800℃时,原位反应开始发生,此阶段有明显放气现象,炉腔内气压值升高,调节升温速率为20℃/min,当温度高于1000℃、且真空度<15Pa时,调节升温速率为60℃/min,并同时加压,待温度升至1750℃,压力达5MPa后,保温保压15min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,再随炉冷却至100℃以下,取出烧结后的陶瓷块体,使用乙醇和去离子水清洗陶瓷的表面,得到TiB-TiC-TiB2-B4C-Al复合陶瓷。
所述TiB-TiC-TiB2-B4C-Al复合陶瓷的实际密度为2.71g/cm3,理论密度为2.76g/cm3;如图1所示,TiB-TiC-TiB2-B4C-Al复合陶瓷的厚度为13.1mm,致密度为98.2%。
实施例6
一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,所述方法步骤如下:
(1)将7g TC4粉、56g B4C粉、7g TiB2粉和30g Al粉加入SM-QB行星式球磨机的球磨罐中,并按球料比为3:1加入磨球和过量的无水乙醇;在300r/min的转速下,球磨0.5h混合均匀,得到混合泥浆;将所述混合泥浆倒入真空旋转蒸发仪中,在转速为100r/min、水浴温度为80℃条件下转蒸0.5h,得到混合粉末前体;将混合粉末前体放入电热恒温鼓风干燥箱中,于60℃下干燥1h,得到混合粉末。
其中,磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
(2)将100g混合粉末放入内径为60mm的石墨模具中,再用石棉毡包裹石墨模具,放入放电等离子烧结系统中,设置炉腔内初始真空度<15Pa,初始压力为1MPa,先以120℃/min的升温速率进行升温,当温度升至630℃时,调节升温速率为20℃/min;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为100℃/min;当温度升至800℃时,原位反应开始发生,此阶段有明显放气现象,炉腔内气压值升高,调节升温速率为20℃/min,当温度高于1000℃、且真空度<15Pa时,调节升温速率为60℃/min,并同时加压,待温度升至1750℃,压力达5MPa后,保温保压15min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,再随炉冷却至100℃以下,取出烧结后的陶瓷块体,使用乙醇和去离子水清洗陶瓷的表面,得到TiB-TiC-TiB2-B4C-Al复合陶瓷。
所述TiB-TiC-TiB2-B4C-Al复合陶瓷的实际密度为2.70g/cm3,理论密度为2.74g/cm3;如图1所示,TiB-TiC-TiB2-B4C-Al复合陶瓷的厚度为13.1mm,致密度为98.5%。
本发明包括但不限于以上实施例,凡是在本发明精神的原则之下进行的任何等同替换或局部改进,都将视在本发明的保护范围之内。

Claims (10)

1.一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:所述方法步骤如下:
(1)将TC4粉、Al粉、TiB2粉和B4C粉加入球磨罐中,球磨使其混合均匀,得到混合泥浆,干燥,得到混合粉体;
TC4粉、B4C粉和TiB2粉的质量比为1:(1.5~8):(7.5~1);Al粉的质量为混合粉体质量的0.3%~30%;
(2)采用放电等离子烧结系统对混合粉体进行烧结处理,得到所述TiB-TiC-TiB2-B4C-Al复合陶瓷;
烧结过程为:在初始真空度<15Pa,初始压力为0.2MPa~1MPa下,以60℃/min~120℃/min的升温速率升温;当温度升至600℃~630℃时,调节升温速率为20℃/min以下;当温度高于680℃,且烧结的混合粉体位移率变化量≤0.02mm/s时,调节升温速率为30℃/min~100℃/min;当温度升至800℃~850℃时,调节升温速率为10℃/min~20℃/min,当温度高于1000℃且真空度<15Pa时,调节升温速率为30℃/min~60℃/min,并同时加压,待温度升至1050℃~1750℃,压力达5MPa~50MPa后,保温保压3min~15min;然后保持压力不变,随炉冷却至900℃以下,卸除压力,随炉冷却至100℃以下。
2.根据权利要求1所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:TC4粉的粒径≤60μm;TiB2粉的粒径≤20μm;B4C粉的粒径≤15μm;Al粉的粒径≤80μm。
3.根据权利要求1或2所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:球磨采用SM-QB行星式球磨机。
4.根据权利要求1或2所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:球磨介质为无水乙醇;球料比为3:1;球磨机转速为300r/min,球磨时间为0.5h~1h。
5.根据权利要求1或2所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:球磨使用的磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
6.根据权利要求1或2所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:将混合泥浆于70℃~80℃下真空干燥至球磨介质挥发完毕,再于30℃~80℃干燥0.5h~1h。
7.根据权利要求6所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:真空干燥采用真空旋转蒸发仪,转速为40r/min~100r/min。
8.根据权利要求1或2所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:球磨采用SM-QB行星式球磨机;球磨介质为无水乙醇;球料比为3:1;球磨机转速为300r/min,球磨时间为0.5h~1h;球磨使用的磨球由质量比为1:1的大玛瑙球和小玛瑙球组成,大玛瑙球的直径为10mm,小玛瑙球的直径为5mm。
9.根据权利要求8所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:将混合泥浆于70℃~80℃下真空干燥至球磨介质挥发完毕,再于30℃~80℃干燥0.5h~1h。
10.根据权利要求9所述的一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法,其特征在于:真空干燥采用真空旋转蒸发仪,转速为40r/min~100r/min。
CN201710535954.6A 2017-07-04 2017-07-04 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法 Active CN107244918B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710535954.6A CN107244918B (zh) 2017-07-04 2017-07-04 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710535954.6A CN107244918B (zh) 2017-07-04 2017-07-04 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法

Publications (2)

Publication Number Publication Date
CN107244918A true CN107244918A (zh) 2017-10-13
CN107244918B CN107244918B (zh) 2020-10-30

Family

ID=60014282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710535954.6A Active CN107244918B (zh) 2017-07-04 2017-07-04 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法

Country Status (1)

Country Link
CN (1) CN107244918B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751997A (zh) * 2018-07-26 2018-11-06 北京理工大学 一种B4C-TiB2-SiC复合陶瓷块体及其快速制备方法
CN109136608A (zh) * 2018-08-22 2019-01-04 北京理工大学 一种取向可控的TiB晶须增强钛基复合材料的制备方法
CN110282983A (zh) * 2019-07-05 2019-09-27 河南理工大学 一种无中间相的高硬度TiB2-B4C陶瓷复合材料制备方法及其应用
CN114605156A (zh) * 2022-03-15 2022-06-10 北京理工大学 一种TiB2基装甲复合陶瓷材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100845A (en) * 1991-03-13 1992-03-31 Union Carbide Coatings Service Technology Corporation Process for producing titanium diboride and boron nitride powders
CN1198780A (zh) * 1995-10-02 1998-11-11 陶氏化学公司 陶瓷-陶瓷和陶瓷-金属复合材料的一步合成与致密化
CN106396688A (zh) * 2016-09-14 2017-02-15 北京理工大学 一种TiB‑TiC‑TiB2‑B4C复合陶瓷的快速制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100845A (en) * 1991-03-13 1992-03-31 Union Carbide Coatings Service Technology Corporation Process for producing titanium diboride and boron nitride powders
CN1198780A (zh) * 1995-10-02 1998-11-11 陶氏化学公司 陶瓷-陶瓷和陶瓷-金属复合材料的一步合成与致密化
CN106396688A (zh) * 2016-09-14 2017-02-15 北京理工大学 一种TiB‑TiC‑TiB2‑B4C复合陶瓷的快速制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M. RAFIEI ET AL.: "Formation mechanism of B4C-TiB2-TiC ceramic composite produced by mechanical alloying of Ti-B4C powders", 《ADVANCED POWDER TECHNOLOGY》 *
张朝晖等: "TiB-TiB2陶瓷复合材料的放电等离子烧结致密化", 《北京理工大学学报》 *
神祥博等: "放电等离子烧结法制备TiB陶瓷刀具材料的显微结构和力学性能", 《模具制造》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108751997A (zh) * 2018-07-26 2018-11-06 北京理工大学 一种B4C-TiB2-SiC复合陶瓷块体及其快速制备方法
CN109136608A (zh) * 2018-08-22 2019-01-04 北京理工大学 一种取向可控的TiB晶须增强钛基复合材料的制备方法
CN110282983A (zh) * 2019-07-05 2019-09-27 河南理工大学 一种无中间相的高硬度TiB2-B4C陶瓷复合材料制备方法及其应用
CN110282983B (zh) * 2019-07-05 2022-07-29 河南理工大学 一种无中间相的高硬度TiB2-B4C陶瓷复合材料制备方法及其应用
CN114605156A (zh) * 2022-03-15 2022-06-10 北京理工大学 一种TiB2基装甲复合陶瓷材料
CN114605156B (zh) * 2022-03-15 2023-02-17 北京理工大学 一种TiB2基装甲复合陶瓷材料

Also Published As

Publication number Publication date
CN107244918B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN104876598B (zh) 薄带连铸用Max相‑氮化硼复合陶瓷侧封板及其制造方法
CN107244918A (zh) 一种TiB‑TiC‑TiB2‑B4C‑Al复合陶瓷的快速制备方法
CN104745908B (zh) 硼化钛复合碳化钛基金属陶瓷刀具材料的制备方法
CN105272260B (zh) 一种无粘结相碳化钨复合材料及其制备方法
CN106396688B (zh) 一种TiB-TiC-TiB2-B4C复合陶瓷的快速制备方法
CN109851367B (zh) 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
CN105272261A (zh) 一种无压烧结碳化硼陶瓷制备方法
CN105367057B (zh) 一种高致密碳化硼复相陶瓷材料的制备方法
CN106083063B (zh) 一种硼化铪-碳化硅-石墨-硅化钽复合陶瓷发热体及其制备方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN108624772A (zh) 超细晶碳化钨基硬质合金材料及其制备方法
CN110759735A (zh) 一种碳化硼陶瓷复合材料及其制备方法
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN107419126B (zh) 一种TiB-TiB2-Al复合陶瓷的快速制备方法
CN110818428A (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN115110044B (zh) 一种铬硅合金溅射靶材的制备方法
CN113121237A (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN102786304B (zh) 一种热压碳化硼陶瓷的制备方法
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN103938023B (zh) 一种原位自生钛铝碳强韧化TiAl3金属间化合物及其制备方法
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN104072139A (zh) 金属钛碳化物陶瓷的制备方法
CN107500776B (zh) 一种聚晶立方氮化硼刀具材料及其制备方法
CN108424146A (zh) 一种四硼化钨基陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant