CN109553411A - 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法 - Google Patents
一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN109553411A CN109553411A CN201910095081.0A CN201910095081A CN109553411A CN 109553411 A CN109553411 A CN 109553411A CN 201910095081 A CN201910095081 A CN 201910095081A CN 109553411 A CN109553411 A CN 109553411A
- Authority
- CN
- China
- Prior art keywords
- cscto
- dielectric ceramic
- ceramic material
- field strength
- nitrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明公开一种高击穿场强钛酸铜锶钙(CSCTO)介电陶瓷材料及其制备方法。本陶瓷材料的组成为Ca1‑xSrxCu3Ti4O12(0<x<1)。CSCTO粉体用溶胶凝胶法合成。具体工艺为:以硝酸铜、硝酸钙、硝酸锶、钛酸四丁酯为原料,按照各化学元素的计量比进行称量配料;以无水乙醇为溶剂;调节溶液的pH值为3~5;将上述溶胶置于水浴锅中,不断搅拌至形成干凝胶;利用电炉和马弗炉除去干凝胶中的有机物,形成CSCTO前驱体粉末;之后进行加胶、研磨、造粒、压片,制成陶瓷胚体,再把胚体放入马弗炉内烧结;在炉内自然冷却至室温,得到CSCTO介电陶瓷。该CSCTO陶瓷的击穿场强可提高至52.50 kV/cm,在高压电容等领域具有广泛的应用前景。
Description
技术领域
本发明属于电介质陶瓷合成技术领域,具体涉及一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法。
背景技术
目前,随着电子技术对器件高集成度和高可靠性要求的进一步提高,高介电常数材料成为人们关注的热点。钛酸铜钙(CaCu3Ti4O12,简称CCTO)为钙钛矿立方晶系结构,是近年来最具有代表性的新型高介电常数材料,该材料的介电常数高达到104~105,在很宽的温度和频率范围内保持稳定,且CCTO不会出现铁电-顺电相变;另外,CCTO制备工艺简单,烧结温度不高,具有工业化生产的潜在优势。良好的综合性能,使CCTO很有希望替代传统的介电陶瓷材料,在高密度能量存储、高介电电容器等一系列高新技术领域中具有很好的应用前景。
目前,国内外的许多研究结果表明:室温下,CCTO的击穿场强较低,普遍在2 kV/cm以下。(B. Cheng, Y.H. Lin, W. Deng, J.N. Cai, J.L. Lan, C.W. Nan, X. Xiao,J.L. He, Dielectric and nonlinear electrical behaviors of Ce-doped CaCu3Ti4O12ceramics, J Electroceram (2012) 29:250-253.)。国内外的学者的相关研究中,一种钛酸锆铜镉巨介电陶瓷材料CdCu3Zr0.05Ti3.95O12的击穿场强达到1530 V/cm,同时1 kHz下,其相对介电常数为15082 (晁小练,彭战辉,杨祖培,梁朋飞.一种高击穿场强钛酸锆铜镉巨介电陶瓷材料及其制备方法:中国, 201710593564.4 [P].2017.09.29.)。另外,一种双钙钛矿复相陶瓷Y2x/3Ca1-xCu3Ti4O12的击穿场强达到了11.24 kV/cm(J.Y. Li, K.N. Wu, R.Jia, L.L. Hou, L. Gao, S.T. Li, Towards enhanced varistor property and lowerdielectric loss of CaCu3Ti4O12 based ceramics, Mater. Des. (2016) 92:546-551.)。而固相烧结法制备的Ca0.5Sr0.5Cu3Ti4O12陶瓷的击穿场强达到了24.52 kV/cm,但其介电常数1kHz下大幅度下降至1000以下 (Z. Tang, Y. Huang, K.N. Wu, J.Y. Li,Significantly enhanced breakdown field in Ca1-xSrxCu3Ti4O12 ceramics bytailoring donor densities, J. Eur. Ceram. Soc. (2018) 38:1569-1575. )。
然而,在实际应用中,电介质材料的击穿场强一般需要控制在10 kV/cm以上。过低的击穿场强必然会限制CCTO陶瓷的应用范围,严重制约CCTO 陶瓷的应用前景。因此,在保持高介电常数的同时,如何有效地提高击穿场强成为目前CCTO材料研究领域一个亟待解决的问题。
发明内容
针对上述现有CCTO产品击穿场强较低的技术问题,本发明提供了一种高击穿场强钛酸铜锶钙(CSCTO)介电陶瓷材料,并且提供了该CSCTO介电陶瓷的制备方法,可在保持介电常数仍处于较高水平时,显著提高CCTO陶瓷的击穿场强。
为达到以上目的,本发明是采取如下技术方案予以实现:
(1) 一种高击穿场强CSCTO巨介电陶瓷材料,其化学式为Ca1-xSrxCu3Ti4O12,其中0<x<1。优选的,0.3≤x≤0.6。更优选的,x=0.5。
(2) 上述CSCTO材料的制备步骤为:
A.CSCTO陶瓷前驱体粉末的制备。根据Ca1-xSrxCu3Ti4O12的化学计量比称取硝酸铜、硝酸钙、硝酸锶与柠檬酸等原料,倒入无水乙醇中,不断搅拌使原料充分溶解,形成A溶液。将钛酸四丁酯倒入无水乙醇中,不断搅拌使其充分溶解,形成B溶液。保持A溶液不断搅拌的同时,将B溶液缓慢倒入A溶液中,形成溶胶。将聚乙二醇加入到溶胶中,搅拌至完全溶解;把溶液放入恒温80 ℃的水浴锅中不断搅拌,加入氨水调节溶液的pH值为3~5,后使之形成凝胶。将凝胶放入到蒸发皿中,用电炉对其进行去除有机物处理,形成CSCTO陶瓷前驱体粉末;所述柠檬酸物质的量为硝酸铜、硝酸钙、硝酸锶和钛酸四丁酯中金属阳离子(Ca2+、Cu2+、Ti4+,Sr2+)摩尔数之和。经试验测量,前述氨水调节溶液pH值下的CSCTO陶瓷具有最小损耗。柠檬酸的用量是经过大量实验总结出的,确保CSCTO陶瓷具有较高的击穿场强;柠檬酸不足或者过量均可导致CSCTO陶瓷击穿场强下降。
B. CSCTO陶瓷的制备。把前驱体粉末倒入玛瑙研钵中,并加入前驱体粉末3%质量的PVA粘合剂,充分研磨,过筛造粒,后放入干燥箱中干燥。称取制得的适量粉末放入模具中压片,制得CSCTO陶瓷胚体。陶瓷胚体放入马弗炉中,在1000~1100 ℃保温烧结。烧结结束后,在炉内自然冷却至室温。所述烧结温度既能使得晶粒开始均匀生长,又不会使得晶粒过度长大或者熔融。
本发明采用溶胶凝胶法制备与CCTO结构及性能相近的CSCTO介电陶瓷,制备方法操作简单、重复性好、成品率高,且所制备的CSCTO陶瓷的击穿场强可提高至11~52 kV/cm,同时室温下介电常数在1kHz时为3900~6200,具有高击穿场强与高介电常数的特点,综合性能优良,可以实现电容元器件的小型化,也可以用于过电压保护装置,在高压电容等领域具有广泛的应用前景。
附图说明
图1为不同配比的CSCTO介电陶瓷试样的XRD图;
图2为不同配比的CSCTO介电陶瓷试样的J-E曲线;
图3为不同配比的CSCTO介电陶瓷试样的介电常数频谱图;
图4为不同配比的CSCTO介电陶瓷试样的介电损耗频谱图。
具体实施方式
下面结合具体实施方式对本发明进一步说明。下述说明仅仅是实例性的,而不限制本发明的范围。
实施例1
根据Ca1-xSrxCu3Ti4O12中,x取值0.3,称取硝酸钙、硝酸锶、硝酸铜、柠檬酸分别为6.6790 g、2.5398 g、29.2848 g、67.5827 g,将其倒入装有300 ml无水乙醇的烧杯中,不断搅拌使其充分溶解,形成A液。用烧杯称取55.0012 g钛酸四丁酯,然后向此烧杯中加入100ml的无水乙醇,搅拌使其充分溶解,形成B液。在不断搅拌A液的同时,沿着玻璃棒缓慢加入B液,形成溶胶;待其混合均匀后,加入1.8 ml的聚乙二醇;然后把溶胶放到80 ℃的水浴锅中,保持搅拌棒150~200 rpm进行搅拌,形成凝胶。在此期间加入氨水调节溶液的pH值为3~5。把凝胶倒入蒸发皿中再放到电炉上保持300~400 ℃除去凝胶中的有机物;然后再放入到马弗炉中750 ℃高温预烧2 h,形成CSCTO陶瓷前驱体粉末。
把CSCTO陶瓷前驱体粉末放入玛瑙研钵中,并加入前驱体粉末3%质量的PVA粘合剂,研磨2~3 h,再把其过120目筛,最后将其放入120℃干燥箱中干燥10 min;称取3.2 g粉体放入模具中,用300 MPa压强压制成圆片。把压好的圆片放入马弗炉中内,先以2 ℃/min的升温速率上升到100 ℃保温10 min进行除湿干燥,然后以5 ℃/min的升温速率上升到600 ℃保温1 h进行排胶,最后以10 ℃/min的升温速率上升到1050 ℃保温12 h进行烧结。烧结结束后,在炉内自然冷却至室温,得到CSCTO陶瓷。
在烧结好的CSCTO陶瓷样品表面涂上银浆,然后在马弗炉内500℃保温0.5 h完成镀银,最后进行介电性能的测量。得到了高击穿场强CSCTO介电陶瓷材料,其击穿场强可提高至11.50 kV/cm,同时室温下介电常数在1kHz时为6200。如表1所示。
实施例2
根据Ca1-xSrxCu3Ti4O12中,x取值0.4,称取硝酸钙、硝酸锶、硝酸铜、柠檬酸分别为5.7248 g、3.3864 g、29.2848 g、67.5827 g,其他步骤与实施例1相同,得到高击穿场强CSCTO介电陶瓷材料,其击穿场强可提高至26.00 kV/cm,同时室温下介电常数在1kHz时为4892。如表1所示。
实施例3
根据Ca1-xSrxCu3Ti4O12中,x取值0.5,称取硝酸钙、硝酸锶、硝酸铜、柠檬酸分别为4.7707g、4.2330 g、29.2848 g、67.5827 g,其他步骤与实施例1相同,得到高击穿场强CSCTO介电陶瓷材料,其击穿场强可提高至52.50 kV/cm,同时室温下介电常数在1kHz时为3902。如表1所示。
实施例4
根据Ca1-xSrxCu3Ti4O12中,x取值0.6,称取硝酸钙、硝酸锶、硝酸铜、柠檬酸分别为3.8166g、5.0796 g、29.2848g、67.5827g,其他步骤与实施例1相同,得到高击穿场强CSCTO介电陶瓷材料,其击穿场强可提高至91.40 kV/cm,同时室温下介电常数在1kHz时为2045。如表1所示。
。
Claims (5)
1.一种高击穿场强钛酸铜锶钙介电陶瓷材料,其特征在于,其化学式为:Ca1- xSrxCu3Ti4O12,其中0<x<1。
2.如权利要求1所述的一种高击穿场强钛酸铜锶钙介电陶瓷材料,其特征在于,0.3≤x≤0.6。
3.如权利要求2所述的一种高击穿场强钛酸铜锶钙介电陶瓷材料,其特征在于,x=0.5。
4.一种高击穿场强钛酸铜锶钙介电陶瓷材料的制备方法,用于制备如权利要求1~3任一项所述的高击穿场强钛酸铜锶钙介电陶瓷材料,其特征在于,所述制备方法具体包括以下步骤:
(1)根据Ca1-xSrxCu3Ti4O12的化学计量比称取硝酸铜、硝酸钙、硝酸锶与柠檬酸原料,倒入无水乙醇中,不断搅拌使其充分溶解,形成A溶液;将钛酸四丁酯倒入无水乙醇中,不断搅拌使其溶解均匀,形成B溶液;保持A溶液不断搅拌的同时,将B溶液缓慢倒入A溶液中,形成溶胶;将聚乙二醇加入到溶胶中,搅拌至完全溶解;把溶液放入恒温水浴锅中不断搅拌,加入氨水调节溶液的pH值为3~5,使之形成凝胶;将凝胶放入到蒸发皿中,用电炉对其进行去除有机物处理,再用马弗炉进行高温预烧,形成CSCTO陶瓷前驱体粉末;所述柠檬酸物质的量为硝酸铜、硝酸钙、硝酸锶和钛酸四丁酯中金属阳离子摩尔数之和;
(2)把前驱体粉末倒入玛瑙研钵中,并加入前驱体粉末3%质量的PVA粘合剂,充分研磨,过筛造粒,后放入干燥箱中干燥;称取制得的适量粉末放入模具中压片,制得CSCTO陶瓷胚体;陶瓷胚体放入马弗炉中在1000~1100 ℃进行烧结;在烧结结束后,在炉内自然冷却至室温,得到Ca1-xSrxCu3Ti4O12(0<x<1)介电陶瓷。
5.如权利要求4所述的一种高击穿场强钛酸铜锶钙介电陶瓷材料的制备方法,其特征在于,步骤(1)中将凝胶放入到蒸发皿中,用电炉保持300~400 ℃对其进行去除有机物处理,再放到马弗炉进行750 ℃高温预烧2 h,形成CSCTO陶瓷前驱体粉末;
步骤(2)中研磨2~3 h,再把研磨产物过120目筛,最后将过筛后的粉体放入120℃干燥箱中干燥10 min;称取适量粉体放入模具中,用300 MPa压强压制成圆片;把压好的圆片放入马弗炉中内,先以2 ℃/min的升温速率上升到100 ℃保温10 min进行除湿干燥,然后以5℃/min的升温速率上升到600 ℃保温1 h进行排胶,最后以10 ℃/min的升温速率上升到1050 ℃保温12 h进行烧结。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910095081.0A CN109553411B (zh) | 2019-01-31 | 2019-01-31 | 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910095081.0A CN109553411B (zh) | 2019-01-31 | 2019-01-31 | 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109553411A true CN109553411A (zh) | 2019-04-02 |
CN109553411B CN109553411B (zh) | 2021-06-25 |
Family
ID=65874077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910095081.0A Active CN109553411B (zh) | 2019-01-31 | 2019-01-31 | 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109553411B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113800901A (zh) * | 2021-09-30 | 2021-12-17 | 太原理工大学 | 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法 |
CN115159976A (zh) * | 2022-07-07 | 2022-10-11 | 太原理工大学 | 一种提高钛酸铜锶钙介电陶瓷材料储能密度的方法 |
CN115231917A (zh) * | 2022-08-11 | 2022-10-25 | 郑州轻工业大学 | 一种高介电性能的钛酸铜钙薄膜及其制备方法 |
CN116063067A (zh) * | 2023-01-16 | 2023-05-05 | 南昌航空大学 | 一种多主元素巨介电陶瓷材料及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06243725A (ja) * | 1993-02-18 | 1994-09-02 | Tdk Corp | 誘電体磁器組成物および複合電子部品 |
CN107759216A (zh) * | 2017-11-03 | 2018-03-06 | 太原理工大学 | 一种溶胶‑凝胶法制备锰酸锶镧/钛酸铜钙复合磁电陶瓷材料的方法 |
-
2019
- 2019-01-31 CN CN201910095081.0A patent/CN109553411B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06243725A (ja) * | 1993-02-18 | 1994-09-02 | Tdk Corp | 誘電体磁器組成物および複合電子部品 |
CN107759216A (zh) * | 2017-11-03 | 2018-03-06 | 太原理工大学 | 一种溶胶‑凝胶法制备锰酸锶镧/钛酸铜钙复合磁电陶瓷材料的方法 |
Non-Patent Citations (2)
Title |
---|
TAO LI ET AL.: "Effect of defect on the nonlinear and dielectric property of Ca(1–x)SrxCu3Ti4O12 ceramics synthesized by sol–gel process", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
ZHUANG TANG ET AL.: "Significantly enhanced breakdown field in Ca1-xSrxCu3Ti4O12 ceramics by tailoring donor densities", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113800901A (zh) * | 2021-09-30 | 2021-12-17 | 太原理工大学 | 低温环境下低损耗钛酸铜镧钙介电陶瓷材料及其制备方法 |
CN115159976A (zh) * | 2022-07-07 | 2022-10-11 | 太原理工大学 | 一种提高钛酸铜锶钙介电陶瓷材料储能密度的方法 |
CN115231917A (zh) * | 2022-08-11 | 2022-10-25 | 郑州轻工业大学 | 一种高介电性能的钛酸铜钙薄膜及其制备方法 |
CN116063067A (zh) * | 2023-01-16 | 2023-05-05 | 南昌航空大学 | 一种多主元素巨介电陶瓷材料及其制备方法和应用 |
CN116063067B (zh) * | 2023-01-16 | 2023-10-27 | 南昌航空大学 | 一种多主元素巨介电陶瓷材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN109553411B (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109553411A (zh) | 一种高击穿场强钛酸铜锶钙介电陶瓷材料及其制备方法 | |
CN102219508B (zh) | 镧取代钛酸铜铋钠巨介电陶瓷材料及其制备方法 | |
CN101805185B (zh) | 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法 | |
CN108558399A (zh) | 一种低温烧结高介电性能y5v型陶瓷电容器介质材料及其制备方法 | |
CN105130421A (zh) | 一种Ti位高价取代SrTiO3基巨介电陶瓷及其制备方法 | |
CN105801112A (zh) | Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法 | |
CN107573058A (zh) | 一种基于溶胶凝胶法制备钛酸铜镧铋钠介电材料的方法 | |
CN106882963A (zh) | 一种基于溶胶凝胶法制备钛酸铜钙的方法 | |
CN109776089A (zh) | 一种钛酸铜钙基陶瓷材料及其制备方法 | |
CN103396117A (zh) | 一种低温烧结钛酸锶储能介质陶瓷材料及其制备方法 | |
CN107827452A (zh) | 一种利用空气淬火降低钛酸铜钙陶瓷损耗的方法 | |
CN104098330B (zh) | 采用后退火工艺制备高性能钛酸锶钡热释电陶瓷的方法 | |
CN106565234A (zh) | 一种超高介电常数介电材料及其制备方法 | |
CN108002836B (zh) | 中介电常数微波介电陶瓷材料及其制备方法 | |
CN107827451B (zh) | 一种利用水淬火降低钛酸铜钙陶瓷损耗的方法 | |
CN106747421B (zh) | 一种水热法合成晶界层陶瓷电容器用粉体的方法 | |
CN103922733A (zh) | 一种低温烧结高调谐率钛酸锶钡陶瓷的制备方法 | |
CN102060526A (zh) | 一种锰和钇双掺杂钛酸锶钡陶瓷材料的制备方法 | |
CN113880576A (zh) | 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法 | |
CN105272215A (zh) | 一种钛酸锶钡陶瓷的制备方法 | |
CN113045307A (zh) | 一种高介电低损耗钛酸钡基陶瓷及其制备方法 | |
CN107382314A (zh) | 一种钡基复合钙钛矿结构的微波介质陶瓷 | |
CN100415414C (zh) | 用于制备高精度热敏电阻的纳米粉体 | |
CN105254295A (zh) | 一种钕掺杂钛酸钡纳米陶瓷粉体的制备方法 | |
CN105060888A (zh) | 一种氧化铝掺杂制备低损耗稳定铌酸钕陶瓷 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |