CN107200582A - 一种以天然萤石矿物为原料制备多晶透明陶瓷的方法 - Google Patents

一种以天然萤石矿物为原料制备多晶透明陶瓷的方法 Download PDF

Info

Publication number
CN107200582A
CN107200582A CN201710425731.4A CN201710425731A CN107200582A CN 107200582 A CN107200582 A CN 107200582A CN 201710425731 A CN201710425731 A CN 201710425731A CN 107200582 A CN107200582 A CN 107200582A
Authority
CN
China
Prior art keywords
transparent ceramic
raw material
mineral
polycrystalline transparent
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710425731.4A
Other languages
English (en)
Other versions
CN107200582B (zh
Inventor
刘作冬
贾梦盈
井强山
刘鹏
于永生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyang Normal University
Original Assignee
Xinyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyang Normal University filed Critical Xinyang Normal University
Priority to CN201710425731.4A priority Critical patent/CN107200582B/zh
Publication of CN107200582A publication Critical patent/CN107200582A/zh
Application granted granted Critical
Publication of CN107200582B publication Critical patent/CN107200582B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,步骤如下:1)选择天然萤石矿物为原料,将矿物粉磨成粒度小于100μm的细粉;2)选用石墨模具,在模具中垫衬石墨纸,将步骤1)得到的萤石矿粉装入模具中,石墨纸将模具与粉体隔离开;3)将装填好的石墨模具放入真空热压炉中进行烧结;4)烧结结束后将陶瓷取出,进行双面抛光处理,即得到多晶透明陶瓷材料。与现有制备氟化物多晶透明陶瓷技术相比,本发明选用天然萤石矿物为原料,通过矿物粉磨‑烧结‑后处理等工艺过程,制备多晶陶瓷材料。其优点在于:本发明操作简单,无人工合成氟化物粉体流程,简化了多晶透明陶瓷的制备工艺,并对环境无污染,绿色环保。

Description

一种以天然萤石矿物为原料制备多晶透明陶瓷的方法
技术领域
本发明涉及多晶透明陶瓷制备的领域,具体为一种以天然萤石矿物为原料,制备多晶透明陶瓷的方法。
背景技术
萤石是一种极具战略意义的无机非金属矿产资源,具有广泛的工业用途。中国萤石矿床分布广泛,主要分布于浙江、湖南、江西、福建、河南和内蒙古等地区。萤石矿产资源的高效利用与开发,对于现代工业的发展具有非常重要的作用。随着世界经济快速发展,矿产资源需求与消耗量不断攀升,包括萤石在内的矿产资源的应用日益受到重视。合理开发我国萤石资源,增加矿产制品的附加值,定能取得巨大的经济效益。
萤石的主要成分是氟化钙(CaF2),自然形成的萤石矿物常显鲜艳的颜色,而纯净的萤石则为无色透明。氟化钙作为一种性能优异的光学材料,具有良好的化学稳定性和高透光性等特性,在紫外光刻、天文观测、侦查及高性能光学仪器中得到广泛应用。然而天然形成的光学萤石矿物因尺寸较小,限制了其在各领域的应用。
多晶透明陶瓷是20世纪中期发展起来的一类陶瓷材料,不仅具有陶瓷固有的耐高温、耐腐蚀、高强度、高硬度等特点,还具有与玻璃相近的光学性质。基于多晶透明陶瓷这些优异的特性,许多国家对此类陶瓷材料进行了深入的研究,并开发出一系列应用于激光、照明、医疗器械以及国防等重要科技领域的透明陶瓷。多晶透明陶瓷也因其制备工艺简单,成为获得大尺寸光学材料的一条非常有吸引力的途径。
多晶透明陶瓷的制备工艺与其他功能陶瓷材料制备工艺相似,但其工艺又具有其自身独有的特点,特别是在原料制备与陶瓷烧结两个阶段。多晶透明陶瓷的制备要求在各个工艺流程中将气孔、杂质及第二杂相等各种会对光线造成散射与吸收的缺陷降到最低。为降低多晶陶瓷的缺陷浓度,多选用人工合成的高纯粉体为多晶透明陶瓷制备的原料。2009年,P. Aubry等以共沉淀法合成的Yb:CaF2纳米粉体为原料,制备出Yb:CaF2透明陶瓷,样品在1200 nm波长处的透过率为55%(参见文献P. Aubry, A. Bensalah, P. Gredin, etal. Synthesis and optical characterizations of Yb-doped ceramis[J]. OpticalMaterials, 2009, 31: 750-753.)。
目前制备CaF2等氟化物多晶透明陶瓷材料所选用的原料,是人工合成的高纯氟化物纳米粉体,还未见以天然萤石矿物为原料制备氟化物多晶透明陶瓷材料的研究成果,因此,提供一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,是一个值得研究的方法。
发明内容
为了拓宽萤石矿物的应用领域及制备氟化物多晶透明陶瓷的原料来源,本发明提供了一种以天然萤石矿物为原料制备多晶透明陶瓷的方法。
本发明的目的是这样实现的:
一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,其具体步骤包括:
1)天然萤石矿物的粉磨:选择天然萤石矿物为原料,将矿物粉磨成细粉;
2)粉末原料装样:选用石墨模具,在模具中垫衬石墨纸,将步骤1)得到的萤石矿粉装入模具中,石墨纸将模具与粉体隔离开;
3)多晶透明陶瓷烧结:将步骤2)装填好的石墨模具放入真空热压炉中进行烧结;
4)陶瓷样品处理:烧结结束后将陶瓷取出,进行双面抛光处理,即得到多晶透明陶瓷材料。
所述的步骤1)中萤石矿物经粉磨后得到的粉体粒径小于100 μm。
所述的步骤2)中所用石墨纸厚度为0.05 mm ~ 0.2 mm。
所述的步骤3)烧结的工艺条件是:真空度≤ 10 Pa,烧结温度1000 ℃~ 1300 ℃、压力为20 MPa ~ 60 MPa、保温时间30 min ~ 180 min。
所述的步骤3)中升温速率为5 ℃/min ~ 20 ℃/min。
积极有益效果:1.本发明选用天然萤石矿物为原料,原料易得,价格低廉,拓宽了制备氟化物多晶透明陶瓷原料来源范围。且在原料准备阶段,没有使用化学试剂,涉及的工艺过程操作简单,适合推广应用;2. 本发明首先对天然萤石矿物进行粉磨,得到粒径较小的粉体(粒径小于100 μm)作为陶瓷烧结的原料,能够显著提高矿物的烧结活性,降低烧结温度,缩短制备周期,获得多晶透明陶瓷材料;3. 本发明制备出的多晶透明陶瓷样品致密度大于99.5 %,在可见-近红外波段最高光线透过率超过60 %。
附图说明:
图1为经粉磨后得到的天然萤石矿物粉体;
图2是所制备的多晶透明陶瓷图片;
图3是多晶透明陶瓷断面形貌图片;
图4是多晶透明陶瓷透过率曲线图。
具体实施方式
为了更好的理解本发明,下面结合附图,对优选实例进行详细的说明。但本发明并不仅限于下述实例。相反,提供这些实例是为了解释和阐述本发明的基本原理及实际应用,从而使本领域的其他技术人员能够了解本发明及作出特定的预期修改。若无特别说明,本发明中采用的各种原料及其它耗材均可通过市场购买得到。
实施例1
1)天然萤石矿物的粉磨:选择天然萤石矿物为原料,并将矿物粉磨成粒度小于100 μm的细粉;
2)矿物粉末原料装样:选用内径为40 mm的石墨模具,在模具中垫衬石墨纸,再称量10g萤石矿粉装入模具中,石墨纸将模具与粉体隔离开,石墨纸厚度为0.2 mm;
3)多晶透明陶瓷的烧结:将装填好的石墨模具放入真空热压炉内,抽真空至优于10Pa,以10℃/min的速率升温至1100 ℃,然后施加压力 30 MPa,保温120 min;
4)多晶透明陶瓷的处理:待石墨模具与陶瓷样品随炉冷却至室温后取出,选用不同型号的砂纸对陶瓷样品进行打磨后,在自动抛光机上,用金刚石抛光液进行双面抛光,即得到萤石矿物多晶透明陶瓷。
如图1所示为经过粉磨后得到的萤石矿物粉末,粉体粒径小于100 μm。图2为经1100℃烧结后得到多晶透明陶瓷样品,直径为40 mm,透过陶瓷样品纸面上的字体清晰可见。图3为陶瓷样品的断面扫描图,可以看出陶瓷样品的显微结构非常致密,几乎没有残余气孔的存在。图4所示为陶瓷样品在可见-近红外波段的透过率曲线图,可以看出陶瓷样品的最高光线透过率超过60%。
实施例2
1)天然萤石矿物的粉磨:选择天然萤石矿物为原料,并将矿物粉磨成粒度小于100 μm的细粉;
2)矿物粉末原料装样:选用内径为40 mm的石墨模具,在模具中垫衬石墨纸,再称量10g萤石矿粉装入模具中,石墨纸将模具与粉体隔离开,石墨纸厚度为0.2mm;
3)多晶透明陶瓷的烧结:将装填好的石墨模具放入真空热压炉内,抽真空至优于10Pa,以10℃/min的速率升温至1200 ℃,然后施加压力 30 MPa,保温120 min;
4)多晶透明陶瓷的处理:待石墨模具与陶瓷样品随炉冷却至室温后取出,选用不同型号的砂纸对陶瓷样品进行打磨后,在自动抛光机上,用金刚石抛光液进行双面抛光,即得到萤石矿物多晶透明陶瓷。
实施例3
1)天然萤石矿物的粉磨:选择天然萤石矿物为原料,并将矿物粉磨成粒度小于100 μm的细粉;
2)矿物粉末原料装样:选用内径为40 mm的石墨模具,在模具中垫衬石墨纸,再称量10g萤石矿粉装入模具中,石墨纸将模具与粉体隔离开,石墨纸厚度为0.05 mm;
3)多晶透明陶瓷的烧结:将装填好的石墨模具放入真空热压炉内,抽真空至优于10Pa,以15℃/min的速率升温至1100 ℃,然后施加压力 30 MPa,保温60 min;
4)多晶透明陶瓷的处理:待石墨模具与陶瓷样品随炉冷却至室温后取出,选用不同型号的砂纸对陶瓷样品进行打磨后,在自动抛光机上,用金刚石抛光液进行双面抛光,即得到萤石矿物多晶透明陶瓷。
实施例4
1)天然萤石矿物的粉磨:选择天然萤石矿物为原料,并将矿物粉磨成粒度小于100 μm的细粉;
2)矿物粉末原料装样:选用内径为40 mm的石墨模具,在模具中垫衬石墨纸,再称量10g萤石矿粉装入模具中,石墨纸将模具与粉体隔离开,石墨纸厚度为0.05 mm;
3)多晶透明陶瓷的烧结:将装填好的石墨模具放入真空热压炉内,抽真空至优于10Pa,以15℃/min的速率升温至1200 ℃,然后施加压力 30 MPa,保温60 min;
4)多晶透明陶瓷的处理:待石墨模具与陶瓷样品随炉冷却至室温后取出,选用不同型号的砂纸对陶瓷样品进行打磨后,在自动抛光机上,用金刚石抛光液进行双面抛光,即得到萤石矿物多晶透明陶瓷。
实施例5
1)天然萤石矿物的粉磨:选择天然萤石矿物为原料,并将矿物粉磨成粒度小于100 μm的细粉;
2)矿物粉末原料装样:选用内径为40 mm的石墨模具,在模具中垫衬石墨纸,再称量10g萤石矿粉装入模具中,石墨纸将模具与粉体隔离开,石墨纸厚度为0.1 mm;
3)多晶透明陶瓷的烧结:将装填好的石墨模具放入真空热压炉内,抽真空至优于10Pa,以20℃/min的速率升温至1300 ℃,然后施加压力 60 MPa,保温180 min;
4)多晶透明陶瓷的处理:待石墨模具与陶瓷样品随炉冷却至室温后取出,选用不同型号的砂纸对陶瓷样品进行打磨后,在自动抛光机上,用金刚石抛光液进行双面抛光,即得到萤石矿物多晶透明陶瓷。
与现有制备氟化物多晶透明陶瓷工艺相比,本发明的特点在于:选用天然萤石矿物为原料,矿物经粉磨后,采用真空热压烧结技术制备多晶透明陶瓷材料,突破了现有制备氟化物多晶透明陶瓷以人工合成的高纯氟化物粉体为原料的限制。实验证明:采用本发明,可实现以天然萤石矿物为原料制备多晶透明陶瓷材料。根据上述方案制备的陶瓷样品,致密度≥99.5%,对于厚度为2.5 mm的陶瓷样品在可见-近红外波段最高光线透过率超过60%。本发明选用天然萤石矿物为原料,原料易得,价格低廉,拓宽了制备氟化物多晶透明陶瓷原料来源范围。且在原料准备阶段,没有使用化学试剂,涉及的工艺过程操作简单,适合推广应用;本发明首先对天然萤石矿物进行粉磨,得到粒径较小的粉体(粒径小于100 μm)作为陶瓷烧结的原料,能够显著提高矿物的烧结活性,降低烧结温度,缩短制备周期,获得多晶透明陶瓷材料。
最后应当指出,以上所述仅为本发明的优选实施例,只用于对本发明的技术方案作进一步详细地说明。对于本领域的技术人员根据本发明构思作出的若干非本质的改进和调整,均属于本发明的保护范围。

Claims (5)

1.一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,其特征在于,其具体步骤包括:
1)天然萤石矿物的粉磨:选择天然萤石矿物为原料,将矿物粉磨成细粉;
2)粉末原料装样:选用石墨模具,在模具中垫衬石墨纸,将步骤1)得到的萤石矿粉装入模具中,石墨纸将模具与粉体隔离开;
3)多晶透明陶瓷烧结:将步骤2)装填好的石墨模具放入真空热压炉中进行烧结;
4)陶瓷样品处理:烧结结束后将陶瓷取出,进行双面抛光处理,即得到多晶透明陶瓷材料。
2.根据权利要求1所述的一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,其特征在于:所述的步骤1)中萤石矿物经粉磨后得到的粉体粒径小于100 μm。
3.根据权利要求1所述的一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,其特征在于:所述的步骤2)中所用石墨纸厚度为0.05 mm ~ 0.2 mm。
4.根据权利要求1所述的一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,其特征在于:所述的步骤3)烧结的工艺条件是:真空度≤ 10 Pa,烧结温度1000 ℃~ 1300 ℃、压力为20 MPa ~ 60 MPa、保温时间30 min ~ 180 min。
5.根据权利要求1所述的一种以天然萤石矿物为原料制备多晶透明陶瓷的方法,其特征在于:所述的步骤3)中升温速率为5 ℃/min ~ 20 ℃/min。
CN201710425731.4A 2017-06-08 2017-06-08 一种以天然萤石矿物为原料制备多晶透明陶瓷的方法 Expired - Fee Related CN107200582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710425731.4A CN107200582B (zh) 2017-06-08 2017-06-08 一种以天然萤石矿物为原料制备多晶透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710425731.4A CN107200582B (zh) 2017-06-08 2017-06-08 一种以天然萤石矿物为原料制备多晶透明陶瓷的方法

Publications (2)

Publication Number Publication Date
CN107200582A true CN107200582A (zh) 2017-09-26
CN107200582B CN107200582B (zh) 2020-03-17

Family

ID=59908142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710425731.4A Expired - Fee Related CN107200582B (zh) 2017-06-08 2017-06-08 一种以天然萤石矿物为原料制备多晶透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN107200582B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279895A (zh) * 2018-10-12 2019-01-29 信阳师范学院 一种低温条件下制备萤石矿物多晶透明陶瓷的方法
CN109574671A (zh) * 2018-12-04 2019-04-05 信阳师范学院 一种以氟化钠为助剂的萤石矿物多晶透明陶瓷的制备方法
CN109627005A (zh) * 2018-12-20 2019-04-16 信阳师范学院 一种以氟化锂为助剂的真空热压烧结制备氟化钙透明陶瓷的方法
CN109665846A (zh) * 2018-12-17 2019-04-23 信阳师范学院 一种以市售氟化钙粉末为原料真空热压烧结制备透明陶瓷的方法
CN116529203A (zh) * 2020-12-28 2023-08-01 株式会社 尼康 氟化钙烧结体、氟化钙颗粒及烧结体的制造方法、光学元件及系统、替换镜头以及光学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459203A (en) * 1944-02-21 1949-01-18 George J Vahrenkamp Production of shaped articles from fluorite
US20030227670A1 (en) * 2001-07-18 2003-12-11 Nikon Corporation, Tokyo, Japan Optical element equipped with lanthanum fluoride film
CN101456734A (zh) * 2008-12-16 2009-06-17 中国计量学院 稀土氧化物固溶体陶瓷闪烁体及其制备方法
CN102126857A (zh) * 2011-01-31 2011-07-20 武汉理工大学 透明氟化钙陶瓷的制备方法
CN106116581A (zh) * 2016-06-22 2016-11-16 武汉理工大学 一种透明氟化钙陶瓷的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2459203A (en) * 1944-02-21 1949-01-18 George J Vahrenkamp Production of shaped articles from fluorite
US20030227670A1 (en) * 2001-07-18 2003-12-11 Nikon Corporation, Tokyo, Japan Optical element equipped with lanthanum fluoride film
CN101456734A (zh) * 2008-12-16 2009-06-17 中国计量学院 稀土氧化物固溶体陶瓷闪烁体及其制备方法
CN102126857A (zh) * 2011-01-31 2011-07-20 武汉理工大学 透明氟化钙陶瓷的制备方法
CN106116581A (zh) * 2016-06-22 2016-11-16 武汉理工大学 一种透明氟化钙陶瓷的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109279895A (zh) * 2018-10-12 2019-01-29 信阳师范学院 一种低温条件下制备萤石矿物多晶透明陶瓷的方法
CN109574671A (zh) * 2018-12-04 2019-04-05 信阳师范学院 一种以氟化钠为助剂的萤石矿物多晶透明陶瓷的制备方法
CN109665846A (zh) * 2018-12-17 2019-04-23 信阳师范学院 一种以市售氟化钙粉末为原料真空热压烧结制备透明陶瓷的方法
CN109627005A (zh) * 2018-12-20 2019-04-16 信阳师范学院 一种以氟化锂为助剂的真空热压烧结制备氟化钙透明陶瓷的方法
CN116529203A (zh) * 2020-12-28 2023-08-01 株式会社 尼康 氟化钙烧结体、氟化钙颗粒及烧结体的制造方法、光学元件及系统、替换镜头以及光学装置

Also Published As

Publication number Publication date
CN107200582B (zh) 2020-03-17

Similar Documents

Publication Publication Date Title
CN107200582A (zh) 一种以天然萤石矿物为原料制备多晶透明陶瓷的方法
CN106518089B (zh) 一种高性能大尺寸氮化硅陶瓷材料的制备方法
CN103803985B (zh) 纳米结构立方氮化硼—金刚石聚晶的制备方法
CN101948235B (zh) 制备高纯石英砂的方法
CN101935208B (zh) 稀土铝酸盐单相或复相纳米晶透明陶瓷材料及其制备方法
Shan et al. Influence of TiO2 on the physical properties of low-temperature ceramic vitrified bond and mechanical properties of CBN composites
CN108972373B (zh) 一种五轴数控硬质合金刀具用段差磨削金属陶瓷复合结合剂金刚石砂轮及其制备方法
CN104529421B (zh) 一种细晶莫来石陶瓷的制备方法
CN103350227A (zh) 一种大尺寸高密度钨坩埚及其制备方法
CN105833796A (zh) 一种透明立方氮化硼—金刚石聚晶的制备方法
CN111635231B (zh) 一种多晶金刚石透明陶瓷的制备方法
CN106566968A (zh) 一种滤光片玻璃切割用金刚石划片刀及其制备方法
CN100366581C (zh) 单晶硅拉制炉及多晶硅冶炼炉用炭/炭加热器的制备方法
CN109799621B (zh) 一种鼻托的制作工艺
CN106316134B (zh) 一种透辉石和长石主晶相微晶玻璃及其制备方法
CN107235658A (zh) 一种高硬高强人造石英石装饰板材制造方法
CN105856079A (zh) 一种低温烧结高强微晶玻璃陶瓷砂轮及其制备方法
CN103112862A (zh) 一种以废石英坩埚为原料生产熔融钝角石英砂的方法
Liu et al. Fabrication and microstructure characterizations of transparent polycrystalline fluorite ceramics
CN110240483B (zh) 一种利用晶硅废砂浆制备碳化硅多孔陶瓷的方法
CN106041759A (zh) 超硬材料制品用添加剂原料组合物,添加剂及其制备方法,复合结合剂及超硬材料制品
CN107628813A (zh) 一种降低萤石矿物制备多晶透明陶瓷烧结温度的方法
CN113184854B (zh) 一种回收太阳能级硅金刚线切割废料的方法
CN110372315B (zh) 一种光伏生产过程中固废的利用方法及人造石英石
CN102351540B (zh) LiAlON透明陶瓷的无压烧结制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200317