CN107210430B - 由阳离子空位稳定的纳米级锐钛矿晶格、其生产方法及其用途 - Google Patents

由阳离子空位稳定的纳米级锐钛矿晶格、其生产方法及其用途 Download PDF

Info

Publication number
CN107210430B
CN107210430B CN201580062283.5A CN201580062283A CN107210430B CN 107210430 B CN107210430 B CN 107210430B CN 201580062283 A CN201580062283 A CN 201580062283A CN 107210430 B CN107210430 B CN 107210430B
Authority
CN
China
Prior art keywords
titanium
based compound
temperature
organic solvent
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580062283.5A
Other languages
English (en)
Other versions
CN107210430A (zh
Inventor
D·当布尔内
W·李
H·格鲁
S·勒克莱尔
C·朱利安
K·扎吉布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quebec Power Co
Centre National de la Recherche Scientifique CNRS
Universite Pierre et Marie Curie Paris 6
Original Assignee
Quebec Power Co
Centre National de la Recherche Scientifique CNRS
Universite Pierre et Marie Curie Paris 6
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quebec Power Co, Centre National de la Recherche Scientifique CNRS, Universite Pierre et Marie Curie Paris 6 filed Critical Quebec Power Co
Publication of CN107210430A publication Critical patent/CN107210430A/zh
Application granted granted Critical
Publication of CN107210430B publication Critical patent/CN107210430B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种制备具有锐钛矿型结构的含钛化合物的方法,所述含钛化合物具有由氟原子和羟基部分取代氧原子而产生的阳离子空位。本发明还涉及用于锂离子电池电极的包含钛基化合物的电化学活性材料。

Description

由阳离子空位稳定的纳米级锐钛矿晶格、其生产方法及其 用途
优先权申请
本申请根据适用的法律要求于2014年11月20日提交的美国临时申请号62/082,345的优先权,其全部内容通过引用并入本文用于所有目的。
技术领域
本发明涉及一种化学方法,其允许通过由氟原子和/或羟基部分取代氧制备含有可控量的阳离子空位的纳米尺寸锐钛矿颗粒,本发明还涉及它们在锂电池电极中的用途。
背景技术
能源供应是21世纪最大的挑战之一。随之而来的气候变化和未来的化石燃料供应有限推动使用清洁能源。预计电化学储能在我们的能源脱碳中起主要作用。作为能够通过电化学反应储存能量的电化学装置的电池被认为是响应未来社会挑战的最有希望的技术之一,例如电力运输和固定储能系统,其可以用于例如支持风力或太阳能源。
对于负电极,由于安全性考量和差的倍率容量(rate capability),碳质电极的使用受到限制。相反,钛基化合物被认为是锂电池中安全负电极的有力候选者。实际上,这类材料的工作电压位于电解质稳定区域内,即>0.8V。这给电池提供了改进的安全特性,以及期望的不存在热不稳定的固体-电解质-界面(SEI)层以及阳极上的锂镀层。
钛基化合物的另一个有趣的特征是它们能够维持高放电/充电速率,这对于诸如电动车辆的大功率应用来说是必需的。通常用于实现增强的倍率容量的一种方法是减小颗粒尺寸。弥补方法包括通过离子取代改变结构排列。
在二氧化钛族中,锐钛矿(四方晶格,空间群:I41/amd)形式由于其特殊的性质而被广泛研究。基于Ti4+/Ti3+氧化还原对,可以实现335mAh/g的容量。锐钛矿结构由通过边缘共享连接的TiO6八面体单元构建。这种三维结构显示适合于通过可逆的一级转变(即从四方到正交系统)进行的锂嵌入的空位。该相变行为的特征在于电位-容量曲线中的平台区。然而,在实际应用中,优选在整个锂组成范围内的固溶体性质。实际上,与一级转变材料相比,这通常允许避免高速率的成核过程并且更容易监测电池的充电状态。
发明内容
根据一个方面,本发明涉及一种制备具有锐钛矿型结构的钛基化合物的方法,所述钛基化合物具有由氟原子和羟基部分取代氧原子而产生的阳离子空位。例如,该方法包括以下步骤:
a)制备含有钛前体、氟化剂和溶剂的溶液;和
b)沉淀具有化学通式Ti1-x-yx+yF4x(OH)4yO2-4(x+y)的钛基化合物,其中□表示阳离子空位,其中x和y是数字,使得0.01≤(x+y)<0.5,或使得0.04≤(x+y)<0.5。
在一个实施方案中,钛前体选自C2-C10醇钛和四氯化钛。在另一个实施方案中,所述氟化剂是提供氟阴离子的试剂,优选氟化氢(HF)、氟化铵(NH4F)或二氟化氢铵(NH4HF2)。在另一个实施方案中,步骤(a)的溶液中的溶剂是有机溶剂或有机溶剂和水的混合物,例如,其中有机溶剂是主要组分的混合物,例如含有痕量水的有机溶剂。例如,有机溶剂选自C1-C10醇(如甲醇,乙醇,异丙醇,丁醇和辛醇)、二烷基酮(例如丙酮)、醚、酯或其组合。
在一个实施方案中,该方法的步骤(b)还包括热处理(例如在密封容器中),所述热处理包括例如在约50℃至约220℃,或约90℃至约160℃范围内的温度下加热步骤(b)的溶液。根据一个实施方案,通过调节热处理的温度来控制阳离子空位(□)的程度。
本发明还涉及以下化学通式的钛基化合物:
Ti1-x-yx+yF4x(OH)4yO2-4(x+y)
其中,
□代表阳离子空位;和
x和y是数字,并且符合公式0.01≤(x+y)<0.5或符合公式0.04≤(x+y)<0.5。
在一个实施方案中,根据本发明的方法制备钛基化合物。在另一个实施方案中,钛基化合物为Ti0.780.22F0.4(OH)0.48O1.12
本发明还涉及一种电化学活性材料,其包含根据本发明的方法制备的钛基化合物或本文定义的钛基化合物,本发明还涉及包含电化学活性材料和集电体的电极,以及涉及包含这些的锂离子电池。
通过参考附图阅读下面的描述,将更好地理解本发明的其它特征和优点。
附图说明
图1示出了根据实施例1制备的相的X射线粉末衍射图。使用锐钛矿网络特征的四方对称性对图案进行索引。
图2示出了从根据实施例1制备的相获得的高分辨率透射电子显微照片(TEM)。
图3示出了从根据实施例1制备的相获得的Ti2p XPS核心光谱。
图4示出了根据实施例1制备的相的19F幻角自旋NMR波谱。
图5示出了Ti1-x-yx+yO2-4(x+y)F4x(OH)4y的合成温度和化学组成之间的相关性。通过衍射数据的结构分析确定Ti(4a)位占有率。
图6示出了在20mA/g下在1和3V之间循环的Li/Ti0.780.22F0.40(OH)0.48O1.12电池的电位vs容量。插入图:Li/TiO2电池的电压分布。
图7示出了通过恒电流间歇滴定技术获得的准平衡电压。将Li/Ti0.780.22F0.40(OH)0.48O1.12电池以C/10(33.5mA/g)的C速率间歇地放电20分钟,然后弛豫20小时。x轴是指插入Ti0.780.22F0.40(OH)0.48O1.12电极中的Li离子数。
图8示出了Li/Ti0.780.22F0.40(OH)0.48O1.12电池的倍率容量。为了比较的目的,还示出了在335mA/g下获得的Li/TiO2电池的数据。
具体实施方式
本发明涉及制备具有由氟/羟基取代氧而产生的阳离子空位的具有锐钛矿型结构的钛基化合物的方法。阳离子空位的程度可以通过在锐钛矿网络内取代氧的氟/OH基团的量来控制。制备的化合物的化学通式为Ti1-x-yx+yF4x(OH)4yO2-4(x+y),其中□表示阳离子空位,x和y为使它们的和在0.01至0.5之间,或在0.04和0.5之间,排除上限。
网络中阳离子空位的存在提供了额外的空位,以容纳锂离子并增加离子迁移率,因此潜在地有助于实现更高的能量/功率密度。
本发明还涉及使用本文制备的钛基化合物作为具有结构排列/化学式的电极的电化学电池,其能够实现有助于可获得的高功率和高能量密度的锂储存机构。在锂电池中作为负电极测试时,通过控制化学组成对结构排列进行的改进引起电化学响应的变化。实际上,网络中阳离子空位和氟原子的出现在锂嵌入时诱发可逆的固溶体行为,而不是对化学计量的TiO2锐钛矿观察到的可逆的一级转变。另外,当用作电极时,与纯TiO2相比,可以用本材料实现倍率容量方面的显著改善,适用于大功率应用。
本发明公开了一种制备具有由氟和羟基部分取代氧而产生的阳离子空位的锐钛矿型结构的钛基化合物的方法,以及它们在用于锂离子电池的负电极中的用途。
在一些实施方案中,本申请描述了使用但不限于以下步骤的制备方法:
a)制备含有钛前体和氟化剂的溶液;和
b)沉淀具有化学通式Ti1-x-yx+yO2-4(x+y)F4x(OH)4y的钛基化合物,其中□表示阳离子空位,其中x和y是数字,使得0.01≤(x+y)<0.5,或使得0.04≤(x+y)<0.5,例如0.1≤(x+y)<0.3,其中x不能为零。
例如,步骤(a)的钛前体选自C2-C10醇钛和氯化钛。例如,C2-C10醇钛可以选自乙醇钛,丙醇钛,异丙醇钛和/或丁醇钛。氟化剂是作为氟阴离子源的试剂,包括但不限于氟化氢(HF)、氟化铵(NH4F)和二氟化氢铵(NH4HF2)。氟化剂可以是溶液的形式,例如水溶液,例如浓缩的氢氟酸溶液。例如,在步骤(a)的溶液中使用的溶剂是有机溶剂或有机溶剂和水的混合物。有机溶剂选自C1-C10醇、二烷基酮(例如丙酮)、醚和酯。C1-C10醇的例子包括甲醇、乙醇、异丙醇、丁醇和辛醇。
在一个实施方案中,使用含有醇钛、醇和氟离子源的溶液。氟和钛的摩尔比优选为0.1至4,优选摩尔比为2.0。通常,制备包含醇钛、氟化物和有机溶剂的溶液,然后在密封容器(例如,特氟龙衬里的密封容器)中转移。然后将密封容器放置在烘箱中并经受例如在约50℃至约200℃或约90℃至约160℃范围内的温度,或将温度设定至约90℃。热处理的持续时间优选为1至300小时,优选约12小时。过滤后,将沉淀物洗涤并在50至400℃,优选150℃的温度下除气过夜。
通过根据本申请的制备方法,为了示例目的制备了具有不同化学组成的几种氟化的锐钛矿化合物。为了比较,通过在空气气氛下在450℃下热处理氟化的化合物4小时来制备无氟化合物。
实施例
如下非限制性的实施例说明了本发明。参照附图也将更好地理解这些实施例和本发明。
实施例1
通过在密封容器中在90℃下将在25mL异丙醇中含有13.5mmol异丙醇钛(4mL)和27mmol HF(40%)水溶液的溶液处理12小时,得到氟化的锐钛矿。图1示出了根据本实施例获得的样品上记录的X射线粉末衍射图(CuKα)。相应的图案使用具有I41/amd空间群的四方结构(这是锐钛矿网络的特征)进行索引。样品结晶良好,观察到显著的X射线增宽,表明小的相干域。
高分辨率透射电子显微镜(图2)显示,固体的形态由粒径为5至8nm的颗粒的附聚物组成。另外,hkl依赖性X射线增宽和HRTEM指示形成小面晶体,即片晶,与最近的文章(H.G.Yang等,2008,Nature,453卷,638-641页)一致,其中突出显示氟原子在稳定亚稳态表面中的作用。根据本实施例制备的样品上的由氮吸附测定的比表面积为约180m2/g。
使用X射线光电子能谱法测定样品中钛的氧化态。图3表示Ti 2p3/2核位于458,9eV的Ti2p XPS核光谱,是四价钛的特征。
使用氟核(19F)的固态核磁共振评估制备的样品中的氟原子含量。使用参照物(NaF)进行F/Ti摩尔比的估计,并得到0.5的比率。样品的化学组成为Ti0.780.22F0.4(OH)0.48O1.12。为了解析的目的,在19F MAS NMR波谱(图4)中观察到的三个信号被归类到氟在锐钛矿网络内的各种配位模式。以-85ppm为中心的峰归类为与三个钛离子配位的氟。位于0ppm附近的最强峰是桥接氟的特征,因此归因于位于一个空位附近的氟离子。最后,在大约90ppm处检测到的宽信号被归类为位于两个空位附近的氟离子,即1倍配位的。从相对强度来看的结论是,氟离子优先采用2倍配位,即与一个空位相邻。
进一步使用同步加速器衍射以获得样品的晶体学数据。将结果与无氟TiO2化合物的结果进行比较,总结在表1中。
表1.通过衍射数据分析获得的结构参数。
Figure BDA0001296587080000061
两种化合物都显示出相近的单元晶胞参数和原子间距离值。优化无氟TiO2占有率得到100%的占有率,从而确认化学计量组成。另一方面,氟化的化合物显示出78%的Ti(4a)占有率。因此,包括热和元素分析的各种技术的组合允许确定本实施例中制备的样品的化学组成为Ti0.780.22F0.4(OH)0.48O1.12
实施例2
Ti1-x-yx+yF4x(OH)4yO2-4(x+y)中阳离子空位的含量可以合成控制。通过在实施例1的条件下微调反应温度获得各种阳离子浓度。将在25mL异丙醇中含有13.5mmol异丙醇钛(4mL)和27mmol HF(40%)水溶液的溶液置于密封容器中,在90至160℃的不同温度下处理12小时。通过衍射数据分析确定制备的样品的阳离子空位含量。图5中示出的结果显示阳离子含量随反应温度的变化而线性变化。
实施例3
在Li/Ti0.780.22F0.4(OH)0.48O1.12电池中测试根据实施例1制备的Ti0.780.22F0.4(OH)0.48O1.12。电化学电池由正电极、负电极和非水电解质构成。正电极由涂布在铜箔上的80重量%Ti0.780.22F0.88O1.12粉末、10重量%碳和10重量%PVDF粘结剂的混合物组成。负电极为金属锂并作为参照物。使用LP30商业溶液作为非水电解质。它含有溶解在碳酸亚乙酯(EC)和碳酸二甲酯(DMC)溶剂的混合物中的LiPF6
图6示出了对于三个第一循环,在20mA/g下的Li/Ti0.780.22F0.4(OH)0.48O1.12电池的电势对容量曲线。电压窗设置在1至3V之间。第一次放电容量远超过理论容量,达到490mAh/g。在充电时观察到大的不可逆容量,充电容量达230mAh/g。对纳米级钛基材料通常观察到这种现象,并且归因于与表面物种(H2O、OH基团等)反应的锂。这里最引人注目的一点是放电(还原)和充电(氧化)曲线的形状表现出电位对容量的连续演化,这表明氟化锐钛矿Ti0.780.22F0.4(OH)0.48O1.12在单相过程中拓扑地嵌入锂,即固溶体行为。这与根据从四方(I41/amd)到正交(Imma)相转变在的两相过程(一级转变)中插入锂的TiO2锐钛矿(其特征在于在1.78V存在Li-平台(图6中的插图))形成对比。
为了证实与锂的反应通过固溶体行为进行,准平衡电压(图7)通过恒电流间歇滴定技术(GITT)获得。GITT图示出了平滑曲线,强调锂通过固溶体行为插入到Ti0.780.22F0.4(OH)0.48O1.12中。
图8示出了Li/Ti0.780.22F0.88O1.12电池的容量随循环次数的变化。在高电流密度下获得了极好的容量保留性。在3335mA/g下,Li/Ti0.780.22F0.88O1.12电池在50次循环后确实能承受135mAh/g的容量。这对应于在4分钟内放电135mAh/g,这相当于15C的速率。为了比较的目的,在335mA/g下循环的Li/TiO2电池在10个循环后达到165mAh/g,显示出氟化的锐钛矿比无氟样品优异的倍率容量。
如预期的,在不脱离本发明的范围的情况下,可以对上述实施方案中的任何一个进行多种修改。本申请中提及的参考文献、专利或科学文献文献通过引用整体并入本文用于所有目的。

Claims (30)

1.一种制备具有锐钛矿型结构的钛基化合物的方法,所述钛基化合物具有由氟原子和羟基部分取代氧原子而产生的阳离子空位,所述方法包括以下步骤:
a)制备含有钛前体、氟化剂和有机溶剂的溶液;和
b)沉淀具有化学通式Ti1-x-yx+yF4x(OH)4yO2-4(x+y)的钛基化合物,其中□表示阳离子空位,其中x和y是数字,使得0.01≤(x+y)<0.5,其中x和y不同于0,
其中步骤(a)或(b)还包括热处理,其中所述热处理包括在密封容器中在50℃至220℃范围内的温度下加热步骤(a)的溶液。
2.根据权利要求1所述的方法,其中x和y是数字使得0.04≤(x+y)<0.5。
3.根据权利要求1所述的方法,其中所述钛前体选自C2-C10醇钛和氯化钛。
4.根据权利要求1所述的方法,其中所述氟化剂是提供氟阴离子的试剂。
5.根据权利要求1所述的方法,其中所述氟化剂是氟化氢HF、氟化铵NH4F或二氟化氢铵NH4HF2
6.根据权利要求2所述的方法,其中所述氟化剂是提供氟阴离子的试剂。
7.根据权利要求2所述的方法,其中所述氟化剂是氟化氢HF、氟化铵NH4F或二氟化氢铵NH4HF2
8.根据权利要求3所述的方法,其中所述氟化剂是提供氟阴离子的试剂。
9.根据权利要求3所述的方法,其中所述氟化剂是氟化氢HF、氟化铵NH4F或二氟化氢铵NH4HF2
10.根据权利要求1至9中任一项所述的方法,其中步骤(a)的溶液的有机溶剂包含有机溶剂或有机溶剂和水的混合物。
11.根据权利要求10所述的方法,其中所述有机溶剂选自C1-C10醇、二烷基酮、醚、酯或其组合。
12.根据权利要求11所述的方法,其中所述二烷基酮是丙酮。
13.根据权利要求10所述的方法,其中所述有机溶剂是甲醇、乙醇、异丙醇、丁醇、辛醇或其组合。
14.根据权利要求11或12所述的方法,其中所述有机溶剂是甲醇、乙醇、异丙醇、丁醇、辛醇或其组合。
15.根据权利要求1至9或权利要求11至13中任一项所述的方法,其中所述热处理包括在密封容器中在90℃至160℃范围内的温度下加热步骤(a)的溶液。
16.根据权利要求10所述的方法,其中所述热处理包括在密封容器中在90℃至160℃范围内的温度下加热步骤(a)的溶液。
17.根据权利要求14所述的方法,其中所述热处理包括在密封容器中在90℃至160℃范围内的温度下加热步骤(a)的溶液。
18.根据权利要求1至9或权利要求11至13或权利要求16至17中任一项所述的方法,其中通过调节热处理的温度来控制阳离子空位的程度。
19.根据权利要求10所述的方法,其中通过调节热处理的温度来控制阳离子空位的程度。
20.根据权利要求14所述的方法,其中通过调节热处理的温度来控制阳离子空位的程度。
21.根据权利要求15所述的方法,其中通过调节热处理的温度来控制阳离子空位的程度。
22.一种如下化学通式的钛基化合物:
Ti1-x-yx+yF4x(OH)4yO2-4(x+y)
其中,
□代表阳离子空位;和
x和y是数字,并且符合公式0.01≤(x+y)<0.5,其中x和y不同于0。
23.根据权利要求22所述的钛基化合物,其中x和y符合公式0.04≤(x+y)<0.5。
24.根据权利要求22或23所述的钛基化合物,其为Ti0.780.22F0.4(OH)0.48O1.12
25.一种通过根据权利要求1至21中任一项所述的方法制备的钛基化合物,其中所述化合物具有以下化学通式:
Ti1-x-yx+yO2-4(x+y)F4x(OH)4y
其中,
□代表阳离子空位;和
x和y是数字,并且符合公式0.01≤(x+y)<0.5,其中x和y不同于0。
26.根据权利要求25所述的钛基化合物,x和y符合公式0.04≤(x+y)<0.5。
27.根据权利要求25或26所述的钛基化合物,其为Ti0.780.22F0.4(OH)0.48O1.12
28.一种电化学活性材料,其包含通过如权利要求1至21中任一项定义的方法制备的钛基化合物或如权利要求22至27中任一项定义的钛基化合物。
29.一种电极,其包括在集电体上的如权利要求28所述的电化学活性材料。
30.一种锂离子电池,其包括如权利要求29所述的电极、对电极、以及在电极和对电极之间的电解质。
CN201580062283.5A 2014-11-20 2015-11-20 由阳离子空位稳定的纳米级锐钛矿晶格、其生产方法及其用途 Active CN107210430B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462082345P 2014-11-20 2014-11-20
US62/082,345 2014-11-20
PCT/CA2015/051215 WO2016077933A1 (fr) 2014-11-20 2015-11-20 Reseau d'anatase nanometrique stabilize par des lacunes cationiques, procedes pour leur preparation et leurs utilisations

Publications (2)

Publication Number Publication Date
CN107210430A CN107210430A (zh) 2017-09-26
CN107210430B true CN107210430B (zh) 2020-12-15

Family

ID=56013000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580062283.5A Active CN107210430B (zh) 2014-11-20 2015-11-20 由阳离子空位稳定的纳米级锐钛矿晶格、其生产方法及其用途

Country Status (7)

Country Link
US (1) US10680241B2 (zh)
EP (1) EP3221909A4 (zh)
JP (1) JP6692810B2 (zh)
KR (1) KR102411459B1 (zh)
CN (1) CN107210430B (zh)
CA (1) CA2963732C (zh)
WO (1) WO2016077933A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943266B (zh) * 2020-08-28 2022-06-21 郑州轻工业大学 一种空位氮化钒钛的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847712A (zh) * 2010-03-17 2010-09-29 上海大学 在多壁碳纳米管表面沉积纳米TiO2提高锂离子存储性能的方法
CN101937985A (zh) * 2010-08-19 2011-01-05 北京科技大学 一种石墨烯/二氧化钛锂离子电池负极材料及制备方法
CN101958413A (zh) * 2010-08-20 2011-01-26 华南师范大学 一种动力锂离子电池二氧化钛纳米棒负极材料及其制备方法
CN102001702A (zh) * 2009-08-31 2011-04-06 比亚迪股份有限公司 一种二氧化钛材料及其制备方法和应用
CN102232126A (zh) * 2008-12-16 2011-11-02 苏威氟有限公司 包含保护性涂层的金属部件
CN103782421A (zh) * 2011-07-29 2014-05-07 学校法人同志社 含表面氟化b型氧化钛粉末的锂离子电池用负极材料及其制造方法、和使用其的锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597515A (en) * 1995-09-27 1997-01-28 Kerr-Mcgee Corporation Conductive, powdered fluorine-doped titanium dioxide and method of preparation
US9312342B2 (en) * 2010-12-16 2016-04-12 The Regents Of The University Of California Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion
JP5208244B2 (ja) * 2011-05-06 2013-06-12 株式会社豊田自動織機 リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102232126A (zh) * 2008-12-16 2011-11-02 苏威氟有限公司 包含保护性涂层的金属部件
CN102001702A (zh) * 2009-08-31 2011-04-06 比亚迪股份有限公司 一种二氧化钛材料及其制备方法和应用
CN101847712A (zh) * 2010-03-17 2010-09-29 上海大学 在多壁碳纳米管表面沉积纳米TiO2提高锂离子存储性能的方法
CN101937985A (zh) * 2010-08-19 2011-01-05 北京科技大学 一种石墨烯/二氧化钛锂离子电池负极材料及制备方法
CN101958413A (zh) * 2010-08-20 2011-01-26 华南师范大学 一种动力锂离子电池二氧化钛纳米棒负极材料及其制备方法
CN103782421A (zh) * 2011-07-29 2014-05-07 学校法人同志社 含表面氟化b型氧化钛粉末的锂离子电池用负极材料及其制造方法、和使用其的锂离子电池

Also Published As

Publication number Publication date
WO2016077933A1 (fr) 2016-05-26
CA2963732A1 (fr) 2016-05-26
KR102411459B1 (ko) 2022-06-22
CA2963732C (fr) 2023-03-14
JP2017536320A (ja) 2017-12-07
US20180277840A1 (en) 2018-09-27
US10680241B2 (en) 2020-06-09
EP3221909A4 (fr) 2018-05-30
CN107210430A (zh) 2017-09-26
KR20170084311A (ko) 2017-07-19
JP6692810B2 (ja) 2020-05-13
EP3221909A1 (fr) 2017-09-27

Similar Documents

Publication Publication Date Title
Cai et al. High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries
Yin et al. Synthesis and electrochemical properties of LiNi0. 5Mn1. 5O4 for Li-ion batteries by the metal–organic framework method
Pan et al. Li-and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications
Wang et al. Advances of TiO2 as negative electrode materials for sodium‐ion batteries
US8623549B2 (en) Iron oxyfluoride electrodes for electrochemical energy storage
JP6107832B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
KR101161767B1 (ko) 신규한 티탄 산화물, 그 티탄 산화물의 제조방법, 및 그것을 활성 물질로서 사용한 리튬 2차 전지
US9620783B2 (en) Mesoporous metal oxide microsphere electrode compositions and their methods of making
KR102168979B1 (ko) Li-Ni 복합 산화물 입자 분말 및 비수전해질 이차 전지
US8951668B2 (en) Iron oxyfluoride electrodes for electrochemical energy storage
KR20180121484A (ko) 리튬 니켈레이트계 양극 활성 물질 입자 및 그의 제조 방법, 및 비수 전해질 2차 배터리
US20150017322A1 (en) Sulphates of use as electrode materials
KR20120015293A (ko) 리튬 이차 전지용 고전압 음극 활성 물질
JP2014525886A (ja) 優れたハイレート特性を有するナノ構造化Li4Ti5O12の製造
US9647266B2 (en) Amorphous titania/carbon composite electrode materials
Duncan et al. Todorokite as a Li Insertion Cathode: Comparison of a Large Tunnel Framework “” Structure with Its Related Layered Structures
Vincent et al. High-rate and ultralong-life Mg–Li hybrid batteries based on highly pseudocapacitive dual-phase TiO2 nanosheet cathodes
Choi et al. Defect engineering of TiNb2O7 compound for enhanced Li-ion battery anode performances
Xie et al. Facile synthesis and characterization of Li4Ti5O12 as anode material for lithium ion batteries
CN107210430B (zh) 由阳离子空位稳定的纳米级锐钛矿晶格、其生产方法及其用途
Rojas et al. Rechargeable lithium-ion battery based on a cathode of copper hexacyanoferrate
Iqbal et al. Synthesis and electrochemical performance of urea assisted pristine LiMn 2 O 4 cathode for Li ion batteries
Jang et al. Crystal reconstruction of V2O3/carbon heterointerfaces via anodic hydration for ultrafast and reversible Mg‐ion battery cathodes
Yun et al. Ant-Cave-Structured Nanopore-Embedded CoMn2O4 Microspheres with Stable Electrochemical Reaction for Li-Air Battery
Powell Metal oxyhalides and halides for use as electrode materials in Li-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant