CN107216147B - 一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法 - Google Patents

一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107216147B
CN107216147B CN201710593564.4A CN201710593564A CN107216147B CN 107216147 B CN107216147 B CN 107216147B CN 201710593564 A CN201710593564 A CN 201710593564A CN 107216147 B CN107216147 B CN 107216147B
Authority
CN
China
Prior art keywords
ceramic material
field strength
high breakdown
breakdown field
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710593564.4A
Other languages
English (en)
Other versions
CN107216147A (zh
Inventor
晁小练
彭战辉
杨祖培
梁朋飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201710593564.4A priority Critical patent/CN107216147B/zh
Publication of CN107216147A publication Critical patent/CN107216147A/zh
Application granted granted Critical
Publication of CN107216147B publication Critical patent/CN107216147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法,该陶瓷材料由CdCu3ZrxTi4‑xO12表示的材料组成,其中x的取值为0.05~0.20,其是以Cd(NO3)2·4H2O、Cu(NO3)2·3H2O、ZrO(NO3)2·2H2O、Ti(C4H9O)4为原料,冰醋酸为螯合剂,先采用溶胶‑凝胶法制备前驱粉体,并将前驱粉体在较低温度下煅烧,得到能在分子水平上混合且均匀性较好、活性高的CdCu3ZrxTi4‑xO12陶瓷粉体,然后将陶瓷粉体经造粒、压片、排胶、烧结制备而成。本发明陶瓷材料的制备方法简单、反应温度较低、重复性好、成品率高,且陶瓷材料的介电性能优良,具有较高的击穿场强,实用性强,因此在高压电容等领域具有广泛的应用前景。

Description

一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷材料技术领域,具体涉及到一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法。
背景技术
介质材料是国家十三五规划中新型储能材料开发的一类关键材料。电介质电容器结合了传统电容器和电池的优点,避免了电化学超级电容器的缺陷,是一种应用前景广阔的固体电源。相较于电池和电化学超级电容器,电介质电容器具有高的功率密度(比电池高5个数量级)、可实现瞬间充电以及充放电过程不涉及电化学反应,安全可靠等优点,但其储能密度比电池低5个数量级、不利于储能元件的小型化。如何提高电介质电容器储能密度是当前固态超级电容器领域中的研究热点和前沿。对于线性电介质而言其储能密度(γ)取决于相对介电常数ε与介电强度Eb,γ=ε0εEb 2/2,从公式可以看出,获得高介电常数和高介电强度(高击穿场强)是获得高储能密度的前提条件。因此,开发高介电常数(>103)、高击穿场强的介电材料是迫切需要的。
ACu3Ti4O12(A为碱金属或稀土金属或空缺)这一族氧化物是在1967年被发现的,人们对ACu3Ti4O12族氧化物的结构进行了精确的测定,并测量了其介电性能。2002年,Subramanian等人首次报道CdCu3Ti4O12(CdCTO)陶瓷材料,其作为ACu3Ti4O12氧化物陶瓷材料的一种,具有与CaCu3Ti4O12(CCTO)陶瓷相似的结构,但却具有较低的介电常数,10kHz下,相对介电常数为409,介电损耗为0.093。近些年来,虽然一些研究者采用传统固相法获得了较高的介电常数,但其介电损耗依然较高,同时该类材料偏压性能差、击穿电压低,限制了其在储能电容器方面的实际应用,很难广泛应用于电容器、存储器等电子市场中需要的高介电常数的电子器件。
发明内容
本发明所要解决的技术问题在于提供一种具有高击穿场强的钛酸锆铜镉巨介电陶瓷材料,并为其提供一种制备方法。
解决上述技术问题所采用的陶瓷材料由该陶瓷材料由CdCu3ZrxTi4-xO12表示的材料组成,其中x的取值为0.02~0.20,优选x的取值为0.05~0.10。
本发明高击穿场强钛酸锆铜镉巨介电陶瓷材料的制备方法由下述步骤组成:
1、按照CdCu3ZrxTi4-xO12的化学计量比,将Cd(NO3)2·4H2O、Cu(NO3)2·3H2O、ZrO(NO3)2·2H2O加入到无水乙醇与去离子水的混合溶剂中配制成溶液A,将Ti(C4H9O)4加入到无水乙醇中配制成溶液B;将溶液A和溶液B混合,并加入冰醋酸,所得混合液中钛酸丁酯的浓度为0.3~0.7mol/L、冰醋酸的体积分数为2.5%~10%、去离子水的体积分数为5%~15%,在30~75℃下加热并搅拌均匀,得到溶胶,继续搅拌直至溶胶变为凝胶,将凝胶陈化后干燥,得到干凝胶;将干凝胶研磨后,在600~700℃下煅烧8~10小时,得到CdCu3ZrxTi4- xO12陶瓷粉体。
2、将CdCu3ZrxTi4-xO12陶瓷粉体经造粒、压片、排胶后,在980~1000℃烧结10~15小时,得到高击穿场强钛酸锆铜镉巨介电陶瓷材料。
上述步骤1中,优选所得混合液中钛酸丁酯的浓度为0.5mol/L、冰醋酸的体积分数为5%、去离子水的体积分数为10%。
上述步骤1中,进一步优选在40~50℃下加热并搅拌均匀,得到溶胶。
上述步骤1中,更优选将干凝胶研磨后,在650℃下煅烧10小时。
上述步骤2中,优选在990℃下烧结15小时。
本发明以Cd(NO3)2·4H2O、Cu(NO3)2·3H2O、ZrO(NO3)2·2H2O、Ti(C4H9O)4为原料,冰醋酸为螯合剂,先采用溶胶-凝胶法制备前驱粉体,并将前驱粉体在较低温度下煅烧,得到能在分子水平上混合且均匀性较好、活性高的CdCu3ZrxTi4-xO12陶瓷粉体,然后将陶瓷粉体经造粒、压片、排胶、烧结,即可得到高击穿场强钛酸锆铜镉巨介电陶瓷材料。
本发明陶瓷材料的制备方法简单、反应温度较低、重复性好、成品率高,且陶瓷材料的介电性能优良,具有较高的击穿场强,当x=0.05时,即CdCu3Zr0.05Ti3.95O12陶瓷获得较优的介电性能,1kHz下,其相对介电常数为15082,介电损耗为0.07,同时击穿场强高达1530V/cm,有望应用于高储能密度动态随机存储器和高压电容器领域。
附图说明
图1是对比例1和实施例1~3制备的陶瓷材料的XRD图。
图2是对比例1和实施例1~3制备的陶瓷材料的介电常数随测试频率的变化关系图。
图3是对比例1和实施例1~3制备的陶瓷材料的拉曼强度随测试波长的变化关系图。
图4是对比例1和实施例1制备的陶瓷材料工作场强随电流密度的变化关系图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
1、按照CdCu3Zr0.05Ti3.95O12的化学计量比,将3.1159g Cd(NO3)2·4H2O、7.3212g Cu(NO3)2·3H2O、0.1168g ZrO(NO3)2·2H2O加入到10mL无水乙醇与去离子水的混合溶剂中配制成溶液A,将13.6mLTi(C4H9O)4加入到52.4mL无水乙醇中配制成溶液B;将溶液A和溶液B混合,并加入4mL冰醋酸,所得混合液中钛酸丁酯的浓度为0.5mol/L、冰醋酸的体积分数为5.0%、去离子水的体积分数为10%,在45℃下加热并搅拌均匀,得到溶胶,继续搅拌直至溶胶变为凝胶,将凝胶陈化12小时后,在100℃下干燥48小时,得到干凝胶;将干凝胶研磨后,在650℃下煅烧10小时,得到CdCu3Zr0.05Ti3.95O12陶瓷粉体。
2、向CdCu3Ti4O12陶瓷粉体中加入质量分数为5%的聚乙烯醇水溶液,研磨造粒,过120目筛后,用粉末压片机在6MPa压力下压制成11.5mm圆柱形坯件,将圆柱状坯件置于氧化锆平板上,用380分钟升温至500℃,保温2小时,然后以2℃/分钟的升温速率升温至990℃,恒温烧结15小时,随炉冷却至室温,得到高击穿场强钛酸锆铜镉巨介电陶瓷材料。
实施例2
本实施例中,按照CdCu3Zr0.10Ti3.90O12的化学计量比,将3.1159g Cd(NO3)2·4H2O、7.3212g Cu(NO3)2·3H2O、0.2336g ZrO(NO3)2·2H2O加入到10mL无水乙醇与去离子水的混合溶剂中配制成溶液A,将13.4mLTi(C4H9O)4加入到52.6mL无水乙醇中配制成溶液B;其他步骤与实施例1相同,得到高击穿场强钛酸锆铜镉巨介电陶瓷材料。
实施例3
本实施例中,按照CdCu3Zr0.20Ti3.80O12的化学计量比,将3.1159g Cd(NO3)2·4H2O、7.3212g Cu(NO3)2·3H2O、0.4671g ZrO(NO3)2·2H2O加入到10mL无水乙醇与去离子水的混合溶剂中配制成溶液A,将13.1mL Ti(C4H9O)4加入到52.9mL无水乙醇中配制成溶液B;其他步骤与实施例1相同,得到高击穿场强钛酸锆铜镉巨介电陶瓷材料。
对比例1
按照CdCu3Ti4O12的化学计量比,将3.1159g Cd(NO3)2·4H2O、7.3212g Cu(NO3)2·3H2O加入到10mL无水乙醇与去离子水的混合溶剂中配制成溶液A,将13.8mL Ti(C4H9O)4加入到52.2mL无水乙醇中配制成溶液B;其他步骤与实施例1相同,得到钛酸铜镉巨介电陶瓷材料。
分别将上述对比例1和实施例1~3制备的陶瓷材料表面打磨、抛光、超声、搽拭干净,在其上下表面分别涂覆银浆,置于马弗炉中840℃保温30分钟,自然冷却至室温。采用日本理学公司生产的D/max-2200X型射线衍射仪、安捷伦科技有限公司生产的4294A型精密阻抗分析仪、及英国雷尼绍公司生产的显微共焦激光拉曼光谱仪以及美国Radiant生产的铁电测试仪对其结构和性能进行表征测试,结果见图1~4。
由图1可见,对比例1和实施例1~3制备的陶瓷材料均为纯的类钙钛矿结构,无第二相生成。
由图2可见,对比例1和实施例1~3制备的陶瓷材料均呈现良好的巨介电性,在40Hz到100kHz范围内都保持很高的介电常数,其中实施例1即CdCu3Zr0.05Ti3.95O12陶瓷获得较优的介电性能,1kHz下,其相对介电常数为15082,介电损耗为0.07。
由图3可见,对比例1和实施例1~3制备的陶瓷材料在波长274cm-1、442cm-1、510cm-1、575cm-1均出现四个典型的拉曼光谱峰,分别对应于Fg(1)、Ag(1)、Ag(2)的TiO6旋转模式和Fg(3)O-Ti-O的反伸缩振动模式,其结果与XRD一致。
由图4可见,对比例1制备的陶瓷材料即CdCu3Ti4O12陶瓷材料的击穿场强约为1000V/cm,实施例1制备的陶瓷材料即CdCu3Zr0.05Ti3.95O12陶瓷材料击穿场强约为1530V/cm,相对于对比例1明显提高,有望应用于高储能密度动态随机存储器和高压电容器等电子市场应用。

Claims (6)

1.一种高击穿场强钛酸锆铜镉巨介电陶瓷材料,其特征在于:该陶瓷材料由CdCu3ZrxTi4-xO12表示的材料组成,其中x的取值为0.02~0.20;该陶瓷材料由下述方法制备得到:
(1)按照CdCu3ZrxTi4-xO12的化学计量比,将Cd(NO3)2•4H2O、Cu(NO3)2•3H2O、ZrO(NO3)2•2H2O加入到无水乙醇与去离子水的混合溶剂中配制成溶液A,将Ti(C4H9O)4加入到无水乙醇中配制成溶液B;将溶液A和溶液B混合,并加入冰醋酸,所得混合液中钛酸丁酯的浓度为0.3~0.7mol/L、冰醋酸的体积分数为2.5%~10%、去离子水的体积分数为5%~15%,在30~75℃下加热并搅拌均匀,得到溶胶,继续搅拌直至溶胶变为凝胶,将凝胶陈化后干燥,得到干凝胶;将干凝胶研磨后,在600~700℃下煅烧8~10小时,得到CdCu3ZrxTi4-xO12陶瓷粉体;
(2)将CdCu3ZrxTi4-xO12陶瓷粉体经造粒、压片、排胶后,在980~1000℃烧结10~15小时,得到高击穿场强钛酸锆铜镉巨介电陶瓷材料。
2.根据权利要求1所述的高击穿场强钛酸锆铜镉巨介电陶瓷材料,其特征在于:所述x的取值为0.05~0.10。
3.根据权利要求1所述的高击穿场强钛酸锆铜镉巨介电陶瓷材料,其特征在于:步骤(1)中,所得混合液中钛酸丁酯的浓度为0.5mol/L、冰醋酸的体积分数为5%、去离子水的体积分数为10%。
4.根据权利要求1所述的高击穿场强钛酸锆铜镉巨介电陶瓷材料,其特征在于:步骤(1)中,在40~50℃下加热并搅拌均匀,得到溶胶。
5.根据权利要求1所述的高击穿场强钛酸锆铜镉巨介电陶瓷材料,其特征在于:步骤(1)中,将干凝胶研磨后,在650℃下煅烧10小时。
6.根据权利要求1所述的高击穿场强钛酸锆铜镉巨介电陶瓷材料,其特征在于:步骤(2)中,在990℃下烧结15小时。
CN201710593564.4A 2017-07-20 2017-07-20 一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法 Active CN107216147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710593564.4A CN107216147B (zh) 2017-07-20 2017-07-20 一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710593564.4A CN107216147B (zh) 2017-07-20 2017-07-20 一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107216147A CN107216147A (zh) 2017-09-29
CN107216147B true CN107216147B (zh) 2019-10-25

Family

ID=59953178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710593564.4A Active CN107216147B (zh) 2017-07-20 2017-07-20 一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107216147B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159976A (zh) * 2022-07-07 2022-10-11 太原理工大学 一种提高钛酸铜锶钙介电陶瓷材料储能密度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367266A (zh) * 2007-08-14 2009-02-18 通用电气公司 制备超薄聚合物薄膜的方法
CN102701273A (zh) * 2012-05-22 2012-10-03 山东大学 一种纳米钛酸镝粉体的制备方法
CN103204677A (zh) * 2013-03-12 2013-07-17 西北大学 一种高介电性能x8r型陶瓷电容器介质材料及其制备方法
CN103992104A (zh) * 2014-05-13 2014-08-20 陕西师范大学 一种采用溶胶凝胶法制备钛酸铜铋巨介电陶瓷材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331978A (ja) * 2006-06-15 2007-12-27 Shin Etsu Chem Co Ltd 押出成形又は射出成形用の組成物及び成形体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367266A (zh) * 2007-08-14 2009-02-18 通用电气公司 制备超薄聚合物薄膜的方法
CN102701273A (zh) * 2012-05-22 2012-10-03 山东大学 一种纳米钛酸镝粉体的制备方法
CN103204677A (zh) * 2013-03-12 2013-07-17 西北大学 一种高介电性能x8r型陶瓷电容器介质材料及其制备方法
CN103992104A (zh) * 2014-05-13 2014-08-20 陕西师范大学 一种采用溶胶凝胶法制备钛酸铜铋巨介电陶瓷材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Li0.01Cd0.99Cu3Ti4O12巨介电陶瓷制备及介电性能研究";赵楠等;《第八届中国功能材料及其应用学术会议-摘要》;20130823;第1段 *

Also Published As

Publication number Publication date
CN107216147A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
CN102219508B (zh) 镧取代钛酸铜铋钠巨介电陶瓷材料及其制备方法
CN101805185B (zh) 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN104876567B (zh) 高压电系数铌酸钾钠基无铅压电陶瓷及其制备方法
Cui et al. Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method
CN106986634A (zh) 一种锆钛酸钡钙基压电陶瓷及其制备方法
CN101318817A (zh) 制备锆钛酸钡陶瓷材料的方法
CN105732021A (zh) 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN106187168A (zh) 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法
CN109553411A (zh) 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法
CN107216147B (zh) 一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法
CN107827452A (zh) 一种利用空气淬火降低钛酸铜钙陶瓷损耗的方法
CN104914077A (zh) 一种基于上转换发光表征钛酸锶钡陶瓷居里温度的方法
CN106565234A (zh) 一种超高介电常数介电材料及其制备方法
CN107216142B (zh) 一种高热稳定性钛酸铜镉x8r陶瓷材料
CN109456055A (zh) 一种高击穿高极化钛酸铋钠陶瓷材料、制备方法及应用
CN108863349A (zh) 一种钛酸钡基无铅高介温度稳定型陶瓷材料及其制备方法
CN107188559B (zh) 一种高击穿场强和储能密度二氧化硅掺杂钛酸铜镉巨介电陶瓷材料及制备方法
CN107188558B (zh) 一种高储能密度氧化铝掺杂钛酸铜镉巨介电陶瓷材料及其制备方法
JPWO2018088424A1 (ja) リチウム含有リン酸ジルコニウム、並びに、その仮焼粉末及び焼結体の製造方法
CN101823876B (zh) 用于温度稳定型多层陶瓷电容器瓷料及其制备方法
CN101050112B (zh) 稀土掺杂钛酸钡电子功能陶瓷的制备方法
Mathews et al. A rapid combustion synthesis of MgO stabilized Sr-and Ba-β-alumina and their microwave sintering
CN105884352A (zh) 一种新型陶瓷电容器材料Ba4RFe0.5Nb9.5O30(R=La,Eu,Gd)及其制备方法
CN101767819B (zh) BaTi2O5纳米线的制备方法
CN114314648A (zh) 充放电阶段具有电化学振荡现象的钛酸锂材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant