WO2016077933A1 - Reseau d'anatase nanometrique stabilize par des lacunes cationiques, procedes pour leur preparation et leurs utilisations - Google Patents

Reseau d'anatase nanometrique stabilize par des lacunes cationiques, procedes pour leur preparation et leurs utilisations Download PDF

Info

Publication number
WO2016077933A1
WO2016077933A1 PCT/CA2015/051215 CA2015051215W WO2016077933A1 WO 2016077933 A1 WO2016077933 A1 WO 2016077933A1 CA 2015051215 W CA2015051215 W CA 2015051215W WO 2016077933 A1 WO2016077933 A1 WO 2016077933A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
cationic
electrode
compound
organic solvent
Prior art date
Application number
PCT/CA2015/051215
Other languages
English (en)
Inventor
Damien Dambournet
Wei Li
Henri Groult
Sandrine LECLERC
Christian Julien
Karim Zaghib
Original Assignee
HYDRO-QUéBEC
Université Pierre Et Marie Curie (Paris 6)
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYDRO-QUéBEC, Université Pierre Et Marie Curie (Paris 6), Centre National De La Recherche Scientifique filed Critical HYDRO-QUéBEC
Priority to JP2017525838A priority Critical patent/JP6692810B2/ja
Priority to US15/528,140 priority patent/US10680241B2/en
Priority to EP15861644.1A priority patent/EP3221909A4/fr
Priority to CN201580062283.5A priority patent/CN107210430B/zh
Priority to CA2963732A priority patent/CA2963732C/fr
Priority to KR1020177016609A priority patent/KR102411459B1/ko
Publication of WO2016077933A1 publication Critical patent/WO2016077933A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators

Definitions

  • the invention relates to a chemical process which allows the preparation of anatase nanoparticles containing a controllable quantity of cationic vacancies by the partial substitution of oxygen by fluorine atoms and / or hydroxyl groups, and their uses in electrodes for lithium batteries.
  • negative electrodes With regard to negative electrodes, the use of carbon electrodes is limited, due to safety concerns and low capacity. In contrast, titanium-based compounds are considered very good candidates as safe negative electrodes for lithium batteries. Indeed, the operating voltage of this class of materials is in the zone of stability of the electrolyte, that is to say> 0.8V. This imparts improved safety features to the battery, as well as the desirability of a thermally unstable electrolyte-solid interface (SEI) layer and lithium plating on the anode.
  • SEI thermally unstable electrolyte-solid interface
  • titanium-based compounds Another interesting feature of titanium-based compounds is their ability to sustain high charge / discharge rates, which is necessary for high power applications, such as electric vehicles.
  • a commonly used approach to achieving an improved capacity rate is the reduction of particle size.
  • a complementary approach involves modifying the structural arrangement through ionic substitutions.
  • the anatase form (tetragonal, space group: I4i / amd) has been extensively studied because of its particular properties. Based on the Ti 4+ / Ti 3+ reducing-oxidant pair, a capacity of 335 mAh / g can be obtained.
  • the anatase structure is built from octahedron units ⁇ ⁇ 0 6 linked by common edges. This three-dimensional structure has suitable vacant sites for lithium intercalation via a first-order reversible transition, i.e. from a tetragonal system to an orthorhombic system. This phase transition behavior is characterized by a plateau region in the potential / capacitance curve. Nevertheless, a solid solution property over the full range of lithium compositions is preferred for practical applications. Indeed, this generally avoids a high rate nucleation process and easier monitoring of the state of charge of the battery compared to first-order transition materials.
  • the invention relates to a method for preparing a titanium-based compound having anatase-like structure with cationic vacancies resulting from a partial substitution of oxygen atom (s) by one or more fluorine atom (s) and hydroxyl group (s).
  • the method comprises the steps of: a) preparing a solution containing a titanium precursor, a fluorinating agent and a solvent; and
  • the titanium precursor is selected from titanium C 2 -C 10 alkoxides and titanium tetrachloride.
  • the fluorinating agent is an agent that provides fluoride anions, preferably hydrogen fluoride (HF), ammonium fluoride (NH 4 F), or ammonium difluoride and difluoride. hydrogen (NH HF 2 ).
  • the solvent of the solution of step (a) is an organic solvent or a mixture of organic solvent and water, for example a mixture in which the organic solvent is the major component, such as an organic solvent containing traces of water.
  • step (b) of the method further comprises a heat treatment (e.g., in a sealed container) which comprises, for example, heating the solution of step (b) to a temperature in the range of about 50 ° C to about 220 ° C, or about 90 ° C to about 160 ° C.
  • the degree of cationic vacancies ( ⁇ ) is controlled by adjusting the temperature of the heat treatment.
  • the invention also relates to a compound based on titanium of general chemical formula: -X- Til YDX yF + 4 x (OH) 4 y02- 4 (x + y)
  • represents a cationic gap
  • the titanium compound is prepared according to the method of the invention.
  • the titanium compound is TiO . 78no.22Fo.4 (OH) o . 8 Oi . i 2 .
  • the invention also relates to an electrochemically active material comprising a titanium compound prepared according to the process of the invention or a titanium-based compound as defined herein; an electrode comprising the electrochemically active material and a current collector; and lithium-ion batteries comprising them.
  • FIG. 1 shows a powder X-ray diffraction pattern of a phase prepared according to Example 1. The diagram has been indexed using quadratic symmetry, characteristic of the anatase network.
  • FIG. 2 illustrates a high resolution transmission electron micrograph (TEM) obtained from the phase prepared according to Example 1.
  • Figure 3 shows the Ti2p XPS ring spectrum obtained from the phase prepared according to Example 1.
  • Figure 4 shows a 19 F NMR spectrum by magic angle rotation of the phase prepared according to Example 1.
  • Figure 5 shows the correlation between the synthesis temperature and the chemical composition of T11- x- yDx + y0 2-4 (x + y ) F x (OH) y.
  • the occupancy of the Ti (4a) site was determined by the structural analysis of the diffraction data.
  • Figure 6 shows the potential as a function of the capacity of a Li / Tio.78no.22Fo.4o (OH) o cell. 4 80i.i2 cycled between 1 and 3V at 20 mA / g. Insert: Voltage profile of a Li / Ti0 2 cell.
  • Figure 7 demonstrates the quasi-equilibrium potential obtained by the intermittent galvanostatic titration technique.
  • the Li / Ti 0 cell. 7 8no.22Fo. 4 o (OH) o. 4 80i.i2 was discharged intermittently at a rate of C C / 10 (33.5 mA / g) for 20 min followed by 20 hours of relaxation.
  • the x axis refers to the number of Li ions inserted into the Tio electrode. 7 8no.22Fo. o (OH) o. 48 Oi.i2.
  • Figure 8 shows the capacity rate of a Li / Tio.78no.22Fo cell. 4 o (OH) o. 80i.i2. For comparison purposes, the data obtained for a Li / TiO 2 cell at 335 mA / g are also indicated.
  • the present invention relates to methods for the preparation of titanium-based compounds having anatase-like structure with cationic vacancies resulting from substitution of oxygen atoms by fluorine / hydroxyl groups.
  • the degree of cationic vacancies can be controlled by the amount of fluorine / OH groups substituting the oxygen atoms within the anatase network.
  • the general chemical formula of the compound prepared is T -X- yDx + yF x (OH) y o 2-4 (x + y), where ⁇ represents a cationic gap and x and y are such that their sum is between 0.01 and 0.5, or between 0.04 and 0.5, the upper limit being excluded.
  • the presence of cationic gaps within the network provides additional vacant sites to accommodate lithium ions and increase ion mobility, thus potentially contributing to higher energy / power density.
  • the invention further relates to electrochemical cells utilizing the titanium compounds herein prepared as an electrode with a structural arrangement / chemical formula allowing a lithium storage mechanism contributing to high power and high energy density obtainable .
  • the modification of the structural arrangement by the control of the chemical composition induces a variation in the electrochemical response when tested as a negative electrode in lithium batteries. Indeed, the presence of cationic vacancies and fluorine atoms within the lattice induces a reversible solid solution behavior at the time of lithium intercalation as opposed to the reversible first-order transition observed with stoichiometric an2 anatase. .
  • a significant improvement in capacity ratio, compared to pure ⁇ 2 can be achieved with the present material, when used as an electrode, being suitable for high power applications.
  • the present invention describes the preparation of titanium-based compounds having anatase-like structure with cationic vacancies induced by the partial substitution of oxygen by fluorine and hydroxyl groups, and their uses in negative electrodes for lithium-ion batteries. ion.
  • this application describes a method of preparation using, but not limited to, the following steps: a) preparing a solution containing a titanium precursor and a fluorinating agent; and b) Precipitation of a titanium compound having the general chemical formula ⁇ - ⁇ - ⁇ + ⁇ ⁇ 2 -4 ( ⁇ + ⁇ ) ⁇ ⁇ ( ⁇ ) ⁇ , where ⁇ represents a cationic gap and wherein x and y are numbers such that 0.01 ⁇ (x + y) ⁇ 0.5, or such that 0.04 ⁇ (x + y) ⁇ 0.5, for example, 0.1 ⁇ (x + y) ⁇ 0.3, where x can not be zero .
  • the titanium precursor of step (a) is selected from C 2 -C 10 alkoxides of titanium and titanium chloride.
  • the C 2 -C 10 alkoxide of titanium may be selected from ethoxide, propoxide, isopropoxide and / or titanium butoxide.
  • the fluorinating agent is an agent acting as a source of fluoride anion including, for example and without limitation, hydrogen fluoride (HF), ammonium fluoride (NH 4 F), and ammonium difluoride and difluoride. hydrogen (NH 4 HF 2 ).
  • the fluorinating agent may be in the form of a solution, for example, of an aqueous solution, such as a concentrated solution of hydrofluoric acid.
  • the solvent used in the solution of step (a) is an organic solvent or a mixture of organic solvent and water.
  • the organic solvent is chosen from C1-C10 alcohols, dialkyl ketones (for example, acetone), ethers and esters.
  • C1-C10 alcohols include methanol, ethanol, isopropanol, butanol, and octanol.
  • a solution containing a titanium alkoxide, an alcohol and a fluoride ion source is used.
  • the molar ratio of fluoride and titanium preferably varies from 0.1 to 4, preferably the molar ratio is 2.0.
  • a solution containing titanium alkoxide, fluoride and organic solvent is prepared and then transferred to a sealed container, for example, a sealed Teflon ® -contaminated container.
  • the sealed container is then placed in an oven and subjected to a temperature, for example, in the range of from about 50 ° C to about 200 ° C, or from about 90 ° C to about 160 ° C, or the temperature is set at about 90 ° C.
  • the duration of the heat treatment is preferably between 1 and 300 hours, preferably about 12 hours.
  • the precipitate is then washed and degassed overnight at a temperature of from 50 to 400 ° C, preferably at 150 ° C.
  • fluorinated anatase compounds having different chemical compositions, have been prepared for exemplary purposes by the preparation method of the present application.
  • a fluorine-free compound was prepared by heat treating a fluorinated compound at 450 ° C for 4 hours under an air atmosphere.
  • Fluorinated anatase was obtained by treating a solution containing 13.5 mmol of titanium isopropoxide (4 mL) and 27 mmol of aqueous HF (40%) in 25 mL of isopropanol in a sealed container at 90 ° C. for 12 hours.
  • Figure 1 shows the X-ray powder diffraction pattern (CuKa) recorded on the sample obtained according to this example. The corresponding diagram was indexed using the quadratic structure with the space group 14 amd, which is characteristic of the anatase network. The sample is well crystallized and an enlargement of x-ray lines has been observed, indicating small domains of coherence.
  • High resolution transmission electron microscopy (HRTEM) ( Figure 2) revealed that the morphology of the solid consists of agglomerates of particles ranging in size from 5 to 8 nm.
  • HRTEM High resolution transmission electron microscopy
  • Figure 2 revealed that the morphology of the solid consists of agglomerates of particles ranging in size from 5 to 8 nm.
  • broadening of hkl-dependent x-ray lines and HRTEM indicate the formation of faceted crystals, i.e., platelets, in accordance with a recent article (HG Yang et al., 2008, Nature, Vol 453, pp. 638-641) which emphasizes the role of fluorine atoms in the stabilization of metastable surfaces.
  • Figure 3 shows the XPS core spectrum of Ti2p with the Ti 2p 3/2 ring. located at 458.9 eV, characteristic of tetravalent titanium.
  • the fluorine atom content in the prepared sample was evaluated using Solid State Nuclear Magnetic Resonance of the fluorine ring ( 19 F).
  • the estimation of the molar ratio F / Ti was performed using a reference (NaF) and led to a ratio of 0.5.
  • the chemical composition of the sample was Tio . 78no.22 o.4 (OH) o.4eOi .i 2.
  • the three signals observed in the 19 F MAS NMR spectra Figure 4 have been assigned to various modes of fluorine coordination within the anatase network.
  • the peak centered at -85 ppm was assigned to a coordinated fluorine with three titanium ions.
  • Synchrotron diffraction was also used to obtain the crystallographic data from the sample. The results were compared to those of a fluorine free TiO 2 compound and are summarized in Table 1. ableau 1. Structural parameters obtained by diffraction data analysis.
  • the content of cationic vacancies in Ti 1 -x- yDx + yF 4 x (OH) 4 y o 2- (x + y ) can be controlled synthetically.
  • Different cationic concentrations were obtained by adjusting the reaction temperature under the conditions of Example 1. Solutions containing 13.5 mmol of titanium isopropoxide (4 mL) and 27 mmol of aqueous HF (40%) in 25 mL of isopropanol, placed in sealed containers, were treated at various temperatures ranging from 90 to 160 ° C. for 12 hours.
  • the cationic content of the prepared samples was determined by the analysis of the diffraction data.
  • the results presented in FIG. 5 showed a linear variation of the cationic content as a function of the reaction temperature.
  • the Tio . 78no.22Fo .4 (OH) o .4 80i . i 2 prepared according to Example 1 was tested in a cell Li / Ti 0.78 no.22Fo .4 (OH) o .4 80i. i 2 .
  • the electrochemical cell is composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode consists of a mixture of 80% (by weight) of Ti0.78n0.22F0.88O1.12 powder, 10% (by weight) of carbon, and 10% (by weight) of binder. PVDF, coated on a copper foil.
  • the negative electrode was metallic lithium and served as a reference.
  • a commercial solution of LP30 was used as the non-aqueous electrolyte. It contains LiPF 6 dissolved in a solvent mixture ethylene carbonate (EC) and dimethyl carbonate (DMC).
  • Figure 6 shows potential curves as a function of the capacity of a Li cell / Tio .78 .22 No Fo .4 (OH) o. 8 Oi . i 2 at 20 mA / g for the first three cycles.
  • the voltage window has been set between 1 and 3V.
  • the first discharge capacity far exceeded the theoretical capacity, reaching 490 mAh / g.
  • a large irreversible capacity is observed during charging, with a load capacity of up to 230 mAh / g.
  • Such a phenomenon is commonly observed for materials based on nanometric titanium and is attributed to lithium reacting with surface species (H 2 0, OH groups, etc.).
  • Figure 8 shows the evolution of the capacity as a function of the number of cycles for a cell Li / Tio.78no.22Fo.88Oi.i2. Excellent capacity retention has been achieved under high current density.
  • the cell Li / Ti 0 .78no.22Fo.88Oi .i2 can indeed support a capacity of 135 mAh / g after 50 cycles under 3335 mA / g. This corresponds to discharging 135 mAh / g in 4 minutes, which is equivalent to a rate of 15C.
  • the Li / TiO 2 cell cycled at 335 mA / g achieved 165 mAh / g after 10 cycles, demonstrating the higher capacity rate of the fluorinated anatase vis-à-vis the fluorine-free sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

La présente demande décrit un procédé de préparation de composés à base de titane ayant une structure de type anatase avec des lacunes cationiques résultant d'une substitution partielle d'atomes d'oxygène par des atomes de fluor et des groupes hydroxyles. Les matériaux électrochimiquement actifs comprenant les composés à base de titane pour utilisation dans des électrodes de batteries lithium-ion sont aussi décrits.

Description

RÉSEAU D'ANATASE NANOM ÉTRIQUÉ STABILIZÉ PAR DES LACUNES CATIONIQUES, PROCÉDÉS POUR LEUR PRÉPARATION ET LEURS
UTILISATIONS
DEMANDE PRIORITAIRE La présente demande revendique la priorité, sous la loi applicable, de la demande provisoire américaine no 62/082,345 déposée le 20 novembre 2014, le contenu de laquelle est incorporé ici par référence dans son intégralité et à toutes fins.
DOMAINE TECHINIQUE L'invention concerne un procédé chimique qui permet la préparation de nanoparticules d'anatase contenant une quantité contrôlable de lacunes cationiques par la substitution partielle d'oxygène par des atomes de fluor et/ou groupes hydroxyles, et leurs utilisations dans des électrodes pour batteries au lithium. CONTEXTE
L'approvisionnement en énergie est l'un des plus grands défis du 21 e siècle. Les changements climatiques concomitants aux ressources futures en combustibles fossiles limitées poussent vers l'utilisation de sources d'énergie propre. Il est prévu que le stockage d'énergie électrochimique jouera un rôle majeur dans la décarbonisation de notre énergie. Les batteries, qui sont des dispositifs capables d'emmagasiner de l'énergie par des réactions électrochimiques, sont considérées comme l'une des technologies les plus prometteuses afin de répondre aux défis sociétaux futurs tels que le transport électrique et les systèmes de stockage d'énergie stationnaire pouvant être utilisés, par exemple, comme soutien à l'énergie de source éolienne ou solaire.
En ce qui concerne les électrodes négatives, l'utilisation d'électrodes carbonées est limitée, ceci dû à des préoccupations de sécurité et à de faible taux de capacité. À l'opposé, les composés à base de titane sont considérés comme de très bons candidats comme électrodes négatives sécuritaires de batteries au lithium. En effet, la tension de fonctionnement de cette classe de matériaux se trouve dans la zone de stabilité de l'électrolyte, c'est-à-dire > 0.8V. Ceci confère des caractéristiques de sécurité améliorées à la batterie, ainsi que l'absence désirable de couche d'interface-électrolyte-solide (SEI) thermiquement instable et de placage de lithium sur l'anode.
Une autre caractéristique intéressante des composés à base de titane est leur capacité à soutenir des taux élevés de charge/décharge, ce qui est nécessaire pour les applications de haute puissance, tels que les véhicules électriques. Une approche couramment utilisée pour atteindre un taux de capacité amélioré est la réduction de la taille des particules. Une approche complémentaire comprend la modification de l'agencement structurel par le biais de substitutions ioniques.
Dans la famille du dioxyde de titane, la forme anatase (tétragonale, groupe d'espace: I4i/amd) a été largement étudiée étant donné ses propriétés particulières. Sur la base du couple d'oxydant-réducteur Ti4+/Ti3+, une capacité de 335 mAh/g peut être obtenue. La structure anatase est construite à partir d'unités octaèdres Τ\06 liées par des arrêtes communes. Cette structure tridimensionnelle présente des sites vacants appropriés pour l'intercalation de lithium procédant par l'intermédiaire d'une transition réversible de premier ordre, c'est-à-dire d'un système tétragonal à un système orthorhombique. Ce comportement de transition de phase est caractérisé par une région plateau dans la courbe potentiel/capacité. Néanmoins, une propriété de solution solide sur la gamme complète de compositions de lithium est préférée pour des applications pratiques. En effet, ceci permet généralement d'éviter un processus de nucléation à taux élevé et un suivi plus facile de l'état de charge de la batterie en comparaison aux matériaux de transition de premier ordre. SOMMAIRE
Selon un premier aspect, l'invention concerne une méthode de préparation d'un composé à base de titane ayant une structure de type anatase avec des lacunes cationiques résultant d'une substitution partielle d'atome(s) d'oxygène par un ou des atome(s) de fluor et un ou des groupe(s) hydroxyle(s). Par exemple, la méthode comprend les étapes de: a) préparation d'une solution contenant un précurseur de titane, un agent fluorant et un solvant; et
b) précipitation d'un compose à base de titane ayant la formule chimique générale Tii-x-yDx+yF x(OH) y02-4(x+y), où □ représente une lacune cationique et dans laquelle x et y sont des nombres tels que 0.01 < (x+y) < 0.5, ou tels que 0.04 < (x+y) < 0.5.
Dans un mode de réalisation, le précurseur de titane est choisi parmi les C2- Cioalkoxides de titane et le tétrachlorure de titane. Dans un autre mode de réalisation, l'agent fluorant est un agent qui fournit des anions fluorures, de préférence le fluorure d'hydrogène (HF), le fluorure d'ammonium (NH4F), ou le difluorure d'ammonium et d'hydrogène (NH HF2). Dans un autre mode de réalisation, le solvant de la solution de l'étape (a) est un solvant organique ou un mélange de solvant organique et d'eau, par exemple, un mélange dans lequel le solvant organique est le composant majoritaire, tel qu'un solvant organique contenant des traces d'eau. Par exemple, le solvant organique est choisi parmi les alcools C1 -C10 (comme méthanol, éthanol, isopropanol, butanol, et octanol), les dialkylcétones (par exemple, l'acétone), les éthers, les esters ou une de leurs combinaisons. Dans un mode de réalisation, l'étape (b) de la méthode comprend en outre un traitement thermique (par exemple, dans un contenant scellé) qui comprend, par exemple, le chauffage de la solution de l'étape (b) à une température dans l'intervalle allant d'environ 50°C à environ 220°C, ou d'environ 90°C à environ 160°C. Selon un mode de réalisation, le degré de lacunes cationiques (□) est contrôlé par l'ajustement de la température du traitement thermique.
L'invention concerne aussi un composé à base de titane de formule chimique générale: Til-X-yDx+yF4x(OH)4y02-4(x+y)
dans laquelle,
□ représente une lacune cationique; et
x et y sont des nombres et répondent à la formule 0.01 < (x+y) < 0.5, ou à la formule 0.04 < (x+y) < 0.5. Dans une mode de réalisation, le composé à base de titane est préparé selon le procédé de l'invention. Dans un autre mode de réalisation, le composé à base de titane est le Tio.78no.22Fo.4(OH)o. 8Oi.i2.
L'invention concerne aussi un matériau électrochimiquement actif comprenant un composé à base de titane préparé selon le procédé de l'invention ou un composé à base de titane tel qu'ici défini; une électrode comprenant le matériau électrochimiquement actif et un collecteur de courant; et des batteries lithium-ion les comprenant.
D'autres caractéristiques et avantages de la présente invention seront mieux compris à la lecture de la description ci-dessous en référence aux dessins annexés.
BRÈVE DESCRIPTION DES DESSINS
La Figure 1 montre un diagramme de diffraction des rayons X sur poudre d'une phase préparée selon l'exemple 1 . Le diagramme a été indexé en utilisant la symétrie quadratique, caractéristique du réseau anatase. La Figure 2 illustre une micrographie électronique à transmission en haute résolution (TEM) obtenue à partir de la phase préparée selon l'exemple 1 . La Figure 3 montre le spectre de noyau par XPS de Ti2p obtenu à partir de la phase préparée selon l'exemple 1 .
La Figure 4 montre un spectre RMN du 19F par rotation à l'angle magique de la phase préparée selon l'exemple 1 . La Figure 5 montre la corrélation entre la température de synthèse et la composition chimique de Tii-x-yDx+y02-4(x+y)F x(OH) y. L'occupation du site Ti (4a) a été déterminé par l'analyse structurelle des données de diffraction.
La Figure 6 montre le potentiel en fonction de la capacité d'une cellule Li/Tio.78no.22Fo.4o(OH)o.480i.i2 cyclée entre 1 et 3V à 20 mA/g. Encart: Profil de voltage d'une cellule Li/Ti02.
La Figure 7 démontre le potentiel à quasi-équilibre obtenu par la technique de titrage galvanostatique intermittent. La cellule Li/Ti0.78no.22Fo.4o(OH)o.480i.i2 a été déchargée de façon intermittente à un taux C de C/10 (33.5 mA/g) pendant 20 min suivi de 20 heures de relaxation. L'axe x réfère au nombre d'ions Li insérés dans l'électrode Tio.78no.22Fo. o(OH)o.48Oi.i2.
La Figure 8 montre le taux de capacité d'une cellule Li/Tio.78no.22Fo.4o(OH)o. 80i.i2. Pour fins de comparaison, les données obtenues pour une cellule Li/Ti02 sous 335 mA/g sont aussi indiquées.
DESCRIPTION DÉTAILLÉE La présente invention concerne des méthodes pour la préparation de composés à base de titane ayant une structure de type anatase avec des lacunes cationiques résultant de la substitution d'atomes oxygènes par des groupes fluor/hydroxyle. Le degré de lacunes cationiques peux être contrôlé par la quantité de groupes fluor/OH substituant les atomes d'oxygène à l'intérieur du réseau anatase. La formule chimique générale du composé préparé est T -X- yDx+yF x(OH) y02-4(x+y), où□ représente une lacune cationique et x et y sont tels que leur somme se situe entre 0.01 et 0.5, ou entre 0.04 et 0.5, la limite supérieure étant exclue.
La présence de lacunes cationiques à l'intérieur du réseau fournit des sites vacants additionnels pour accueillir des ions lithium et augmenter la mobilité ionique, ainsi contribuant potentiellement à l'obtention d'une densité d'énergie/de puissance plus élevée.
L'invention concerne en outre des cellules électrochimiques utilisant les composés à base de titane ici préparés, comme électrode avec un arrangement structurel/une formule chimique permettant un mécanisme de stockage de lithium contribuant à une puissance élevée et à une densité énergétique élevée pouvant être obtenue. La modification de l'arrangement structurel par le contrôle de la composition chimique induit une variation dans la réponse électrochimique lorsque testée comme électrode négative dans des batteries au lithium. En effet, la présence de lacunes cationiques et d'atomes de fluor au sein du réseau induit un comportement de solution solide réversible au moment de l'intercalation du lithium par opposition à la transition de premier ordre réversible observée avec l'anatase de ΤΊΟ2 stœchiométrique. De plus, une amélioration significative en termes de taux de capacité, par rapport au ΤΊΟ2 pur, peut être atteinte avec le présent matériau, lorsqu'utilisé comme électrode, étant approprié pour des applications à puissance élevée.
La présente invention décrit la préparation de composés à base de titane ayant une structure de type anatase avec des lacunes cationiques induites par la substitution partielle de l'oxygène par le fluor et des groupements hydroxyles, et leurs utilisations dans des électrodes négatives pour batteries lithium-ion. Dans certains modes de réalisation, cette demande décrit une méthode de préparation utilisant, mais sans s'y limiter, les étapes suivantes: a) Préparation d'une solution contenant un précurseur de titane et un agent fluorant; et b) Précipitation d'un composé à base de titane ayant la formule chimique générale Τίι-χ-γϋχθ2-4(χ+γ)Ρ χ(ΟΗ) γ, où □ représente une lacune cationique et dans lequel x et y sont des nombres tels que 0.01 < (x+y) < 0.5, ou tels que 0.04 < (x+y) < 0.5, par exemple, 0.1 < (x+y) < 0.3, dans lequel x ne peut pas être zéro.
Par exemple, le précurseur de titane de l'étape (a) est choisi parmi les C2- Ci0alkoxydes de titane et le chlorure de titane. Par exemple, le C2-Ci0alkoxyde de titane peut être choisi parmi l'éthoxyde, le propoxyde, l'isopropoxyde et/ou le butoxyde de titane. L'agent fluorant est un agent agissant comme source d'anion fluorure incluant, par exemple et sans limitation, le fluorure d'hydrogène (HF), le fluorure d'ammonium (NH4F), et le difluorure d'ammonium et d'hydrogène (NH4HF2). L'agent fluorant peut être sous forme de solution, par exemple, de solution aqueuse, comme une solution concentrée d'acide fluorhydrique. Par exemple, le solvant utilisé dans le solution de l'étape (a) est un solvant organique ou un mélange de solvant organique et d'eau. Le solvant organique est choisi parmi les alcools C1 -C10, les dialkylcétones (par exemple, l'acétone), les éthers et les esters. Des exemples d'alcools C1-C10 incluent le méthanol, l'éthanol, l'isopropanol, le butanol, et l'octanol.
Dans un mode de réalisation, une solution contenant un aikoxyde de titane, un alcool et une source d'ion fluorure est utilisée. Le rapport molaire du fluorure et du titane varie de préférence de 0.1 à 4, de préférence le rapport molaire est de 2.0. Typiquement, une solution contenant de l'alkoxyde de titane, le fluorure et le solvant organique est préparée et ensuite transférée dans un contenant scellé, par exemple, un contenant scellé recouvert de Téflon®. Le contenant scellé est ensuite placé dans un four et soumis à une température, par exemple, comprise dans l'intervalle allant d'environ 50°C à environ 200°C, ou d'environ 90°C à environ 160°C, ou la température est réglée à environ 90°C. La durée du traitement thermique est de préférence comprise entre une et 300 heures, préférablement environ 12 heures. Après filtration, le précipité est ensuite lavé et dégazé pendant une nuit à une température allant de 50 à 400°C, de préférence à 150°C.
Plusieurs composés d'anatase fluoré, ayant des compositions chimiques différentes, ont été préparés pour des fins d'exemples par le procédé de préparation de la présente demande. À des fins de comparaison, un composé sans fluor a été préparé par traitement thermique d'un composé fluoré à 450°C pendant 4 heures sous atmosphère d'air.
EXEMPLES
Les exemples non-limitatifs suivants illustrent l'invention. Ces exemples et l'invention seront aussi mieux compris en référence aux figures annexées.
Exemple 1
Un anatase fluoré a été obtenu par le traitement d'une solution contenant 13.5 mmol d'isopropoxyde de titane (4 mL) et 27 mmol de HF aqueux (40%) dans 25 mL d'isopropanol, dans un contenant scellé à 90°C pendant 12 heures. La Figure 1 présente le diagramme de diffraction des rayons X sur poudre (CuKa) enregistré sur l'échantillon obtenu selon cet exemple. Le diagramme correspondant a été indexé en utilisant la structure quadratique avec le groupe d'espace 14 amd, qui est caractéristique du réseau anatase. L'échantillon est bien cristallisé et un élargissement des raies de rayon-x a été observé, indiquant de petits domaines de cohérence.
La microscopie électronique à transmission en haute résolution (HRTEM) (Figure 2) a révélé que la morphologie du solide consiste en des agglomérats de particules dont la taille varie de 5 à 8 nm. De plus, l'élargissement des raies de rayon-x dépendant de hkl et la HRTEM indiquent la formation de cristaux facettés, c'est-à-dire de plaquettes, en accord avec un article récent (H. G. Yang et al., 2008, Nature, Vol. 453, pages 638-641 ) qui souligne le rôle des atomes de fluor dans la stabilisation de surfaces métastables. La surface spécifique, déterminée par adsorption d'azote sur l'échantillon préparé selon cet exemple, était d'environ 180 m2/g.
L'état d'oxydation du titane à l'intérieur de l'échantillon a été déterminé en utilisant la spectroscopie photo-électronique aux rayons X. La Figure 3 représente le spectre de noyau par XPS de Ti2p avec le noyau Ti 2p3/2 situé à 458,9 eV, caractéristique du titane tétravalent.
La teneur en atomes de fluor dans l'échantillon préparé a été évaluée en utilisant la Résonance Magnétique Nucléaire à l'état solide du noyau fluor (19F). L'estimation du rapport molaire F/Ti a été réalisée en utilisant une référence (NaF) et a conduit à un rapport de 0.5. La composition chimique de l'échantillon était Tio.78no.22 o.4(OH)o.4eOi .i 2. A titre d'information, les trois signaux observés dans les spectres RMN 19F MAS (Figure 4) ont été assignés à divers modes de coordination du fluor au sein du réseau anatase. Le pic centré à -85 ppm a été assigné à un fluor coordonné à trois ions titane. Le pic le plus intense situé près de 0 ppm est caractéristique d'un fluor ponté et a donc été attribué aux ions fluorure situés près d'une lacune. Finalement, le signal large détecté à environ 90 ppm a été assigné à des ions fluorure situés près de deux lacunes, c'est-à-dire coordonnés une fois. De par l'intensité relative, il a été conclu que les ions fluorure ont préférentiellement adopté une coordination de 2, soit voisin d'une lacune.
La diffraction par synchrotron a aussi été utilisée pour l'obtention des données cristallographiques de l'échantillon. Les résultats ont été comparés à ceux d'un composé Ti02 sans fluor et sont résumés dans le Tableau 1 . ableau 1. Paramètres structurels obtenus par l'analyse des données de diffraction.
Figure imgf000011_0001
Les deux composés ont montré des valeurs proches de paramètres de cellule unitaire et de distances interatomiques. L'affinage des taux d'occupation du Ti02 sans fluor a conduit à un taux d'occupation de 100% confirmant la composition stœchiométrique. D'un autre côté, le composé fluoré présente un taux d'occupation Ti (4a) de 78%. Ainsi, la combinaison de différentes techniques, y compris des analyses élémentaires et thermiques, permet de déterminer une composition chimique de Ti0.78no.22Fo.4(OH)0.480i .i2 pour l'échantillon préparé dans cet exemple. Exemple 2
La teneur en lacunes cationiques dans Ti1 -x-yDx+yF4x(OH)4y02- (x+y) peut être contrôlée de manière synthétique. Différentes concentrations cationiques ont été obtenues en ajustant la température de réaction dans les conditions de l'Exemple 1 . Des solutions contenant 13.5 mmol d'isopropoxyde de titane (4 mL) et 27 mmol de HF aqueux (40%) dans 25 mL d'isopropanol, placé dans des contenants scellés, ont été traités à différentes températures allant de 90 à 160°C pendant 12 heures. La teneur en lacunes cationiques des échantillons préparés a été déterminée par l'analyse des données de diffraction. Les résultats présentés à la Figure 5 ont montré une variation linéaire de la teneur cationique en fonction de la température de réaction.
Exemple 3
Les Tio.78no.22Fo.4(OH)o.480i .i2 préparé selon l'Exemple 1 a été testé dans une cellule Li/Ti0.78no.22Fo.4(OH)o.480i .i2. La cellule électrochimique est composée d'une électrode positive, d'une électrode négative, et d'un électrolyte non- aqueux. L'électrode positive est constituée d'une mélange de 80% (en poids) de poudre de Ti0.78n0.22F0.88O1 .12, de 10% (en poids) de carbone, et de 10% (en poids) de liant PVDF, enduit sur une feuille de cuivre. L'électrode négative était du lithium métallique et servait de référence. Une solution commerciale de LP30 a été utilisée comme électrolyte non-aqueux. Il contient du LiPF6 dissout dans un mélange de solvants carbonate d'éthylène (EC) et carbonate de diméthyle (DMC).
La Figure 6 montre les courbes de potentiel en fonction de la capacité d'une cellule Li/Tio.78no.22Fo.4(OH)o. 8Oi .i2 sous 20 mA/g pour les trois premiers cycles. La fenêtre de tension a été réglée entre 1 et 3V. La première capacité de décharge a dépassé de loin la capacité théorique, atteignant 490 mAh/g. Une grande capacité irréversible est observée lors de la charge, avec une capacité de charge atteignant 230 mAh/g. Un tel phénomène est communément observé pour des matériaux basé sur du titane nanométrique et est attribué à du lithium réagissant avec les espèces de surface (H20, groupes OH, etc.). Le point le plus frappant ici, est la forme des courbes en décharge (réduction) et en charge (oxydation) présentant une évolution continue du potentiel par rapport à la capacité, ce qui indique que l'anatase fluoré Ti0.78no.22Fo.4(OH)0. 8Oi .i2 insère du lithium de manière topotactique par un procédé en une seule phase, c'est-à-dire un comportement de solution solide. Ceci est en contraste avec l'anatase TiO2 qui insère le lithium par un procédé en deux phases (transition de premier ordre) selon une transition de phase quadratique (14 amd) à orthorhombique (Imma) caractérisée par la présence d'un plateau Li à 1 .78V (encart dans la Figure 6).
Pour confirmer que la réaction avec le lithium procède via un comportement de solution solide, le potentiel à quasi-équilibre (Figure 7) a été obtenu par la technique de titrage galvanostatique intermittent (GITT). Le graphique GITT montre une courbe lisse soulignant que le lithium est inséré dans le Tio.78no.22Fo.4(OH)o.48Oi .i2 via un comportement de solution solide.
La Figure 8 montre l'évolution de la capacité en fonction du nombre de cycle pour une cellule Li/Tio.78no.22Fo.88Oi.i2. Une excellente rétention de capacité a été obtenue sous haute densité de courant. La cellule Li/Ti0.78no.22Fo.88Oi .i2 peut en effet soutenir une capacité de 135 mAh/g après 50 cycles sous 3335 mA/g. Ceci correspond à décharger 135 mAh/g en 4 minutes, ce qui est équivalent à un taux de 15C. Pour fins de comparaison, la cellule Li/TiO2 cyclée sous 335 mA/g atteint 165 mAh/g après 10 cycles, démontrant le taux de capacité supérieur de l'anatase fluoré vis-à-vis l'échantillon sans fluor.
De nombreuses modifications pourraient être apportées à l'un ou l'autre des modes de réalisation décrits ci-dessus sans s'éloigner de la portée de l'invention telle qu'envisagée. Les références, brevets ou documents de littérature scientifique mentionnés dans la présente demande sont ici incorporés par référence dans leur intégralité et à toutes fins.

Claims

REVENDICATIONS
1 . Méthode de préparation d'un composé à base de titane ayant une structure de type anatase avec des lacunes cationiques résultant d'une substitution partielle d'atomes d'oxygène par des atomes de fluor et des groupes hydroxyles.
2. Méthode selon la revendication 1 , comprenant les étapes de:
a) préparation d'une solution contenant un précurseur de titane, un agent fluorant et un solvant; et
b) précipitation du composé à base de titane ayant la formule chimique générale Tii-x-yDx+yF x(OH) y02-4(x+y), dans laquelle □ représente une lacune cationique et dans laquelle x et y sont des nombres tels que 0.01 < (x+y) < 0.5, ou tels que 0.04 < (x+y) < 0.5.
3. Méthode selon la revendication 2, dans laquelle le précurseur de titane est choisi parmi les C2-Cioalkoxides de titane et le chlorure de titane.
4. Méthode selon la revendication 2 ou 3, dans laquelle l'agent fluorant est un agent qui fournit des anions fluorure, de préférence le fluorure d'hydrogène (HF), le fluorure d'ammonium (NH F), ou le difluorure d'ammonium et d'hydrogène (NH4HF2).
5. Méthode selon l'une quelconque des revendications 2 à 4, dans laquelle le solvant de la solution de l'étape (a) comprend un solvant organique ou un mélange de solvant organique et d'eau.
6. Méthode selon la revendication 5, dans laquelle le solvant organique est choisi parmi les alcools C1-C10, les dialkylcétones, par exemple, l'acétone, les éthers, les esters ou une de leurs combinaisons.
7. Méthode selon la revendication 5 ou 6, dans laquelle le solvant organique est du méthanol, de l'éthanol, de l'isopropanol, du butanol, de l'octanol ou une de leurs combinaisons.
8. Méthode selon l'une quelconque des revendications 2 à 7, dans laquelle l'étape (a) ou (b) comprend en outre un traitement thermique.
9. Méthode selon la revendication 8, dans laquelle le traitement thermique comprend un chauffage de la solution de l'étape (a) à une température dans l'intervalle allant d'environ 50°C à environ 220°C, ou d'environ 90°C à environ 160°C.
10. Méthode selon la revendication 8 ou 9, dans laquelle le degré de lacunes cationiques (□) est contrôlé par ajustement de la température du traitement thermique.
1 1 . Composé à base de titane de formule chimique générale:
Til-X-y---lx+yF4x(OH)4y02-4(x+y)
dans laquelle,
□ représente une lacune cationique; et
x et y sont des nombres et répondent à la formule 0.01 < (x+y) < 0.5, ou 0.04 < (x+y) < 0.5.
12. Composé à base de titane préparé par un procédé selon l'une quelconque des revendications 1 à 10, dans lequel ledit composé est de formule chimique générale:
Til-X-y---lx+y02-4(x+y)F4x(OH)4y
dans laquelle,
□ représente une lacune cationique; et
x et y sont des nombres et répondent à la formule 0.01 < (x+y) < 0.5, ou 0.04 < (x+y) < 0.5.
13. Composé à base de titane selon la revendication 1 1 ou 12, lequel est Τίο.78Πθ.22Ρο.4(ΟΗ)ο.48θι .ΐ 2-
14. Matériau électrochimiquement actif comprenant un composé à base de titane préparé selon le procédé tel que défini dans l'une quelconque des revendications 1 à 10 ou un composé à base de titane tel que défini dans l'une quelconque des revendications 1 1 à 13.
15. Électrode comprenant le matériau électrochimiquement actif de la revendication 14 sur un collecteur de courant.
16. Batterie lithium-ion comprenant l'électrode de la revendication 15, une contre-électrode et un électrolyte entre l'électrode et la contre-électrode.
PCT/CA2015/051215 2014-11-20 2015-11-20 Reseau d'anatase nanometrique stabilize par des lacunes cationiques, procedes pour leur preparation et leurs utilisations WO2016077933A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017525838A JP6692810B2 (ja) 2014-11-20 2015-11-20 カチオン空孔によるナノメータアナターゼ格子、その生成方法、およびその使用
US15/528,140 US10680241B2 (en) 2014-11-20 2015-11-20 Nanometric anatase lattice stabilised by cation vacancies, methods for the production thereof, and uses of same
EP15861644.1A EP3221909A4 (fr) 2014-11-20 2015-11-20 Reseau d'anatase nanometrique stabilize par des lacunes cationiques, procedes pour leur preparation et leurs utilisations
CN201580062283.5A CN107210430B (zh) 2014-11-20 2015-11-20 由阳离子空位稳定的纳米级锐钛矿晶格、其生产方法及其用途
CA2963732A CA2963732C (fr) 2014-11-20 2015-11-20 Reseau d'anatase nanometrique stabilise par des lacunes cationiques, procedes pour leur preparation et leurs utilisations
KR1020177016609A KR102411459B1 (ko) 2014-11-20 2015-11-20 양이온 공공으로 안정화된 나노규모의 아나타제 격자, 그의 제조 방법 및 그의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462082345P 2014-11-20 2014-11-20
US62/082,345 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016077933A1 true WO2016077933A1 (fr) 2016-05-26

Family

ID=56013000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2015/051215 WO2016077933A1 (fr) 2014-11-20 2015-11-20 Reseau d'anatase nanometrique stabilize par des lacunes cationiques, procedes pour leur preparation et leurs utilisations

Country Status (7)

Country Link
US (1) US10680241B2 (fr)
EP (1) EP3221909A4 (fr)
JP (1) JP6692810B2 (fr)
KR (1) KR102411459B1 (fr)
CN (1) CN107210430B (fr)
CA (1) CA2963732C (fr)
WO (1) WO2016077933A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111943266B (zh) * 2020-08-28 2022-06-21 郑州轻工业大学 一种空位氮化钒钛的制备方法及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597515A (en) * 1995-09-27 1997-01-28 Kerr-Mcgee Corporation Conductive, powdered fluorine-doped titanium dioxide and method of preparation
KR20110099131A (ko) * 2008-12-16 2011-09-06 솔베이 플루오르 게엠베하 보호피막을 구비한 금속 부품들
CN102001702A (zh) * 2009-08-31 2011-04-06 比亚迪股份有限公司 一种二氧化钛材料及其制备方法和应用
CN101847712B (zh) * 2010-03-17 2012-10-31 上海大学 在多壁碳纳米管表面沉积纳米TiO2提高锂离子存储性能的方法
CN101937985B (zh) * 2010-08-19 2013-03-06 北京科技大学 一种石墨烯/二氧化钛锂离子电池负极材料及制备方法
CN101958413B (zh) * 2010-08-20 2012-11-07 华南师范大学 一种动力锂离子电池二氧化钛纳米棒负极材料及其制备方法
WO2012083220A2 (fr) * 2010-12-16 2012-06-21 The Regents Of The University Of California Génération d'oxydes de métaux de transition dont les défauts sont hautement passivés de type n par insertion de fluor par plasma
JP5208244B2 (ja) * 2011-05-06 2013-06-12 株式会社豊田自動織機 リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法
JP2013030420A (ja) * 2011-07-29 2013-02-07 Doshisha 表面フッ素化b型酸化チタンを含むリチウムイオン電池用負極材料とその製造方法、およびそれを用いたリチウムイオン電池

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Effects ofF- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders", CHEM. MATER., vol. 14, no. 9, 2002, pages 3808 - 3816, XP007908501 *
CORRADINI, D. ET AL.: "Tunning the Electronic Structure of Anatase Through Fluorination.", SCI. REP., vol. 5, 26 June 2015 (2015-06-26), pages 11553, XP055445583 *
JIWEI MA ET AL.: "Influence of Controlling Titanium Vacancies on Electrochemical Properties of Fluorinated Ti-based Anatase", JOURNÉES ANNUELLES DE LA SF2M 2015 JA20 15, MATÉRIAUX ET CONVERSION D'ÉNERGIE, 26 October 2015 (2015-10-26), XP055445590 *
LI ET AL.: "High Substitution Rate in TiO2 Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage", CHEMISTRY OF MATERIALS, 24 June 2015 (2015-06-24), XP055445575 *
See also references of EP3221909A4 *
TOSONI ET AL.: "Electronic Structure of F-Doped Bulk Rutile, Anatase, and Brookite Polymorphs of TiO2", J. PHYS. CHEM. C, vol. 116, no. 23, 23 May 2012 (2012-05-23), C/Jarama 5,45007 Toledo, Spain, pages 12738 - 12746, XP055445569 *

Also Published As

Publication number Publication date
CN107210430A (zh) 2017-09-26
US10680241B2 (en) 2020-06-09
CN107210430B (zh) 2020-12-15
US20180277840A1 (en) 2018-09-27
KR102411459B1 (ko) 2022-06-22
CA2963732A1 (fr) 2016-05-26
EP3221909A4 (fr) 2018-05-30
JP6692810B2 (ja) 2020-05-13
JP2017536320A (ja) 2017-12-07
EP3221909A1 (fr) 2017-09-27
CA2963732C (fr) 2023-03-14
KR20170084311A (ko) 2017-07-19

Similar Documents

Publication Publication Date Title
JP7427156B2 (ja) ニッケル酸リチウム系正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
Chen et al. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries
EP2349924B1 (fr) Fluorosulfates utiles comme materiaux d&#39;electrode
CA2428090C (fr) Particules a base de li4ti5o12, de li(4-.alpha.)z.alpha.ti5o12, ou li4z.beta.ti(5-.beta.)o12, leurs procedes d&#39;obtention et leur utilisation dans des dispositifs electrochimiques
JP7458996B2 (ja) フッ化物イオン電気化学セル用バリウムドープ複合電極材料
EP2820705A1 (fr) Sulfates utiles comme matériaux d&#39;électrode
EP2683478A1 (fr) Nouveau matériau fluoré utilisable comme matière active d&#39;électrode
Jiao et al. Sn-doped rutile TiO2 hollow nanocrystals with enhanced lithium-ion batteries performance
US20140170497A1 (en) Negative electrode material for lithium ion batteries containing surface-fluorinated b-type titanium oxide powder, method for producing same, and lithium ion battery using same
EP2179968A1 (fr) Materiau d&#39;electrode positive pour accumulateur lithium-ion
Stenina et al. Synthesis and ionic conductivity of Li 4 Ti 5 O 12
US20150044542A1 (en) Amorphous titania/carbon composite electrode materials
CN112919533A (zh) 一种氮掺杂碳包覆的磷掺杂二氧化钛材料及其制备方法与应用
US9745202B2 (en) Metal cyanometallate synthesis method
US20150017569A1 (en) Mesoporous silicon synthesis and applications in li-ion batteries and solar hydrogen fuel cells
CA2963732C (fr) Reseau d&#39;anatase nanometrique stabilise par des lacunes cationiques, procedes pour leur preparation et leurs utilisations
US20150266745A1 (en) Metal Cyanometallate Synthesis Method
Anwar et al. Cathodic titania nanotube arrays as anode material for lithium-ion batteries
Zhang et al. High stability and high performance nitrogen doped carbon containers for lithium-ion batteries
FR3047001A1 (fr) Compose oxy-hydroxyde de titane et son procede de fabrication, electrode et catalyseur le comprenant.
Kumar et al. Tuning the cathodic-anodic electrochemical transition in lithium iron borate by optimizing synthesis parameters, anionic doping and potential window
Samuel et al. Facile and rapid method of synthesizing Lithium Titanate for the use in energy storage
CN110622336B (zh) 蓄电装置用钛酸锂组合物、蓄电装置用隔板和蓄电装置
WO2022136707A1 (fr) Cellules électrochimiques basées sur l&#39;intercalation et la désintercalation d&#39;anions de chalcogène
WO2020090172A1 (fr) Matériau actif d&#39;électrode négative et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2963732

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017525838

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15528140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015861644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177016609

Country of ref document: KR

Kind code of ref document: A