CN107180992A - 一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池 - Google Patents

一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池 Download PDF

Info

Publication number
CN107180992A
CN107180992A CN201710433032.4A CN201710433032A CN107180992A CN 107180992 A CN107180992 A CN 107180992A CN 201710433032 A CN201710433032 A CN 201710433032A CN 107180992 A CN107180992 A CN 107180992A
Authority
CN
China
Prior art keywords
combination electrode
lithium battery
electrolyte
preparation
solid lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710433032.4A
Other languages
English (en)
Inventor
姚霞银
万红利
蔡梁婷
许晓雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201710433032.4A priority Critical patent/CN107180992A/zh
Publication of CN107180992A publication Critical patent/CN107180992A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种全固态锂电池复合电极材料的制备方法,包括:A)将电极活性材料、硫化物电解质和溶剂混合,得到复合电极材料前驱体溶液;B)将所述复合电极材料前驱体溶液抽滤后干燥,得到复合电极前驱体粉末;C)将所述复合电极前驱体粉末在保护气氛下进行烧结,得到复合电极材料。本发明提供的制备方法可以改善电解质在电极活性物质表面的分布,得到的全固态锂电池复合电极应用于全固态锂电池时,可以提高全固态锂电池的首次效率,循环性能和倍率性能。

Description

一种全固态锂电池复合电极材料及其制备方法以及一种全固 态锂电池
技术领域
本发明属于锂离子电池技术领域,具体涉及一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池。
背景技术
固态锂电池的安全性能优异,与传统的液态锂离子电池相比,不存在电解液泄露、气胀、爆炸等问题。除此之外,固态锂电池使用的固体电解质会抑制锂枝晶生长,因此在固态锂电池中可以使用金属锂电极,从而显著提高能量密度、循环性能、安全性能。以上优点使全固态锂电池在实际应用中具有很大潜力,因此无论在学术界还是工业界,进一步开发安全性好、能量密度高的锂金属电池的研究都处于前沿热点。
全固态锂电池的性能与固体电解质的离子电导率,电解质和电极材料之间的界面问题具有很大联系。近来,三元电解质Li10GeP2S12的离子电导率已经达到10-2S/cm级别,其可以与液态电解质相媲美,因此界面问题成为制约固体电解质实际应用的关键因素。全固态锂电池中的正极,一般是由电极活性物质,电解质,导电剂三者混合而成的复合电极。因此,在复合电极中存在着三相界面,界面阻抗会对电池的性能产生极大影响。通过传统的研磨法制备的复合电极存在混合不均匀问题,影响全固态锂金属电池的性能。在电极活性物质表面包覆电解质是解决界面问题的关键技术,通过包覆,活性物质与电解质之间的接触紧密,更均匀,从而有助于显著提高全固态电池的电化学性能。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池,由本发明的制备方法得到的全固态锂电池复合电极材料制备的全固态锂电池具有较高的首次效率,循环性能和倍率性能。
本发明提供了一种全固态锂电池复合电极材料的制备方法,包括:
A)将电极活性材料、硫化物电解质和溶剂混合,得到复合电极材料前驱体溶液;
B)将所述复合电极材料前驱体溶液抽滤后干燥,得到复合电极前驱体粉末;
C)将所述复合电极前驱体粉末在保护气氛下进行烧结,得到复合电极材料。
优选的,所述电极活性材料选自硫化物、氧化物、碳族材料或磷化物中的一种。
优选的,所述硫化物电解质选自Li3PS4、Li7P3S11、Li10GeP2S12、Li6PS5Cl、Li7P2S8I、Li10SnP2S12、Li3.25Ge0.25P0.75S4、式I所示化合物和式II所示化合物中的一种或多种;
(1-x)Li3PS4·xLiM,式I;
式I中,x=0~1.0,M选自Cl、Br或I;
(1-y)Li7P3S11·yLiM,式II;
式II中,y=0~1.0,M选自Cl、Br或I。
优选的,所述电极活性材料与硫化物电解质的质量比为(0.43~99):1。
优选的,所述混合的温度为25~190℃,所述混合的时间为0.5~96小时。
优选的,所述溶剂选自乙醇、乙腈、N-甲基甲酰胺、甲醇、氯苯、四氢呋喃、乙二醇二甲醚、碳酸二甲酯、乙酸乙酯和正己烷的一种或多种。
优选的,所述烧结的温度为150℃~900℃;所述烧结的时间为0.5h~72h;所述保护气氛为氮气或氩气。
本发明还提供了一种上述制备方法制备得到的全固态锂电池复合电极材料。
本发明还提供了一种全固态锂电池,包括正极、负极和设置在正极和负极之间的硫化物固体电解质层,所述正极包括上述制备方法制备得到的全固态锂电池复合电极材料。
与现有技术相比,本发明提供了一种全固态锂电池复合电极材料的制备方法,包括:A)将电极活性材料、硫化物电解质和溶剂混合,得到复合电极材料前驱体溶液;B)将所述复合电极材料前驱体溶液抽滤后干燥,得到复合电极前驱体粉末;C)将所述复合电极前驱体粉末在保护气氛下进行烧结,得到复合电极材料。本发明提供的制备方法可以改善电解质在电极活性物质表面的分布,得到的全固态锂电池复合电极应用于全固态锂电池时,可以提高全固态锂电池的首次效率,循环性能和倍率性能。
具体实施方式
本发明提供了一种全固态锂电池复合电极的制备方法,包括:
A)将电极活性材料、硫化物电解质和溶剂混合,得到复合电极材料前驱体溶液;
B)将所述复合电极材料前驱体溶液抽滤后干燥,得到复合电极前驱体粉末;
C)将所述复合电极前驱体粉末在保护气氛下进行烧结,得到复合电极材料。
本发明首先将电极活性材料、硫化物电解质和溶剂混合,得到复合电极材料前驱体溶液;
其中,所述电极活性材料选自硫化物、氧化物、碳族材料或磷化物中的一种,优选为Cu2SnS3、ZnO、石墨、P或Sn4P3
所述硫化物电解质选自Li3PS4、Li7P3S11、Li10GeP2S12、Li6PS5Cl、Li7P2S8I、Li10SnP2S12、Li3.25Ge0.25P0.75S4、式I所示化合物和式II所示化合物中的一种或多种;
(1-x)Li3PS4·xLiM,式I;
式I中,x=0~1.0,M选自Cl、Br或I;
(1-y)Li7P3S11·yLiM,式II;
式II中,y=0~1.0,M选自Cl、Br或I。
所述硫化物电解质优选为Li3PS4、Li7P3S11或Li10GeP2S12
所述电极活性材料与硫化物电解质的质量比为(0.43~99):1,优选为(1~49):1,更优选为(1.5~19):1。
所述溶剂选自乙醇、乙腈、N-甲基甲酰胺、甲醇、氯苯、四氢呋喃、乙二醇二甲醚、碳酸二甲酯、乙酸乙酯和正己烷的一种或多种,优选为乙醇、乙腈或N-甲基甲酰胺。
将电极活性材料、硫化物电解质和溶剂混合,所述混合的温度为25~190℃,优选为35~150℃,更优选为50~110℃;所述混合的时间为0.5~96小时,优选为1~48小时,更优选为12~24小时。
反应结束后,得到复合电极材料前驱体溶液。
接着,将所述复合电极材料前驱体溶液抽滤后干燥,得到复合电极前驱体粉末。本发明对所述抽滤和干燥的方式并没有特殊限制,本领域涉及人员公知的抽滤和干燥方式即可。在本发明中,所述抽滤和干燥其目的是为了保证溶剂全部挥发。
最后,将所述复合电极前驱体粉末在保护气氛下进行烧结,得到复合电极材料。
其中,所述烧结的温度为150℃~900℃,优选为230~750℃,更优选为250~620℃;所述烧结的时间为0.5h~72h,优选为1~48小时,更优选为2~12小时;所述保护气氛为氮气或氩气。
所述全固态锂电池复合电极材料可通过调节反应时间,电极活性物质与电解质的比例,所用溶剂来调控电解质在电极活性物质表面的分布,进而改善全固态锂电池性能。通过改变退火温度,退火时间可改善电解质的电导率、电化学窗口等性能。通过调节电解质在电极活性物质表面的负载量(电极活性物质与电解质的比例),可有效提高全固态锂电池的循环性能和倍率性能。
本发明提供的制备方法与传统手磨法所制备复合电极相比,具有电解质在电极活性物质表面分布均匀、界面阻抗小、制备周期短、成本低等优点。
本发明还提供了一种采用上述制备方法制备得到的全固态锂电池复合电极。
本发明还提供了一种全固态锂电池,包括正极、负极和设置在正极和负极之间的硫化物固体电解质层,所述正极为上述制备方法制备得到的全固态锂电池复合电极。其中,所述硫化物固体电解质层可为单层或多层,多层电解质层中可包括二元,三元硫化物固体电解质。所述负极材料优选金属锂。
采用本发明制备的全固态锂电池复合电极所组装电池具有优异的循环性能和倍率性能。
为了进一步理解本发明,下面结合实施例对本发明提供的全固态锂电池复合电极及其制备方法以及全固态锂电池进行说明,本发明的保护范围不受以下实施例的限制。
实施例1
在手套箱氩气气氛保护下,(1)将电极活性物质Cu2SnS3,电解质Li7P3S11(Cu2SnS3/Li7P3S11=1.5),在无水乙醇中混合,50℃下搅拌24h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;将步骤2)得到的前驱体粉末在250℃下退火2h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li7P3S11溶于无水乙醇后,50℃下搅拌24h,烘干,烧结所得到电解质Li7P3S11的电导率为:1.03×10-3S/cm。CV测试结果表明:电解质Li7P3S11在-0.5V-6V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li7P3S11具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为901mAh/g,首次效率为81%。且循环50圈之后,其容量保持在697.3mAh/g。
实施例2
在手套箱氩气气氛保护下,(1)将电极活性物质Cu2SnS3,电解质Li3PS4(Cu2SnS3/Li3PS4=0.43),在无水乙醇中混合,25℃下搅拌0.5h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;(3)将步骤2)所得到的前驱体粉末在230℃下退火1h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li3PS4溶于无水乙醇后,25℃下搅拌0.5h,烘干,烧结所得到电解质Li3PS4的电导率为:2.0×10-4S/cm。CV测试结果表明:电解质Li3PS4在-0.5V-5V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li3PS4具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为835mAh/g,首次效率为62%。且循环50圈之后,其容量保持在495mAh/g。
实施例3
在手套箱氩气气氛保护下,(1)将电极活性物质ZnO,电解质Li7P3S11(ZnO/Li7P3S11=19),在乙腈中混合,35℃下搅拌12h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;(3)将步骤2)所得到的前驱体粉末在150℃下退火72h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li7P3S11溶于乙腈后,35℃下搅拌12h,烘干,烧结所得到电解质Li7P3S11的电导率为:1.18×10-3S/cm。CV测试结果表明:电解质Li7P3S11在-0.5V-6V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li7P3S11具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为859.7mAh/g,首次效率为83%。且循环50圈之后,其容量保持在698.5mAh/g。
实施例4
在手套箱氩气气氛保护下,(1)将电极活性物质ZnO,电解质Li10GeP2S12(ZnO/Li10GeP2S12=49),在N-甲基甲酰胺中混合,110℃下搅拌48h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;将步骤2)所得到的前驱体粉末在620℃下退火12h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li10GeP2S12溶于N-甲基甲酰胺后,110℃下搅拌48h,烘干,烧结所得到电解质Li10GeP2S12的电导率为:7.9×10-3S/cm。CV测试结果表明:电解质Li10GeP2S12在-0.5V-10V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li10GeP2S12具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为917.6mAh/g,首次效率为89%。且循环50圈之后,其容量保持在795.4mAh/g。
实施例5
在手套箱氩气气氛保护下,(1)将电极活性物质石墨,电解质Li7P3S11(石墨/Li7P3S11=1),在N-甲基甲酰胺中混合,190℃下搅拌1h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;(3)将步骤2)所得到的前驱体粉末在260℃下退火0.5h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li7P3S11溶于N-甲基甲酰胺后,190℃下搅拌1h,烘干,烧结所得到电解质Li7P3S11的电导率为:8.7×10-4S/cm。CV测试结果表明:电解质Li7P3S11在-0.5V-6V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li7P3S11具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为225mAh/g,首次效率为75%。且循环50圈之后,其容量保持在148.9mAh/g。
实施例6
在手套箱氩气气氛保护下,(1)将电极活性物质石墨,电解质Li10GeP2S12(石墨/Li10GeP2S12=99),在乙腈中混合,50℃下搅拌96h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;(3)将步骤2)所得到的前驱体粉末在900℃下退火48h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li10GeP2S12溶于乙腈后,烘干,烧结所得到电解质Li10GeP2S12的电导率为:6.8×10-3S/cm。CV测试结果表明:电解质Li10GeP2S12在-0.5V-10V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li10GeP2S12具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为234mAh/g,首次效率为79%。且循环50圈之后,其容量保持在170.2mAh/g。
实施例7
在手套箱氩气气氛保护下,(1)将电极活性物质石墨,电解质Li10GeP2S12(石墨/Li10GeP2S12=9),在N-甲基甲酰胺中混合,150℃下搅拌24h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;(3)将步骤2)所得到的前驱体粉末在750℃下退火12h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li10GeP2S12溶于N-甲基甲酰胺后,烘干,烧结所得到电解质Li10GeP2S12的电导率为:6.8×10-3S/cm。CV测试结果表明:电解质Li10GeP2S12在-0.5V-10V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li10GeP2S12具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为258mAh/g,首次效率为85%。且循环50圈之后,其容量保持在201.5mAh/g。
实施例8
在手套箱氩气气氛保护下,(1)将电极活性物质P,电解质Li6PS5Cl(P/Li6PS5Cl=4),在无水乙醇中混合,50℃下搅拌24h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;将步骤2)得到的前驱体粉末在550℃下退火4h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li6PS5Cl溶于无水乙醇后,50℃下搅拌24h,烘干,烧结所得到电解质Li6PS5Cl的电导率为:1.1×10-3S/cm。CV测试结果表明:电解质Li6PS5Cl在-0.5V-6V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li6PS5Cl具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为1960mAh/g,首次效率为89%。且循环50圈之后,其容量保持在1500mAh/g。
实施例9
在手套箱氩气气氛保护下,(1)将电极活性物质Sn4P3,电解质Li3.25Ge0.25P0.75S4(Sn4P3/Li3.25Ge0.25P0.75S4=3),在无水乙醇中混合,50℃下搅拌24h,得到的复合电极材料前驱体溶液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;将步骤2)得到的前驱体粉末在600℃下退火8h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布均匀。
阻抗测试结果表明:将电解质Li3.25Ge0.25P0.75S4溶于无水乙醇后,50℃下搅拌24h,烘干,烧结所得到电解质Li3.25Ge0.25P0.75S4的电导率为:5.5×10-3S/cm。CV测试结果表明:电解质Li3.25Ge0.25P0.75S4在-0.5V-6V电压范围内进行CV测试,曲线上没有其他副反应的氧化还原峰,说明电解质Li3.25Ge0.25P0.75S4具有宽的电化学窗口。
将上述制备得到的复合电极材料应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为1200mAh/g,首次效率为80%。且循环50圈之后,其容量保持在851mAh/g。
对比例1
在手套箱氩气气氛保护下,(1)将电极活性物质Cu2SnS3,电解质Li3PS4(Cu2SnS3/Li3PS4=0.25),在无水乙醇中混合,25℃下搅拌0.5h,得到的复合电极材料悬浮液;(2)将步骤1)所得到的前驱体溶液抽滤,干燥,保证溶剂全部挥发,得到复合电极前驱体粉末;(3)将步骤2)所得到的前驱体粉末在130℃下退火48h得到复合电极材料。结果表明,复合电极材料中的电解质在电极表面分布不均匀。将此复合电极应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为701.3mAh/g,首次效率为43%。且循环50圈之后,其容量衰减为205.6mAh/g。
对比例2
在手套箱氩气气氛保护下,将电极活性物质Cu2SnS3,电解质Li3PS4(Cu2SnS3/Li3PS4=0.8)在玛瑙研钵中手磨得到复合电极材料,结果表明,复合电极材料中的电解质在电极表面分布不均匀。将此复合电极应用于全固态锂电池中,将该电池在50mA/g下进行充放电测试,结果表明:其首次比容量为726.5mAh/g,首次效率为45%。且循环50圈之后,其容量衰减为246.3mAh/g。
实施例及对比例相关参数及结果如表1所示:
表1 实施例及对比例相关参数及结果
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种全固态锂电池复合电极材料的制备方法,其特征在于,包括:
A)将电极活性材料、硫化物电解质和溶剂混合,得到复合电极材料前驱体溶液;
B)将所述复合电极材料前驱体溶液抽滤后干燥,得到复合电极前驱体粉末;
C)将所述复合电极前驱体粉末在保护气氛下进行烧结,得到复合电极材料。
2.根据权利要求1所述的制备方法,其特征在于,所述电极活性材料选自硫化物、氧化物、碳族材料或磷化物中的一种。
3.根据权利要求1所述的制备方法,其特征在于,所述硫化物电解质选自Li3PS4、Li7P3S11、Li10GeP2S12、Li6PS5Cl、Li7P2S8I、Li10SnP2S12、Li3.25Ge0.25P0.75S4、式I所示化合物和式II所示化合物中的一种或多种;
(1-x)Li3PS4·xLiM,式I;
式I中,x=0~1.0,M选自Cl、Br或I;
(1-y)Li7P3S11·yLiM,式II;
式II中,y=0~1.0,M选自Cl、Br或I。
4.根据权利要求1所述的制备方法,其特征在于,所述电极活性材料与硫化物电解质的质量比为(0.43~99):1。
5.根据权利要求1所述的制备方法,其特征在于,所述混合的温度为25~190℃,所述混合的时间为0.5~96小时。
6.根据权利要求1所述的制备方法,其特征在于,所述溶剂选自乙醇、乙腈、N-甲基甲酰胺、甲醇、氯苯、四氢呋喃、乙二醇二甲醚、碳酸二甲酯、乙酸乙酯和正己烷的一种或多种。
7.根据权利要求1所述的制备方法,其特征在于,所述烧结的温度为150℃~900℃;所述烧结的时间为0.5h~72h;所述保护气氛为氮气或氩气。
8.一种如权利要求1~7任意一项所述的制备方法制备得到的全固态锂电池复合电极材料。
9.一种全固态锂电池,其特征在于,包括正极、负极和设置在正极和负极之间的硫化物固体电解质层,所述正极包括为如权利要求1~7任意一项所述的制备方法制备得到的全固态锂电池复合电极材料。
CN201710433032.4A 2017-06-09 2017-06-09 一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池 Pending CN107180992A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710433032.4A CN107180992A (zh) 2017-06-09 2017-06-09 一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710433032.4A CN107180992A (zh) 2017-06-09 2017-06-09 一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池

Publications (1)

Publication Number Publication Date
CN107180992A true CN107180992A (zh) 2017-09-19

Family

ID=59835280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710433032.4A Pending CN107180992A (zh) 2017-06-09 2017-06-09 一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池

Country Status (1)

Country Link
CN (1) CN107180992A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539182A (zh) * 2018-05-14 2018-09-14 哈尔滨工业大学 一种复合硫正极材料的制备方法及其在全固态锂硫电池中的应用
CN108923031A (zh) * 2018-07-11 2018-11-30 中国科学院宁波材料技术与工程研究所 一种过渡金属硫化物复合电极材料及其制备方法和全固态锂电池
CN109360966A (zh) * 2018-11-13 2019-02-19 成都市银隆新能源有限公司 一种电池极片的制造方法及电池
CN109671929A (zh) * 2018-12-12 2019-04-23 福建翔丰华新能源材料有限公司 硫化物电解质包覆的锂硅合金复合负极材料及其制备方法
CN109728271A (zh) * 2018-12-19 2019-05-07 深圳市凌盛电子有限公司 一种用于扫地机的锂电池负电极
CN110233237A (zh) * 2018-03-06 2019-09-13 中信国安盟固利动力科技有限公司 一种全固态锂离子电池的复合电极及其制备方法
CN110444806A (zh) * 2019-08-06 2019-11-12 深圳大学 一种硫化物固体电解质前驱体溶液及其制备方法和应用
CN113036073A (zh) * 2019-12-09 2021-06-25 中国科学院上海硅酸盐研究所 用于固态锂硫电池的一种复合正极及其制备方法
CN113677620A (zh) * 2019-01-25 2021-11-19 索利得动力公司 固体电解质材料合成方法
CN114267833A (zh) * 2021-12-23 2022-04-01 中南大学 一种硫化物固态电解质包覆三元正极材料的方法
CN114447299A (zh) * 2022-01-14 2022-05-06 中国科学院宁波材料技术与工程研究所 一种缓解全固态锂离子电池充电时负极析锂的方法
CN114914422A (zh) * 2022-05-19 2022-08-16 武汉理工大学 适用于硫化物全固态电池的复合负极、制备方法及锂电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230778A1 (en) * 2012-03-02 2013-09-05 Honda Motor Co., Ltd. Lithium ion conductive composite electrolyte and lithium ion secondary battery using same
CN103682354A (zh) * 2012-09-18 2014-03-26 华为技术有限公司 一种全固态锂离子电池复合型电极材料及其制备方法和全固态锂离子电池
WO2014068777A1 (ja) * 2012-11-05 2014-05-08 株式会社 日立製作所 全固体リチウムイオン二次電池
CN105355871A (zh) * 2015-10-26 2016-02-24 中国科学院宁波材料技术与工程研究所 一种复合电极材料、其制备方法和全固态锂电池
CN106505247A (zh) * 2016-12-26 2017-03-15 中国科学院宁波材料技术与工程研究所 全固态钠电池电解质、其制备方法以及全固态钠二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230778A1 (en) * 2012-03-02 2013-09-05 Honda Motor Co., Ltd. Lithium ion conductive composite electrolyte and lithium ion secondary battery using same
CN103682354A (zh) * 2012-09-18 2014-03-26 华为技术有限公司 一种全固态锂离子电池复合型电极材料及其制备方法和全固态锂离子电池
WO2014068777A1 (ja) * 2012-11-05 2014-05-08 株式会社 日立製作所 全固体リチウムイオン二次電池
CN105355871A (zh) * 2015-10-26 2016-02-24 中国科学院宁波材料技术与工程研究所 一种复合电极材料、其制备方法和全固态锂电池
CN106505247A (zh) * 2016-12-26 2017-03-15 中国科学院宁波材料技术与工程研究所 全固态钠电池电解质、其制备方法以及全固态钠二次电池

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233237A (zh) * 2018-03-06 2019-09-13 中信国安盟固利动力科技有限公司 一种全固态锂离子电池的复合电极及其制备方法
CN108539182B (zh) * 2018-05-14 2020-07-17 哈尔滨工业大学 一种复合硫正极材料的制备方法及其在全固态锂硫电池中的应用
CN108539182A (zh) * 2018-05-14 2018-09-14 哈尔滨工业大学 一种复合硫正极材料的制备方法及其在全固态锂硫电池中的应用
CN108923031A (zh) * 2018-07-11 2018-11-30 中国科学院宁波材料技术与工程研究所 一种过渡金属硫化物复合电极材料及其制备方法和全固态锂电池
CN109360966A (zh) * 2018-11-13 2019-02-19 成都市银隆新能源有限公司 一种电池极片的制造方法及电池
CN109671929A (zh) * 2018-12-12 2019-04-23 福建翔丰华新能源材料有限公司 硫化物电解质包覆的锂硅合金复合负极材料及其制备方法
CN109728271A (zh) * 2018-12-19 2019-05-07 深圳市凌盛电子有限公司 一种用于扫地机的锂电池负电极
CN113677620B (zh) * 2019-01-25 2022-12-02 索利得动力公司 固体电解质材料合成方法
CN113677620A (zh) * 2019-01-25 2021-11-19 索利得动力公司 固体电解质材料合成方法
CN110444806A (zh) * 2019-08-06 2019-11-12 深圳大学 一种硫化物固体电解质前驱体溶液及其制备方法和应用
CN113036073A (zh) * 2019-12-09 2021-06-25 中国科学院上海硅酸盐研究所 用于固态锂硫电池的一种复合正极及其制备方法
CN113036073B (zh) * 2019-12-09 2022-07-19 中国科学院上海硅酸盐研究所 用于固态锂硫电池的一种复合正极及其制备方法
CN114267833A (zh) * 2021-12-23 2022-04-01 中南大学 一种硫化物固态电解质包覆三元正极材料的方法
CN114267833B (zh) * 2021-12-23 2024-05-17 湖南恩捷前沿新材料科技有限公司 一种硫化物固态电解质包覆三元正极材料的方法
CN114447299A (zh) * 2022-01-14 2022-05-06 中国科学院宁波材料技术与工程研究所 一种缓解全固态锂离子电池充电时负极析锂的方法
WO2023134054A1 (zh) * 2022-01-14 2023-07-20 中国科学院宁波材料技术与工程研究所 一种缓解全固态锂离子电池充电时负极析锂的方法
CN114447299B (zh) * 2022-01-14 2024-05-31 中国科学院宁波材料技术与工程研究所 一种缓解全固态锂离子电池充电时负极析锂的方法
CN114914422A (zh) * 2022-05-19 2022-08-16 武汉理工大学 适用于硫化物全固态电池的复合负极、制备方法及锂电池
CN114914422B (zh) * 2022-05-19 2024-03-15 武汉理工大学 适用于硫化物全固态电池的复合负极、制备方法及锂电池

Similar Documents

Publication Publication Date Title
CN107180992A (zh) 一种全固态锂电池复合电极材料及其制备方法以及一种全固态锂电池
EP3021386B1 (en) Layered oxide material containing copper, and preparation method and use thereof
CN106532012B (zh) 一种硫-生物质碳/过渡金属复合电极材料及其制备方法和应用
WO2016058402A1 (zh) 一种层状氧化物材料、制备方法、极片、二次电池和用途
WO2020073915A1 (zh) 锂离子电池负极材料及非水电解质电池
CN106159318A (zh) 石榴石型固体电解质支撑的新型片式固态二次锂电池及其制备方法
CN105870452A (zh) 一种正极材料,含有该正极材料的锂离子电池及制备方法
CN107768620A (zh) 一种具有异质结结构的碳纳米纤维、二硫化锡、二氧化锡和硫复合材料的制备方法及应用
CN103259046B (zh) 可快速充电的高倍率磷酸铁锂电池的制备方法
CN104795550A (zh) 一种隧道型氧化物材料及其制备方法和用途
CN103151528A (zh) 一种掺铝氧化锌包覆锂离子电池正极材料的制备方法
CN104953098A (zh) 一种多孔石墨掺杂与碳包覆钛酸锂负极材料的制备方法
CN101777644A (zh) 锂离子电池负极材料碳包覆掺镁钛酸锂的制备方法
CN108987752A (zh) 正极片及其制备方法以及锂离子电池
CN103474723A (zh) 一种锂空气电池及其制备方法
CN109346710B (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN105958031A (zh) 一种硫基正极复合材料及其制备方法
CN103000874A (zh) 一种碳包覆三元正极材料的制备方法
CN109167040A (zh) 一种氟化碳添加剂用于锂硫电池的方法及其应用
CN108461712A (zh) 一种钾/铁酸钾/普鲁士蓝固态电池及其制备方法
CN102163709B (zh) 一种锂离子电池用氧化钴镍锰锂-氧化铜复合正极材料及其制备方法
CN102491410A (zh) 一种锂离子电池负极材料氧缺位钛酸锂的合成方法
CN109659538B (zh) 基于多巴胺和磷酸锂包覆的富锂锰基氧化物材料的制备及其产品和应用
CN108695487A (zh) 正极片及储能装置
CN106505247A (zh) 全固态钠电池电解质、其制备方法以及全固态钠二次电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170919