CN107159231B - 一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法 - Google Patents

一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法 Download PDF

Info

Publication number
CN107159231B
CN107159231B CN201710449435.8A CN201710449435A CN107159231B CN 107159231 B CN107159231 B CN 107159231B CN 201710449435 A CN201710449435 A CN 201710449435A CN 107159231 B CN107159231 B CN 107159231B
Authority
CN
China
Prior art keywords
single crystal
transition metal
catalyst
soot particles
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710449435.8A
Other languages
English (en)
Other versions
CN107159231A (zh
Inventor
程立
戴远军
单玉凤
尹浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Ulan Technology Co ltd
Original Assignee
Shanghai Ulan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ulan Technology Co ltd filed Critical Shanghai Ulan Technology Co ltd
Priority to CN201710449435.8A priority Critical patent/CN107159231B/zh
Publication of CN107159231A publication Critical patent/CN107159231A/zh
Application granted granted Critical
Publication of CN107159231B publication Critical patent/CN107159231B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本文涉及一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法,催化剂载体为α‑Mn2O3立方体单晶且暴露(001)晶面,被担载组分为金属氧化物或过渡金属氧化物。其制备方法如下:采用水热法制备α‑Mn2O3立方体单晶。通过等体积浸渍法将金属氧化物或过渡金属氧化物负载到α‑Mn2O3立方体上。本发明提供的催化剂成本低廉、制备方法简单、便于工业化、催化活性高,能很好的降低柴油车碳烟颗粒的燃烧温度。

Description

一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备 方法
技术领域
本发明属于催化燃烧的技术领域,具体的涉及到了一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法。
背景技术
随着现代社会不断地发展,柴油机因其低廉的价格,更高的效率以及极其耐用的优点,柴油机被越来越多的投入到使用当中。但是作为柴油发动机的主要排放物NOx和炭烟颗粒物(PM),尤其是PM的排放量约为汽油机的30-80倍。NOx和PM对环境的污染和人们的健康造成了极大的破坏.在人口密集区,雾霾酸雨和光化学烟雾等区域性大气污染问题的频繁发生,与机动车尾气中颗粒物的排放密切相关。炭黑是PM的主要组成部分,对于减少炭黑的排放目前有三种路径:主要包括柴油燃料的改进或使用新型的替代燃料、柴油车发动机燃烧技术的改进和柴油车尾气排放后处理系统三种方法。前两种方法虽然对降低PM的排放量起到了一定的作用,但是净化效果有限并不能彻底的解决炭黑颗粒的排放问题。柴油车尾气后处理技术能使污染物得到最大程度的净化,同时具有成本低廉、使用方便等优点,是目前控制柴油车尾气排放最有效和使用最广泛的技术手段.炭黑的热氧化温度高达600℃大大的高于柴油车的排气温度。因此需要用催化的方式来减低炭黑颗粒的热氧化的温度。随着世界各地排放法规的日益严格,发展高效去除柴油车尾气中碳烟排放的催化氧化后处理技术具有积极的现实意义.
已经有相关报道得出不同的α-Mn2O3单晶(立方体、八面体)用于碳烟消除,分别暴露不同的晶面其中立方体为(001)面,而八面体为(111)面。而立方体α-Mn2O3单晶由于起暴露了(001)面相较于(111)晶面拥有更多的活性氧物种,因此在碳烟消除中表现出更好的催化活性。但是其Tm仍然在430℃以上,为了进一步提高立方体α-Mn2O3单晶在炭烟消除中的催化活性,可以将其作为活性载体负载价格低廉的金属或过渡金属氧化物。这一类α-Mn2O3单晶负载型催化剂首次被制备,简单可行,同时又可以获得活性可观的碳烟消除催化剂。
发明内容
本发明的目的是提供一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法。在松散的接触状态下对碳烟颗粒的催化燃烧具有很好的效果,大大的降低了炭黑颗粒热氧化温度。
本发明提供一种低温消除柴油车碳烟颗粒单晶负载型催化剂
所述低温消除柴油车碳烟颗粒单晶负载型催化剂,其催化剂载体为暴露(001)晶面α-Mn2O3立方体单晶,负载材料为CuO、Co3O4、ZnO以及NiO中的一种以上。
所述的低温消除柴油车碳烟颗粒单晶负载型催化剂,其负载材料的负载质量分数为1-15%,优选的,负载质量分数为2-8%。
所述一种低温消除柴油车碳烟颗粒单晶负载型催化剂,其催化剂的载体为α-Mn2O3立方体单晶,暴露面为(001)晶面,α-Mn2O3立方体单晶大小为0.5-2um,负载材料为CuO、Co3O4、ZnO以及NiO中的一种或一种以上。
所述的低温消除柴油车碳烟颗粒单晶负载型催化剂,其负载材料的负载质量分数为1-15%,优选的,质量分数为2-8%。
所述的低温消除柴油车碳烟颗粒单晶负载型催化剂,其负载材料为CuO,所述负载材料的负载质量分数为2-8%。
所述的低温消除柴油车碳烟颗粒单晶负载型催化剂,其负载材料为CuO,所述负载材料的负载质量分数为4%。
本发明同时提供一种上述低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法。
所述制备方法包括以下步骤:
步骤1,将KMnO4前驱体溶于含糖的水溶液中,混合均匀后,置于水热釜反应,过滤、洗涤、干燥得到MnCO3粉末,最后通过高温焙烧得到α-Mn2O3立方体;
步骤2,配制过渡金属的前驱体溶液,通过等体积浸渍法将过渡金属前驱体负载于α-Mn2O3立方体,在干燥、焙烧后得到过渡金属氧化物负载的α-Mn2O3立方体催化剂。
步骤1中所述糖类为葡萄糖、蔗糖中的一种或一种以上。
步骤1中所述的水热釜反应的温度为100-180℃,反应的时间为8-16小时,优选的,反应的温度为120-160℃,反应的时间为10-12小时。
步骤1中所述的焙烧温度为400-600℃,焙烧时间为2-6小时,优选的,焙烧温度为450-550℃,焙烧时间为3-5小时。
步骤1中得到的α-Mn2O3立方体其晶粒尺寸为0.5-2um。
步骤2中所述的过渡金属为Cu、Co、Zn、Ni中的一种或一种以上,所述过渡金属氧化物为CuO、Co3O4、ZnO以及NiO中的一种或一种以上;
优选的,所述的过渡金属为Cu、Co中的一种或一种以上,所述过渡金属氧化物为CuO、Co3O4中的一种或一种以上;
更优选的,所述的过渡金属为Cu,所述过渡金属氧化物为CuO。
步骤2中所述的过渡金属的过渡金属源,为过渡金属的硝酸盐、硫酸盐、碳酸盐、卤化物、醋酸盐中的一种或一种以上,优选的,为过渡金属的硝酸盐。
步骤2中所述的焙烧温度为400-600℃,干燥时间为8-24小时,优选的,干燥温度为450-550℃,干燥时间为12-16小时。
所述得到过渡金属氧化物负载的α-Mn2O3立方体催化剂中,过渡金属氧化物的质量分数为1-15%,优选的,负载质量分数为2-8%。
锰的氧化物催化剂价态较多,在热催化中可以表现出很好的催化性能,事实上在单一氧化物催化剂中Mn2O3在碳烟消除中的催化性能是极强的,且暴露(001)面的α-Mn2O3立方体催化剂相对于(111)面拥有更好的催化活性。而通过负载的方式提高催化性能是很常见的,但是一般的氧化物需要很高的CuO负载量才可以提高催化剂的催化活性且提升效果有限。而本实验中CuO的负载量很低时就可以很明显的提高催化剂的催化活性。且锰铜复合氧化物催化剂在在碳烟消除中的热催化效率效果极佳,与已有的报道的符合氧化物催化剂相比锰铜复合氧化物催化剂在在碳烟消除中的热催化温度是很低的。
本发明提供的催化剂用于降低柴油车碳烟颗粒,大大的降低了柴油车碳烟颗粒热氧化温度,并将碳烟颗粒更加充分的转换为CO2。此高效催化剂成本低、易于制备、适合大规模生产。本发明对于柴油车碳烟颗粒的消除以及环境的保护具有重要的作用。
下面通过附图对本发明做进一步说明。
附图说明
图1为本发明制备的α-Mn2O3立方体以及不同的负载量的CuO/α-Mn2O3的SEM照片,(A)α-Mn2O3,(B)2%CuO/α-Mn2O3,(C)4%CuO/α-Mn2O3,(D)8%CuO/α-Mn2O3
图2为本发明制备的α-Mn2O3立方体以及不同负载量的CuO/α-Mn2O3的XRD衍射图。
图3位本实验制备的α-Mn2O3立方体以及不同负载量的CuO/α-Mn2O3的催化活性柱状图。
图4为本发明制备的α-Mn2O3负载不同过渡金属氧化物的活性柱状图以及纯碳烟燃烧的柱状图。
具体实施方式
以下通过特定的具体实施说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。
本发明催化剂活性评价通过程序升温氧化反应进行的,从200℃开始升温直700℃升温速率为2℃/min。本发明中采用碳黑MA100(Mitsubishi,日本)作为碳烟模型。100mg催化剂和10mg碳烟按10/1的比例用小铲搅拌混合均匀,随后将混合物填装入石英反应器(φ=6mm),在惰性气氛中200℃处理30min以去除其吸附的水分和一些吸附杂质。为检测反应过程中催化床层的真实温度,将K型热电偶插入混合物中。实验原料气为2500ppm NO和5%O2同时用N2作为平衡气,气体总流量为80ml/min。用汽车尾气分析仪(HPC500)检测出口气体中CO/CO2,并用电脑记录实验数据。催化剂活性以碳烟最大燃烧温度(Tm,CO2浓度最大时对应的温度)作为评价标准,二氧化碳选择性用公式计算
SCO2=CCO2/(CCO+CCO2)
SCO2—二氧化碳选择性
CCO2—二氧化碳浓度
CCO—一氧化碳浓度
SmCO2表示CO2浓度最大时相应的二氧化碳选择性。
实施例1
CuO/α-Mn2O3催化剂的制备方法
(1)立方体α-Mn2O3催化剂的制备
立方体α-Mn2O3是通过Mn2CO3制备的,而Mn2CO3是通过水热法合成的。6mmol KMnO4以及等量的葡萄糖充分溶解于60ml去离子水中并搅拌半个小时,将混合溶液移入100ml聚四氟乙烯内衬中,置入150℃烘箱中水热10h,然后冷却、抽滤、洗涤、干燥得到Mn2CO3,将其在500℃中焙烧3h即得到立方体α-Mn2O3
(2)CuO/α-Mn2O3催化剂的制备
本实例中负载的活性组分A为CuO、Co3O4、ZnO以及NiO。以4%CuO/α-Mn2O3的制备为例:按质量百分比称取0.0253g Cu(NO3)2·3H2O和0.2g立方体α-Mn2O3,通过等体积浸渍将Cu(NO3)2·3H2O负载到立方体α-Mn2O3,静置十二个小时、干燥、500℃焙烧5小时,最后得到4%CuO/α-Mn2O3催化剂。
2%CuO/α-Mn2O3、8%CuO/α-Mn2O3合成方法相同,只需将Cu(NO3)2·3H2O前驱体的称取质量根据质量分数做相应修改即可。
实施例2
Co3O4/α-Mn2O3催化剂的制备方法
4%Co3O4/α-Mn2O3催化剂的合成步骤及方法与实施例1相同,只是将Cu(NO3)2·3H2O前驱体改为Co(NO3)2·6H2O对应的硝酸盐前驱体,同时称取相应质量分数的前驱体质量。
实施例3
ZnO/α-Mn2O3催化剂的制备方法
4%ZnO/α-Mn2O3催化剂的合成步骤及方法与实施例1相同,只是将Cu(NO3)2·3H2O前驱体改为Zn(NO3)2·6H2O对应的硝酸盐前驱体,同时称取相应质量分数的前驱体质量。
实施例4
NiO/α-Mn2O3催化剂的制备方法
4%NiO/α-Mn2O3催化剂的合成步骤及方法与实施例1相同,只是将Cu(NO3)2·3H2O前驱体改为Ni(NO3)2·6H2O对应的硝酸盐前驱体,同时称取相应质量分数的前驱体质量。
图1位本实例合成的α-Mn2O3立方体以及不同的负载量的CuO/α-Mn2O3的SEM照片,(A)α-Mn2O3,(B)2%CuO/α-Mn2O3,(C)4%CuO/α-Mn2O3,(D)8%CuO/α-Mn2O3。从图中可以看出α-Mn2O3立方体以及不同负载量的CuO/α-Mn2O3的催化剂都被成功的制备。图1中α-Mn2O3的单个晶粒尺寸大小为0.8-2um。同时CuO的的引入并没有改变催化剂的原始形态,从图中可以看出CuO都被成功的负载到载体的表面。
图2本实例合成的α-Mn2O3立方体以及不同负载量的CuO/α-Mn2O3催化剂的XRD衍射图普。从图中可以看出当引入的CuO的量较少时催化剂的XRD衍射峰都为Mn2O3的衍射峰,而当CuO的质量含量达到8%时催化剂的XRD衍射峰有非常微弱CuO相的出现。
根据已述催化剂活性评价方法对立方体单晶α-Mn2O3催化剂以及不同负载量或不同负载物质的催化剂进行活性评价。其评价结果如图3和图4所示。其中横坐标为反应温度,纵坐标为CO2和CO的浓度。
图3为不同的α-Mn2O3立方体以及不同负载量的CuO/α-Mn2O3催化剂的活性比较,可以看出引入CuO后CuO/α-Mn2O3催化剂的Tm(CO2浓度达到最大值时的催化温度)以及SmCO2(CO2选择性)明显强于α-Mn2O3-C,且4%CuO/α-Mn2O3催化剂表现出最佳的催化活性。所以CuO的引入量是有最佳值的,并不是越多或者是越少才会有更好的催化活性。是由于当CuO的引入量过多时催化剂中可能会产生CuO的相,而CuO的相产生意味着大颗粒CuO的产生,这是不利于催化活性的提高的。
图4中α-Mn2O3负载一定量的金属氧化物以及过渡属氧化物之后催化活性相较于α-Mn2O3催化活性显著增强,同时可以看出CuO的引入相较于其他集中氧化物或者过渡金属氧化物的引入用于更好的催化活性。而纯碳烟颗粒自身的燃烧的Tm一般都在600℃以上CO2选择性在55%左右,所以此专利中所有催化剂催化活性不论是从燃烧的温度上还是从CO2的选择性上来说都有着巨大的效果。
以上所述,仅为本发明的较佳实施例,上述实施例仅示例性说明本发明的原理及其功效,而并非对本发明任何形式上和实质上的限制。应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明得到实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (10)

1.一种低温消除柴油车碳烟颗粒单晶负载型催化剂,其特征在于:催化剂的载体为α-Mn2O3立方体单晶,暴露面为(001)晶面,α-Mn2O3立方体单晶大小为0.5-2μ m,负载材料为CuO、Co3O4、ZnO以及NiO中的一种以上。
2.如权利要求1所述的一种低温消除柴油车碳烟颗粒单晶负载型催化剂,其特征在于:所述负载材料的负载质量分数为1-15%。
3.如权利要求1或2所述的一种低温消除柴油车碳烟颗粒单晶负载型催化剂,其特征在于:所述负载材料为CuO,所述负载材料的负载质量分数为2-8%。
4.一种制备如权利要求1所述的低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法,其特征在于,包括以下步骤:
a)步骤1,将KMnO4前驱体溶于含糖的水溶液中,混合均匀后,置于水热釜反应,过滤、洗涤、干燥得到MnCO3粉末,最后通过高温焙烧得到α-Mn2O3立方体;
b)步骤2,配制过渡金属的前驱体溶液,通过等体积浸渍法将过渡金属前驱体负载于α-Mn2O3立方体,在干燥、焙烧后得到过渡金属氧化物负载的α-Mn2O3立方体催化剂。
5.如权利要求4所述的低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法,其特征在于,步骤1中所述糖类为葡萄糖、蔗糖中的一种或一种以上。
6.如权利要求4所述的低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法,其特征在于,步骤1中所述的水热釜反应的温度为100-180℃,反应的时间为8-16小时,所述的焙烧温度为400-600℃,焙烧时间为2-6小时。
7.如权利要求4所述的低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法,其特征在于,步骤2中所述的过渡金属为Cu、Co、Zn、Ni中的一种或一种以上,所述过渡金属氧化物为CuO、Co3O4、ZnO以及NiO中的一种或一种以上。
8.如权利要求4所述的低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法,其特征在于,步骤2中所述的过渡金属的过渡金属源,为过渡金属的硝酸盐、硫酸盐、碳酸盐、卤化物、醋酸盐中的一种或一种以上。
9.如权利要求4所述的低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法,其特征在于,步骤2中所述的焙烧温度为400-600℃,干燥时间为8-24小时。
10.如权利要求4所述的低温消除柴油车碳烟颗粒单晶负载型催化剂的制备方法,其特征在于,得到过渡金属氧化物负载的α-Mn2O3立方体催化剂中,过渡金属氧化物的质量分数为1-15%。
CN201710449435.8A 2017-06-14 2017-06-14 一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法 Expired - Fee Related CN107159231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710449435.8A CN107159231B (zh) 2017-06-14 2017-06-14 一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710449435.8A CN107159231B (zh) 2017-06-14 2017-06-14 一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107159231A CN107159231A (zh) 2017-09-15
CN107159231B true CN107159231B (zh) 2020-04-03

Family

ID=59818639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710449435.8A Expired - Fee Related CN107159231B (zh) 2017-06-14 2017-06-14 一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107159231B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579408A (zh) * 2018-04-04 2018-09-28 江苏华本环境科技有限公司 一种低温催化烟气脱硝方法
CN109499593B (zh) * 2018-11-28 2019-08-27 济南大学 一种含钾和氧化锌纳米棒的整体式催化剂的制备方法及所得产品和应用
CN110665513B (zh) * 2019-10-10 2022-08-26 中国科学院宁波城市环境观测研究站 一种改性锰氧化物催化剂及其制备方法和用途
CN114956187B (zh) * 2022-05-30 2023-03-28 南昌航空大学 一种暴露高催化活性晶面的三氧化二锰催化材料的制备方法及其产品和应用
CN115430433B (zh) * 2022-10-08 2023-11-24 盐城帕特纳新材料科技有限公司 一种具有高效活性的催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822979A (zh) * 2009-03-04 2010-09-08 中国科学院大连化学物理研究所 一种降低碳烟颗粒燃烧温度的催化剂及其制备方法
CN102658122A (zh) * 2012-02-22 2012-09-12 华东理工大学 一种柴油车尾气碳烟颗粒燃烧的催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822979A (zh) * 2009-03-04 2010-09-08 中国科学院大连化学物理研究所 一种降低碳烟颗粒燃烧温度的催化剂及其制备方法
CN102658122A (zh) * 2012-02-22 2012-09-12 华东理工大学 一种柴油车尾气碳烟颗粒燃烧的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Crystal facet-dependent reactivity of α-Mn2O3 microcrystalline catalyst for soot combustion;Li Cheng,et.al.;《Applied Catalysis B: Environmental》;20161125;第204卷;第374-384页 *

Also Published As

Publication number Publication date
CN107159231A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107159231B (zh) 一种低温消除柴油车碳烟颗粒单晶负载型催化剂及其制备方法
CN107456964B (zh) 用于碳氢化合物低温氧化的超大比表面积钙钛矿型复合氧化物催化剂及其制备
CN103153438B (zh) 用于处理含有氮氧化物(NOx)的气体的方法,其中包含氧化铈和氧化铌的组合物用作催化剂
US20230042287A1 (en) Cerium-tin-based composite oxide catalyst for catalyzing purification of nitrogen oxide, preparation method and application thereof
CN112473730B (zh) 一种铜基cha型硅铝分子筛催化剂及其制备方法
CN106268787A (zh) 一种钐掺杂MnOx低温SCR催化剂及其制备方法和应用
CN105314648B (zh) Cha型硅铝分子筛及其制备方法和应用
WO2017049804A1 (zh) 低温催化去除环境污染物的催化剂及其制备方法
CN108816239B (zh) 一种负载型催化剂、其制备方法和用途
CN105312083B (zh) Cha型硅铝磷分子筛及其制备方法和应用
JP2011045840A (ja) 触媒組成物
CN111266132B (zh) 用于氨气选择性催化还原反应的Cu-KFI催化剂的制备方法
CN112958075A (zh) 一种Ce掺杂钠锰复合氧化物催化剂及其制备方法和应用
CN112871166A (zh) 一种负载型催化剂及其制备方法和应用
CN106799225A (zh) 一种钾负载型碳烟燃烧催化剂及其制备方法和应用
CN112844394A (zh) 一种CuO-CeO2负载型催化剂的制备方法及在尾气NOx和CO无氧消除中的应用
JP3889467B2 (ja) 窒素酸化物除去用触媒材料及び該材料を用いた窒素酸化物処理装置並びに窒素酸化物除去方法
WO2012160437A1 (en) Exhaust gas control system, exhaust gas purification catalyst and method for the production of exhaust gas purification catalyst
CN1391983A (zh) 柴油机排气净化用催化剂及其制备方法
JP2851773B2 (ja) 窒素酸化物除去用酸化物触媒材料並びに窒素酸化物除去方法
CN106807385A (zh) 一种鸟巢状的碳烟燃烧催化剂及其制备方法和应用
CN101773832A (zh) 抗硫性好的氮氧化物储存BaFeO3钙钛矿催化剂的制备方法
JP3199562B2 (ja) 窒素酸化物除去用酸化物触媒材料並びに窒素酸化物除去方法
CN105314647B (zh) 硅铝及硅铁Beta分子筛及其制备方法和应用
CN114713218B (zh) 一种含镨铈锆固溶体催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200403

CF01 Termination of patent right due to non-payment of annual fee