CN107233899A - 一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法 - Google Patents

一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法 Download PDF

Info

Publication number
CN107233899A
CN107233899A CN201710319076.4A CN201710319076A CN107233899A CN 107233899 A CN107233899 A CN 107233899A CN 201710319076 A CN201710319076 A CN 201710319076A CN 107233899 A CN107233899 A CN 107233899A
Authority
CN
China
Prior art keywords
moo
quantum dot
cds quantum
composite photocatalyst
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710319076.4A
Other languages
English (en)
Inventor
刘玉民
任豪
吕华
张鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201710319076.4A priority Critical patent/CN107233899A/zh
Publication of CN107233899A publication Critical patent/CN107233899A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法,属于无机环保光催化材料的合成技术领域。本发明的技术方案要点为:一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法,是由CdS量子点、Bi2MoO6和石墨烯复合而形成的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂,其中CdS量子点和Bi2MoO6的摩尔比为1:0.1‑0.5,石墨烯与Bi2MoO6的质量比为0.03‑0.15:1。本发明制得的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂有效减少光生电子和空穴的复合速率,提高了CdS量子点的光解水制氢催化活性并减缓了CdS量子点在光解水过程中光蚀现象的发生,具有操作条件温和、所制备的产品团聚程度低及光催化活性高的优点。

Description

一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法
技术领域
本发明属于无机环保光催化材料的合成技术领域,具体涉及一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法。
背景技术
氢能作为一种高效清洁的绿色化学能源,对于解决全球愈发紧张的能源和环境危机有着重要的意义。近几十年来,研究者们一直致力于光解水制氢技术的研究,开发了许多具有制氢性能的光催化材料。在众多的光催化材料中,CdS量子点作为一种典型的半导体纳米材料,具有较窄的禁带宽度、较好的光利用率及适宜的导带电势,在光催化产氢研究中表现出巨大的应用潜力。然而在实际应用中,CdS量子点存在的光腐蚀现象严重,同时由于光生载流子高的复合率,导致其光催化制氢量子效率偏低。
为了克服CdS量子点光催化剂在制氢过程中的缺陷,学者们对其做大量的改性研究,发现材料复合能有效的阻止CdS量子点光蚀现象的发生和明显提高其制氢量子效率。钼酸铋(Bi2MoO6)是一种典型的铋系光催化剂,具有可见光光催化性能。如将CdS量子点与具有合适带隙结构的Bi2MoO6相复合,利用两种半导体的能级差使光生载流子在两者的导带和价带之间互相迁移,促进光生电子和空穴的分离,进而提高其光分解水制氢的催化性能。此外,石墨烯是新型二维碳纳米材料,具有更大的比表面积、高化学稳定性及更为优异的电子传导性能。如将石墨烯与CdS量子点复合,利用石墨烯规整的二维平面结构作为光催化剂的载体,一方面可以提高CdS量子点的分散程度,增加反应活性位;另一方面可加快光生电荷迁移的速率,提高CdS量子点的光催化活性并防止光蚀现象的发生。
发明内容
本发明解决的技术问题是提供了一种操作简单且易于实现的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法,该方法制得的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂可见光利用率高、光蚀现象低且光催化制氢活性好。
本发明为解决上述技术问题采用如下技术方案,一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法,其特征在于具体步骤为:
(1)在搅拌条件下将五水合硝酸铋和二水合钼酸钠按摩尔比2:1溶于去离子水中形成硝酸铋与钼酸钠的混合溶液,在室温条件下将硝酸铋与钼酸钠的混合溶液搅拌2h后转移至水热反应釜中,然后将水热反应釜放入微波消解仪中于120℃微波反应5-30min,待反应结束后冷却、洗涤、干燥得到Bi2MoO6纳米粉体;
(2)配制乙酸镉溶液,在搅拌和通氮气的情况下向乙酸镉溶液中加入巯基乙酸和硫化钠得到混合溶液,其中巯基乙酸与乙酸镉的摩尔比为1.2:1,硫化钠与乙酸镉的摩尔比为1:1;
(3)将步骤(2)得到的混合溶液于65℃反应2h,然后加入石墨烯和步骤(1)得到的Bi2MoO6纳米粉体得到悬浮溶液,其中石墨烯与Bi2MoO6纳米粉体的质量比为0.03-0.15:1,Bi2MoO6纳米粉体与乙酸镉的摩尔比为0.1-0.5:1;
(4)将步骤(3)得到的悬浮溶液继续反应0.5h后过滤、干燥得到具有高催化活性的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂。
进一步优选,所述硝酸铋与钼酸钠的混合溶液中硝酸铋的摩尔浓度为0.01-0.05mol/L。
进一步优选,所述乙酸镉溶液中乙酸镉的摩尔浓度为0.01-0.05mol/L。
本发明与现有技术相比具有以下有益效果:
1、采用适宜的合成工艺制备出能带结构相匹配的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂,利用两种半导体之间的能级差使光生载流子由一种半导体微粒的能级注入到另一种半导体微粒的能级上,从而提高光生电荷的分离效率,进而提高复合型光催化剂的制氢性能;
2、利用石墨烯优异的电子传导性能,不但提高了CdS量子点光催化剂的制氢效率,同时也有效降低了CdS量子点的光蚀性能;
3、根据微波水热法加热速率快和溶液受热均匀等特点,采用微波水热法制备出晶粒粒度小、团聚程度低的高活性Bi2MoO6纳米粉体,进而有效提高了CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的活性。
附图说明
图1为300W氙灯照射下,本发明实施例1所制备的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂和纯CdS量子点光催化剂的光催化分解水制氢效率柱形图(操作条件:催化剂的量:0.1g;牺牲剂的量:5mL 0.1mol/L的Na2S和5mL 0.04mol/L的Na2SO3)。从图中可以看出,在模拟可见光的照射下,光照5h后,CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的产氢效率明显高于纯CdS量子点光催化剂的产氢效率,表现出明显增强的光催化活性。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
(1)在搅拌条件下将0.97g五水合硝酸铋和0.242g二水合钼酸钠溶于200mL去离子水中形成硝酸铋与钼酸钠的混合溶液,在室温条件下将硝酸铋与钼酸钠的混合溶液搅拌2h后转移至水热反应釜中,然后将水热反应釜放入微波消解仪中于120℃微波反应5min,待反应结束后冷却、洗涤、干燥得到Bi2MoO6纳米粉体;
(2)配制0.01mol/L的乙酸镉溶液200mL,在搅拌和通氮气的情况下向乙酸镉溶液中加入0.0024mol巯基乙酸和0.002mol硫化钠得到混合溶液;
(3)将步骤(2)得到的混合溶液于65℃反应2h,然后加入0.135g石墨烯和0.001mol步骤(1)得到的Bi2MoO6纳米粉体得到悬浮溶液;
(4)将步骤(3)得到的悬浮溶液继续反应0.5h后过滤、干燥得到具有高催化活性的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂。
实施例2
(1)在搅拌条件下将1.94g五水合硝酸铋和0.484g二水合钼酸钠溶于200mL去离子水中形成硝酸铋与钼酸钠的混合溶液,在室温条件下将硝酸铋与钼酸钠的混合溶液搅拌2h后转移至水热反应釜中,然后将水热反应釜放入微波消解仪中于120℃微波反应10min,待反应结束后冷却、洗涤、干燥得到Bi2MoO6纳米粉体;
(2)配制0.03mol/L的乙酸镉溶液200mL,在搅拌和通氮气的情况下向乙酸镉溶液中加入0.0072mol巯基乙酸和0.006mol硫化钠得到混合溶液;
(3)将步骤(2)得到的混合溶液于65℃反应2h,然后加入0.135g石墨烯和0.002mol步骤(1)得到的Bi2MoO6纳米粉体得到悬浮溶液;
(4)将步骤(3)得到的悬浮溶液继续反应0.5h后过滤、干燥得到具有高催化活性的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂。
实施例3
(1)在搅拌条件下将0.97g五水合硝酸铋和0.242g二水合钼酸钠溶于200mL去离子水中形成硝酸铋与钼酸钠的混合溶液,在室温条件下将硝酸铋与钼酸钠的混合溶液搅拌2h后转移至水热反应釜中,然后将水热反应釜放入微波消解仪中于120℃微波反应30min,待反应结束后冷却、洗涤、干燥得到Bi2MoO6纳米粉体;
(2)配制0.05mol/L的乙酸镉溶液200mL,在搅拌和通氮气的情况下向乙酸镉溶液中加入0.012mol巯基乙酸和0.01mol硫化钠得到混合溶液;
(3)将步骤(2)得到的混合溶液于65℃反应2h,然后加入0.1g石墨烯和0.001mol步骤(1)得到的Bi2MoO6纳米粉体得到悬浮溶液;
(4)将步骤(3)得到的悬浮溶液继续反应0.5h后过滤、干燥得到具有高催化活性的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂。
实施例4
(1)在搅拌条件下将4.85g五水合硝酸铋和1.21g二水合钼酸钠溶于200mL去离子水中形成硝酸铋与钼酸钠的混合溶液,在室温条件下将硝酸铋与钼酸钠的混合溶液搅拌2h后转移至水热反应釜中,然后将水热反应釜放入微波消解仪中于120℃微波反应15min,待反应结束后冷却、洗涤、干燥得到Bi2MoO6纳米粉体;
(2)配制0.05mol/L的乙酸镉溶液200mL,在搅拌和通氮气的情况下向乙酸镉溶液中加入0.012mol巯基乙酸和0.01mol硫化钠得到混合溶液;
(3)将步骤(2)得到的混合溶液于65℃反应2h,然后加入0.135g石墨烯和0.005mol步骤(1)得到的Bi2MoO6纳米粉体得到悬浮溶液;
(4)将步骤(3)得到的悬浮溶液继续反应0.5h后过滤、干燥得到具有高催化活性的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (3)

1.一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法,其特征在于具体步骤为:
(1)在搅拌条件下将五水合硝酸铋和二水合钼酸钠按摩尔比2:1溶于去离子水中形成硝酸铋与钼酸钠的混合溶液,在室温条件下将硝酸铋与钼酸钠的混合溶液搅拌2h后转移至水热反应釜中,然后将水热反应釜放入微波消解仪中于120℃微波反应5-30min,待反应结束后冷却、洗涤、干燥得到Bi2MoO6纳米粉体;
(2)配制乙酸镉溶液,在搅拌和通氮气的情况下向乙酸镉溶液中加入巯基乙酸和硫化钠得到混合溶液,其中巯基乙酸与乙酸镉的摩尔比为1.2:1,硫化钠与乙酸镉的摩尔比为1:1;
(3)将步骤(2)得到的混合溶液于65℃反应2h,然后加入石墨烯和步骤(1)得到的Bi2MoO6纳米粉体得到悬浮溶液,其中石墨烯与Bi2MoO6纳米粉体的质量比为0.03-0.15:1,Bi2MoO6纳米粉体与乙酸镉的摩尔比为0.1-0.5:1;
(4)将步骤(3)得到的悬浮溶液继续反应0.5h后过滤、干燥得到具有高催化活性的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂。
2.根据权利要求1所述的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法,其特征在于:所述硝酸铋与钼酸钠的混合溶液中硝酸铋的摩尔浓度为0.01-0.05mol/L。
3.根据权利要求1所述的CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法,其特征在于:所述乙酸镉溶液中乙酸镉的摩尔浓度为0.01-0.05mol/L。
CN201710319076.4A 2017-05-08 2017-05-08 一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法 Pending CN107233899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710319076.4A CN107233899A (zh) 2017-05-08 2017-05-08 一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710319076.4A CN107233899A (zh) 2017-05-08 2017-05-08 一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN107233899A true CN107233899A (zh) 2017-10-10

Family

ID=59985846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710319076.4A Pending CN107233899A (zh) 2017-05-08 2017-05-08 一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107233899A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108311143A (zh) * 2018-04-11 2018-07-24 刘海洋 一种AgAlO2量子点的制备方法
CN108855138A (zh) * 2018-07-09 2018-11-23 河南师范大学 一种Z型结构Mn0.5Cd0.5S/Ag/Bi2WO6复合型光催化剂及其制备方法
CN109289873A (zh) * 2018-10-29 2019-02-01 江苏大学 一种异质结材料及制备方法和用途
CN109967098A (zh) * 2017-12-28 2019-07-05 Tcl集团股份有限公司 一种光催化剂及其制备方法与应用
CN110152609A (zh) * 2019-06-12 2019-08-23 常州大学 一种高效石墨烯基铋系纳米复合材料及其制备方法
CN110227443A (zh) * 2019-05-07 2019-09-13 江苏诺菲泰安环境科技有限公司 一种量子点铋基光催化复合材料、制备方法及应用
CN110449168A (zh) * 2019-08-02 2019-11-15 南京理工大学 空心管状ZnO负载钼酸铋和硫化镉进行协同催化的复合材料及其制备方法
CN110665517A (zh) * 2019-08-02 2020-01-10 南京理工大学 金云母/ZnO负载钼酸铋和硫化镉进行协同催化的复合材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772045A (zh) * 2016-04-18 2016-07-20 河南师范大学 一种BiPO4-ZnFe2O4复合光催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772045A (zh) * 2016-04-18 2016-07-20 河南师范大学 一种BiPO4-ZnFe2O4复合光催化剂及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DEBASMITA KANDI ET AL.: "Modification of BiOI Microplates with CdS QDs for Enhancing Stability, Optical Property, Electronic Behavior toward Rhodamine B Decolorization, and Photocatalytic Hydrogen Evolution", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
PEIFANG WANG ET AL.: "A one-pot method for the preparation of graphene-Bi2MoO6 hybrid photocatalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradation of organic pollutants", 《CARBON》 *
YI FENG ET AL.: "Hydrothermal synthesis of CdS/Bi2MoO6 heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance", 《APPLIED SURFACE SCIENCE》 *
李覃: "硫化镉—石墨烯复合物的可见光催化分解水产氢性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
杨明珠: "《稀土掺杂钇氧化物的发光性能研究》", 30 September 2014, 哈尔滨工程大学出版社 *
杨祥等: "《合成化学简明教程》", 31 March 2016, 中国地质大学出版社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109967098A (zh) * 2017-12-28 2019-07-05 Tcl集团股份有限公司 一种光催化剂及其制备方法与应用
CN108311143A (zh) * 2018-04-11 2018-07-24 刘海洋 一种AgAlO2量子点的制备方法
CN108855138A (zh) * 2018-07-09 2018-11-23 河南师范大学 一种Z型结构Mn0.5Cd0.5S/Ag/Bi2WO6复合型光催化剂及其制备方法
CN109289873A (zh) * 2018-10-29 2019-02-01 江苏大学 一种异质结材料及制备方法和用途
CN109289873B (zh) * 2018-10-29 2021-09-10 江苏大学 一种异质结材料及制备方法和用途
CN110227443A (zh) * 2019-05-07 2019-09-13 江苏诺菲泰安环境科技有限公司 一种量子点铋基光催化复合材料、制备方法及应用
CN110152609A (zh) * 2019-06-12 2019-08-23 常州大学 一种高效石墨烯基铋系纳米复合材料及其制备方法
CN110449168A (zh) * 2019-08-02 2019-11-15 南京理工大学 空心管状ZnO负载钼酸铋和硫化镉进行协同催化的复合材料及其制备方法
CN110665517A (zh) * 2019-08-02 2020-01-10 南京理工大学 金云母/ZnO负载钼酸铋和硫化镉进行协同催化的复合材料及其制备方法
CN110665517B (zh) * 2019-08-02 2022-08-12 南京理工大学 金云母/ZnO负载钼酸铋和硫化镉进行协同催化的复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN107233899A (zh) 一种CdS量子点/Bi2MoO6/石墨烯复合型光催化剂的制备方法
Li et al. MXenes as noble-metal-alternative co-catalysts in photocatalysis
Li et al. Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction
CN107175124A (zh) 一种硫化隔锌固溶体/石墨烯/g‑C3N4复合型光催化剂的制备方法
Fung et al. Recent progress in two-dimensional nanomaterials for photocatalytic carbon dioxide transformation into solar fuels
CN107081166A (zh) 一种g‑C3N4/TiO2多级结构及其制备方法
CN110237834B (zh) 一种碳量子点/氧化锌可见光催化剂的制备方法
CN103962159B (zh) 一种光催化剂及其制备方法和应用
CN106362774B (zh) 一种1D/2D垂直状CdS/MoS2产氢催化剂的制备方法
CN110227453B (zh) 一种AgCl/ZnO/GO复合可见光催化剂的制备方法
CN105664995B (zh) 一种多元素共掺杂纳米二氧化钛光催化材料
CN103349982B (zh) 一种Bi2WO6修饰TiO2纳米带光催化剂、制备方法及其用途
CN105521809B (zh) 一种Cu:ZnO/N:rGO复合光催化剂的制备方法
CN104056620A (zh) 一种可见光催化剂及其制备方法与应用
CN107051545A (zh) 一种纳米二氧化钛/硫化铜纳米复合材料
CN107308929A (zh) 一种石墨烯‑纳米二氧化钛复合物光催化剂的制备方法
CN104289240A (zh) 一种Ag3PO4/BiVO4异质结复合光催化剂的制备方法
CN105817217A (zh) SrTiO3/石墨烯复合催化剂及制备方法和应用
CN107282070A (zh) 一种三维花片状硫铟锌微‑纳米线阵列及其制备方法和应用
CN104607228A (zh) 一种α-Fe2O3量子点/氮掺杂石墨烯复合材料的制备方法
CN105772045B (zh) 一种BiPO4‑ZnFe2O4复合光催化剂及其制备方法
CN107552072A (zh) 一种石墨烯‑CuInS2纳米复合光催化剂
CN109201090A (zh) 碲化铋改性BiOCl形成光响应型花状催化剂的制备方法及其还原固氮产氨的应用
CN111203256A (zh) 一种SnS2/Au/g-C3N4复合光催化剂的制备方法及其应用
Su et al. gC 3 N 4 Derived Materials for Photocatalytic Hydrogen Production: a Mini Review on Design Strategies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171010