CN107146892A - 一种空心结构碳纳米颗粒的制备方法及微生物燃料电池 - Google Patents

一种空心结构碳纳米颗粒的制备方法及微生物燃料电池 Download PDF

Info

Publication number
CN107146892A
CN107146892A CN201710368006.8A CN201710368006A CN107146892A CN 107146892 A CN107146892 A CN 107146892A CN 201710368006 A CN201710368006 A CN 201710368006A CN 107146892 A CN107146892 A CN 107146892A
Authority
CN
China
Prior art keywords
particle
hollow
preparation
carbon nano
core construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710368006.8A
Other languages
English (en)
Inventor
周丽华
傅鹏
杨春丽
袁勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710368006.8A priority Critical patent/CN107146892A/zh
Publication of CN107146892A publication Critical patent/CN107146892A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9091Unsupported catalytic particles; loose particulate catalytic materials, e.g. in fluidised state
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提供了一种空心结构碳纳米颗粒的制备方法,包括:A)以曲拉通TX‑100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。本发明采用苯胺、吡咯、过硫酸铵为原料,成本低廉,方法简单,无需去除模板;并且添加掺杂剂后再碳化得到空心结构碳纳米颗粒性能稳定,催化活性好,稳定性好,耐甲醇性高。同时本发明采用空心结构碳纳米颗粒制备微生物燃料电池功率密度高。

Description

一种空心结构碳纳米颗粒的制备方法及微生物燃料电池
技术领域
本发明涉及材料技术领域,尤其是涉及一种空心结构碳纳米颗粒的制备方法及微生物燃料电池。
背景技术
微生物燃料电池是利用电活性微生物将基质中的化学能直接转化为电能的理想装置,具有资源化与废弃物处置等双重功效。是一种新能源发展的重要方向,在能源危机日益加重的大背景下具有十分重要大的发展前景。现有技术大都采用铂作为微生物燃料电池的催化剂或者阴极材料,但其稳定性和耐甲醇性差以及功率密度差,因此,寻找一个替代的材料至关重要。
多孔碳材料具有比表面积大、导电性能好等特点,备受研究者关注。现有技术公开了聚吡咯纳米线为前驱体,通过使用氢氧化钾为活化剂,高温活化得到了氮掺杂的多孔碳纤维材料,该材料用作锂离子电池的电极材料具有很高的电容和很好的大电流放电能力。但是大量强碱KOH的加入,需要后处理时使用大量的酸进行中和洗涤,制备过程复杂,不利于应用。同时现有技术公开的众多模板法需要去除模板,不仅去除不容易,价格昂贵,不利于应用。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种空心结构碳纳米颗粒的制备方法,本发明提供的空心结构碳纳米颗粒的制备方法简单,并且用于微生物燃料电池功率密度高。
本发明提供了一种空心结构碳纳米颗粒的制备方法,包括:
A)以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;
B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。
优选的,所述掺杂剂为氯化铁。
优选的,所述苯胺、吡咯和过硫酸铵和掺杂剂的摩尔比为1:(1~2):(0.5~2):(0.05~1)。
优选的,所述曲拉通TX-100的质量浓度为1~5mg/mL;曲拉通TX-100与苯胺的摩尔比为(5~12):1000。
优选的,所述反应温度为0~5℃;所述反应时间为12~24h。
优选的,所述碳化的温度为600~900℃;所述升温速率为5~10℃/min,所述碳化时间为1~2h。
优选的,所述步骤A)之后还包括清洗、干燥;所述干燥的温度为60~80℃;所述干燥的时间为6~8h。
本发明提供了一种空心结构的碳纳米颗粒,由上述技术方案所述的制备方法制备得到。
本发明提供了一种微生物燃料电池,所述阴极包括上述技术方案所述的制备方法制备得到的空心结构的碳纳米颗粒。
本发明提供了一种微生物燃料电池,所述阴极催化剂包括上述技术方案所述的制备方法制备得到的空心结构的碳纳米颗粒。
与现有技术相比,本发明提供了一种空心结构碳纳米颗粒的制备方法,包括:A)以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。本发明采用苯胺、吡咯、过硫酸铵为原料,成本低廉,方法简单,无需去除模板;并且添加掺杂剂后再碳化得到空心结构碳纳米颗粒性能稳定,催化活性好,稳定性好,耐甲醇性高。同时本发明采用空心结构碳纳米颗粒制备微生物燃料电池功率密度高。
附图说明
图1为本发明实施例1制备的空心结构碳纳米颗粒透射电子显微镜(TEM);
图2为本发明实施例2制备的空心结构碳纳米颗粒透射电子显微镜(TEM);
图3为本发明实施例3制备的空心结构碳纳米颗粒透射电子显微镜(TEM);
图4为本发明实施例4旋转圆盘电极线性扫描曲线(LSV);
图5为本发明实施例5微生物燃料电池功率密度随电流密度的变化曲线;
图6为本发明比较例3旋转圆盘电极线性扫描曲线(LSV);
图7为本发明比较例4旋转圆盘电极线性扫描曲线(LSV);
图8为本发明比较例5微生物燃料电池功率密度随电流密度的变化曲线;
图9为本发明比较例6微生物燃料电池功率密度随电流密度的变化曲线。
具体实施方式
本发明提供了一种空心结构碳纳米颗粒的制备方法,包括:
A)以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;
B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。
本发明提供的空心结构碳纳米颗粒的制备方法首先以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球。
本发明首先以曲拉通TX-100为模板,苯胺和吡咯生成苯胺吡咯微球中间体;优选具体为将曲拉通TX-100、苯胺和吡咯超声混合均匀,混合后0~4℃保存。本发明对于所述超声的具体参数不进行限定,本领域技术人员熟知的即可。
苯胺吡咯微球中间体在过硫酸铵和掺杂剂存在下反应得到掺杂的聚苯胺聚吡咯空心微球。
本发明对于所述曲拉通TX-100、苯胺、吡咯、过硫酸铵和掺杂剂的来源和纯度不进行限定,本领域技术人员熟知的即可。
其中,所述曲拉通TX-100的质量浓度优选为1~5mg/mL;更优选为1~3mg/mL;最优选为1~2mg/mL。曲拉通TX-100与苯胺的摩尔比优选为(5~12):1000;更优选为(6~10):1000;最优选为(7~9):1000。
所述苯胺、吡咯和过硫酸铵和掺杂剂的摩尔比优选为1:(1~2):(0.5~2):(0.05~1);更优选为1:(1~2):(1~2):(0.1~1);最优选为1:(1~2):(1~2):(0.5~1);最最优选为1:1:1:1。
在本发明中,所述反应温度优选为0~5℃;更优选为0~4℃;最优选为1~4℃。所述反应时间优选为12~24h;更优选为12~20h;最优选为12~18h。
所述掺杂剂选自氯化铁和氯化钴中的一种或几种;优选的,所述掺杂剂为氯化铁。
得到掺杂的聚苯胺聚吡咯空心微球后,优选还包括清洗、干燥。
所述清洗优选为用纯水清洗至透明,所述干燥的温度优选为60~80℃;更优选为60~75℃;所述干燥的时间优选为6~8h;更优选为6~7h。
将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。
在本发明中,所述碳化优选在惰性气体保护的环境中碳化,所述惰性气体优选包括氮气、氦气、氖气或氩气。
所述碳化的温度优选为600~900℃;更优选为600~850℃;最优选为650~800℃。
所述升温速率优选为5~10℃/min,所述碳化时间优选为1~2h。
本发明采用软模板法制备聚合物微球,不仅得到的微球性能好,并且无需去除模板,方法简单。
本发明提供了一种空心结构的碳纳米颗粒,由上述技术方案所述的制备方法制备得到。
本发明提供了一种微生物燃料电池,所述阴极包括上述技术方案所述的制备方法制备得到的空心结构的碳纳米颗粒。
具体的说,也就是上述微生物燃料电池的阴极的制备方法为:
A)以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;
B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。
其中上述组分的配比,反应温度时间等参数上述已经有清楚的描述,在此不再赘述。
本发明提供了一种微生物燃料电池,所述阴极催化剂包括上述技术方案所述的制备方法制备得到的空心结构的碳纳米颗粒。
具体的说,也就是上述微生物燃料电池的阴极催化剂的制备方法为:
A)以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;
B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。
其中上述组分的配比,反应温度时间等参数上述已经有清楚的描述,在此不再赘述。
本发明提供了一种上述技术方案所述的制备方法制备得到的空心结构的碳纳米颗粒在用于制备微生物燃料电池阴极中的应用。
本发明提供了一种上述技术方案所述的制备方法制备得到的空心结构的碳纳米颗粒在用于制备微生物燃料电池阴极催化剂中的应用。
本发明提供了一种空心结构碳纳米颗粒的制备方法,包括:A)以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。
本发明采用苯胺、吡咯、过硫酸铵为原料,成本低廉,方法简单,无需去除模板;并且添加掺杂剂后再碳化得到空心结构碳纳米颗粒性能稳定,催化活性好,稳定性好,耐甲醇性高。同时本发明采用空心结构碳纳米颗粒制备微生物燃料电池功率密度高。
为了进一步说明本发明,以下结合实施例对空心结构碳纳米颗粒的制备方法进行详细描述。
实施例1
以1mg/mL的曲拉通TX-100溶液为模板,苯胺与吡咯的摩尔比控制为1:1,将0.0016mol/L曲拉通、0.05mol/L苯胺及0.05mol/L吡咯三者超声混合均匀后4℃保存。将0.1mol/L的过硫酸铵和0.1mol/L的FeCl3混合加入到上述混合液中与之反应,放置4℃环境中反应12h制备聚苯胺聚吡咯空心微球;通过抽滤,将反应物经超纯水清洗至滤液清澈透明后,将其60℃干燥;将干燥的聚苯胺聚吡咯空心微球在N2环境中经600℃,2h高温碳化制备空心结构碳纳米颗粒。图1为本发明实施例1制备的空心结构碳纳米颗粒透射电子显微镜(TEM)。
实施例2
以1mg/mL的曲拉通TX-100溶液为模板,苯胺与吡咯的摩尔比控制为2:1,将0.0016mol/L曲拉通、0.1mol/L苯胺及0.05mol/L吡咯三者超声混合均匀后4℃保存。将0.15mol/L过硫酸铵和0.15mol/L的FeCl3混合加入到上述混合液中与之反应。放置4℃环境中反应12h制备聚苯胺聚吡咯空心微球;通过抽滤,将反应物经超纯水清洗至滤液清澈透明后,将其60℃干燥;将干燥微球在N2环境中经800℃,1h高温碳化制备空心结构碳纳米颗粒。图2为本发明实施例2制备的空心结构碳纳米颗粒透射电子显微镜(TEM)。
实施例3
以1mg/mL的曲拉通TX-100溶液为模板,苯胺与吡咯的摩尔比控制为1:1,将0.0016mol/L曲拉通、0.05mol/L苯胺及0.05mol/L吡咯三者超声混合均匀后4℃保存。将0.1mol/L过硫酸铵和0.1mol/L的CoCl2混合加入到上述混合液中与之反应。放置4℃环境中反应12h制备聚苯胺聚吡咯空心微球;通过抽滤,将反应物经超纯水清洗至滤液清澈透明后,将其60℃干燥;将干燥微球在N2环境中经800℃,1h高温碳化制备空心结构碳纳米颗粒。图3为本发明实施例3制备的空心结构碳纳米颗粒透射电子显微镜(TEM)。
实施例4
依次使用1.0μm、0.5μm和0.03μm电极抛光粉处理玻碳电极,然后依次在无水乙醇和去离子水中超声清洗10min,30℃烘干;称量0.5μg本发明实施例1制备的碳纳米颗粒,加入50μL去离子水、100μL无水乙醇及2μLNafion溶液配制催化剂研究液;吸取8μL催化剂研究液,滴至已干燥的玻碳电极表面,30℃烘干,即可作为工作电极;将修饰电极分别在已充N2、O2的0.1mol/L KOH溶液中进行电化学测试,包括循环伏安扫描、旋转圆盘电极线性扫描,研究制备的碳化蛛网催化性能、稳定性及耐甲醇性等。图4为本发明实施例4旋转圆盘电极线性扫描曲线(LSV)。
实施例5
一种微生物燃料电池(MFC)的构建,主要包括以下步骤:
1)按传统方法构建微生物单室空气阴极燃料电池:以方形有机玻璃作为电池原材料构建电池。电池内部为一个长4.0cm,直径3.0cm的圆柱形腔体,电池阴阳极两端用长为6.0cm的有机方形玻璃密封;
2)按传统制作电池阴极片的方法,以实施例1制备的空心结构碳纳米颗粒为催化剂制作电池阴极:阴极碳布一侧均匀涂抹0.5mg/cm2的碳粉末,30℃烘干;以碳刷制作电池阳极。
3)待以上准备工作就绪即可组装电池。分别将电池阴极和阳极与其他材料一起构架电池,并用塞子密封电池顶端开口,用钛丝作为导线连接电池两极,内部有效容积为28mL。
本实施例构建的微生物燃料电池除了阴极涂层材料与常规的MFC不同外,其他的均相同。
微生物燃料电池的运行:
按常规MFC运行方法,将上述组装好的MFC接种5.0mL厌氧混合菌种液和20mL乙酸钠(1000mg·L-1)基底溶液,并启动运行。乙酸钠基底溶液成分组成为NaH2PO4·2H2O(2.77g·L-1)、Na2HPO4·12H2O(11.40g·L-1)、NH4Cl(0.31g·L-1)、KCl(0.13g·L-1)、维生素溶液(10mL·L-1)和矿物质溶液(10mL·L-1)。
将MFC在30±1℃的恒温箱中培养,电池产电电压采用40通道信号采集器、间隔30s自动采集数据并储存于电脑,在电池达到稳定阶段后,改变电池外阻100、200、500、1000、2000及5000Ω,每一个外加电阻下,电池都运行几个稳定且完整周期,然后得到相对应电压,绘制功率密度和极化曲线。图5为本发明实施例5微生物燃料电池功率密度随电流密度的变化曲线。
比较例1
以SiC为模板,苯胺和吡咯的摩尔比控制为1:1。将0.05mol/L苯胺和0.05mol/L吡咯超声混合均匀后再与1.0g SiC混合,并于4℃保存。将0.1mol/L过硫酸铵和0.1mol/L三氯化铁混合后加入到上述
混合液中与之反应。将反应装置放置于4℃环境中反应12h制备聚苯胺聚吡咯微球;通过抽滤,将反应物经超纯水清洗至滤液清澈透明后,将其60℃干燥;将干燥微球在N2环境中经800℃,1h高温碳化制备碳纳米颗粒。
比较例2
以1mg/mL的曲拉通TX-100溶液为模板,苯胺与吡咯的摩尔比控制为1:1,将0.0016mol/L曲拉通、0.05mol/L苯胺及0.05mol/L吡咯三者超声混合均匀后4℃保存。将0.1mol/L过硫酸铵和0.1mol/L的ZnCl2混合加入到上述混合液中与之反应。放置4℃环境中反应12h制备聚苯胺聚吡咯空心微球;通过抽滤,将反应物经超纯水清洗至滤液清澈透明后,将其60℃干燥;将干燥微球在N2环境中经800℃,1h高温碳化制备空心结构碳纳米颗粒。
比较例3
依次使用1.0μm、0.5μm和0.03μm电极抛光粉处理玻碳电极,然后依次在无水乙醇和去离子水中超声清洗10min,30℃烘干;称量0.5μg本发明比较例1制备的碳纳米颗粒,加入50μL去离子水、100μL无水乙醇及2μLNafion溶液配制催化剂研究液;吸取8μL催化剂研究液,滴至已干燥的玻碳电极表面,30℃烘干,即可作为工作电极;将修饰电极分别在已充N2、O2的0.1mol/L KOH溶液中进行电化学测试,包括循环伏安扫描、旋转圆盘电极线性扫描,研究制备的碳化蛛网催化性能、稳定性及耐甲醇性等。图6为本发明比较例3旋转圆盘电极线性扫描曲线(LSV)。
比较例4
依次使用1.0μm、0.5μm和0.03μm电极抛光粉处理玻碳电极,然后依次在无水乙醇和去离子水中超声清洗10min,30℃烘干;称量0.5μg本发明比较例2制备的碳纳米颗粒,加入50μL去离子水、100μL无水乙醇及2μLNafion溶液配制催化剂研究液;吸取8μL催化剂研究液,滴至已干燥的玻碳电极表面,30℃烘干,即可作为工作电极;将修饰电极分别在已充N2、O2的0.1mol/L KOH溶液中进行电化学测试,包括循环伏安扫描、旋转圆盘电极线性扫描,研究制备的碳化蛛网催化性能、稳定性及耐甲醇性等。图7为本发明比较例4旋转圆盘电极线性扫描曲线(LSV)。
比较例5
一种微生物燃料电池(MFC)的构建,主要包括以下步骤:
1)按传统方法构建微生物单室空气阴极燃料电池:以方形有机玻璃作为电池原材料构建电池。电池内部为一个长4.0cm,直径3.0cm的圆柱形腔体,电池阴阳极两端用长为6.0cm的有机方形玻璃密封;
2)按传统制作电池阴极片的方法,以比较例1制备的空心结构碳纳米颗粒为催化剂制作电池阴极:阴极碳布一侧均匀涂抹0.5mg/cm2的碳粉末,30℃烘干;以碳刷制作电池阳极。
3)待以上准备工作就绪即可组装电池。分别将电池阴极和阳极与其他材料一起构架电池,并用塞子密封电池顶端开口,用钛丝作为导线连接电池两极,内部有效容积为28mL。
本实施例构建的微生物燃料电池除了阴极涂层材料与常规的MFC不同外,其他的均相同。
微生物燃料电池的运行:
按常规MFC运行方法,将上述组装好的MFC接种5.0mL厌氧混合菌种液和20mL乙酸钠(1000mg·L-1)基底溶液,并启动运行。乙酸钠基底溶液成分组成为NaH2PO4·2H2O(2.77g·L-1)、Na2HPO4·12H2O(11.40g·L-1)、NH4Cl(0.31g·L-1)、KCl(0.13g·L-1)、维生素溶液(10mL·L-1)和矿物质溶液(10mL·L-1)。
将MFC在30±1℃的恒温箱中培养,电池产电电压采用40通道信号采集器、间隔30s自动采集数据并储存于电脑,在电池达到稳定阶段后,改变电池外阻100、200、500、1000、2000及5000Ω,每一个外加电阻下,电池都运行几个稳定且完整周期,然后得到相对应电压,绘制功率密度和极化曲线。图8为本发明比较例5微生物燃料电池功率密度随电流密度的变化曲线。
比较例6
一种微生物燃料电池(MFC)的构建,主要包括以下步骤:
1)按传统方法构建微生物单室空气阴极燃料电池:以方形有机玻璃作为电池原材料构建电池。电池内部为一个长4.0cm,直径3.0cm的圆柱形腔体,电池阴阳极两端用长为6.0cm的有机方形玻璃密封;
2)按传统制作电池阴极片的方法,以比较例2制备的空心结构碳纳米颗粒为催化剂制作电池阴极:阴极碳布一侧均匀涂抹0.5mg/cm2的碳粉末,30℃烘干;以碳刷制作电池阳极。
3)待以上准备工作就绪即可组装电池。分别将电池阴极和阳极与其他材料一起构架电池,并用塞子密封电池顶端开口,用钛丝作为导线连接电池两极,内部有效容积为28mL。
本实施例构建的微生物燃料电池除了阴极涂层材料与常规的MFC不同外,其他的均相同。
微生物燃料电池的运行:
按常规MFC运行方法,将上述组装好的MFC接种5.0mL厌氧混合菌种液和20mL乙酸钠(1000mg·L-1)基底溶液,并启动运行。乙酸钠基底溶液成分组成为NaH2PO4·2H2O(2.77g·L-1)、Na2HPO4·12H2O(11.40g·L-1)、NH4Cl(0.31g·L-1)、KCl(0.13g·L-1)、维生素溶液(10mL·L-1)和矿物质溶液(10mL·L-1)。
将MFC在30±1℃的恒温箱中培养,电池产电电压采用40通道信号采集器、间隔30s自动采集数据并储存于电脑,在电池达到稳定阶段后,改变电池外阻100、200、500、1000、2000及5000Ω,每一个外加电阻下,电池都运行几个稳定且完整周期,然后得到相对应电压,绘制功率密度和极化曲线。图9为本发明比较例6微生物燃料电池功率密度随电流密度的变化曲线。。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种空心结构碳纳米颗粒的制备方法,包括:
A)以曲拉通TX-100为模板,苯胺、吡咯、过硫酸铵和掺杂剂反应得到掺杂的聚苯胺聚吡咯空心微球;所述掺杂剂选自氯化铁和氯化钴中的一种或几种;
B)将所述掺杂的聚苯胺聚吡咯空心微球碳化得到空心结构碳纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于,所述掺杂剂为氯化铁。
3.根据权利要求1所述的制备方法,其特征在于,所述苯胺、吡咯和过硫酸铵和掺杂剂的摩尔比为1:(1~2):(0.5~2):(0.05~1)。
4.根据权利要求1所述的制备方法,其特征在于,所述曲拉通TX-100的质量浓度为1~5mg/mL;曲拉通TX-100与苯胺的摩尔比为(5~12):1000。
5.根据权利要求1所述的制备方法,其特征在于,所述反应温度为0~5℃;所述反应时间为12~24h。
6.根据权利要求1所述的制备方法,其特征在于,所述碳化的温度为600~900℃;所述升温速率为5~10℃/min,所述碳化时间为1~2h。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤A)之后还包括清洗、干燥;所述干燥的温度为60~80℃;所述干燥的时间为6~8h。
8.一种空心结构的碳纳米颗粒,其特征在于,由权利要求1~7任意一项所述的制备方法制备得到。
9.一种微生物燃料电池,其特征在于,所述阴极包括权利要求1~7任意一项所述的制备方法制备得到的空心结构的碳纳米颗粒。
10.一种微生物燃料电池,其特征在于,所述阴极催化剂包括权利要求1~8任意一项所述的制备方法制备得到的空心结构的碳纳米颗粒。
CN201710368006.8A 2017-05-23 2017-05-23 一种空心结构碳纳米颗粒的制备方法及微生物燃料电池 Pending CN107146892A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710368006.8A CN107146892A (zh) 2017-05-23 2017-05-23 一种空心结构碳纳米颗粒的制备方法及微生物燃料电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710368006.8A CN107146892A (zh) 2017-05-23 2017-05-23 一种空心结构碳纳米颗粒的制备方法及微生物燃料电池

Publications (1)

Publication Number Publication Date
CN107146892A true CN107146892A (zh) 2017-09-08

Family

ID=59779085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710368006.8A Pending CN107146892A (zh) 2017-05-23 2017-05-23 一种空心结构碳纳米颗粒的制备方法及微生物燃料电池

Country Status (1)

Country Link
CN (1) CN107146892A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603612A (zh) * 2017-09-18 2018-01-19 山西大学 一种空心橙色荧光碳纳米粒子的制备方法及应用
CN109065899A (zh) * 2018-09-07 2018-12-21 黄冈师范学院 一种燃料电池阴极氧还原反应的氮化钴负载多孔碳催化剂及其制备方法
CN111961200A (zh) * 2020-08-26 2020-11-20 西北有色金属研究院 一种空心球形聚苯胺/吡咯纳米材料的制备方法
CN115193435A (zh) * 2022-04-29 2022-10-18 浙江大学 空心多孔碳球负载纳米镍复合材料及其制备方法和在储氢材料中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316706A (zh) * 2013-06-15 2013-09-25 湖南科技大学 一种掺杂金属的聚苯胺与聚吡咯复合物碳化电催化剂及其制备方法
CN103374129A (zh) * 2012-04-11 2013-10-30 中国科学院合肥物质科学研究院 聚苯胺微米空心球的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103374129A (zh) * 2012-04-11 2013-10-30 中国科学院合肥物质科学研究院 聚苯胺微米空心球的制备方法
CN103316706A (zh) * 2013-06-15 2013-09-25 湖南科技大学 一种掺杂金属的聚苯胺与聚吡咯复合物碳化电催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUANQIANG ZHOU等: ""Fabrication of Poly(aniline-co-pyrrole) Hollow Nanospheres with Triton X-100 Micelles as Templates"", 《JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY》 *
FEI XU等: ""Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage"", 《NATURE COMMUNICATIONS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107603612A (zh) * 2017-09-18 2018-01-19 山西大学 一种空心橙色荧光碳纳米粒子的制备方法及应用
CN107603612B (zh) * 2017-09-18 2020-04-21 山西大学 一种空心橙色荧光碳纳米粒子的制备方法及应用
CN109065899A (zh) * 2018-09-07 2018-12-21 黄冈师范学院 一种燃料电池阴极氧还原反应的氮化钴负载多孔碳催化剂及其制备方法
CN109065899B (zh) * 2018-09-07 2021-09-03 黄冈师范学院 一种燃料电池阴极氧还原反应的氮化钴负载多孔碳催化剂及其制备方法
CN111961200A (zh) * 2020-08-26 2020-11-20 西北有色金属研究院 一种空心球形聚苯胺/吡咯纳米材料的制备方法
CN115193435A (zh) * 2022-04-29 2022-10-18 浙江大学 空心多孔碳球负载纳米镍复合材料及其制备方法和在储氢材料中的应用

Similar Documents

Publication Publication Date Title
CN105597791B (zh) 一种硒化钼/多孔碳纳米纤维复合材料及其制备方法和应用
CN103112846B (zh) 一种石墨烯-碳纳米管-纳米二氧化锡三维复合材料的制备方法及其产品
CN107146892A (zh) 一种空心结构碳纳米颗粒的制备方法及微生物燃料电池
CN105118688B (zh) 一种细菌纤维素/活性碳纤维/石墨烯膜材料的制备方法及其应用
CN103972478B (zh) 中空碳纳米纤维材料及其制备方法和应用
GB2603717A (en) Crop straw-based nitrogen-doped porous carbon material preparation method and application thereof
CN108232369A (zh) 一种生物质衍生的集成式柔性电极及其制备方法
CN106784865A (zh) 一种铁氮共掺杂碳微球及制备方法、用途和氧还原电极
CN106252616A (zh) 一种硒化镍/中空碳纤维复合材料及其制备方法
CN103199270B (zh) 一种三维多孔电极材料的制备方法及应用
CN106099108A (zh) 一种电池级石墨/活性炭复合材料的制备方法
CN105336964B (zh) 一种氮掺杂碳纳米管/氮化碳复合材料的制备方法及应用
CN104022291A (zh) 微生物燃料电池、阴极、阴极催化剂及其制备方法
CN110124702A (zh) 一种双金属磷化物复合还原石墨烯纳米电催化材料的制备方法
CN111403184A (zh) 一种纳米碳掺杂MnO2异质结柔性电极的制备方法
CN110639576A (zh) 碳化细菌纤维素/氮化碳复合材料及其制备方法
CN109768218A (zh) 一种氮掺杂的硬碳锂离子电池负极材料及其制备方法及锂离子电池负极片和锂离子电池
CN105633424A (zh) 一种基于蜘蛛丝的多孔活性碳纤维材料及应用
CN105788881B (zh) 一种氮掺杂竹节状碳纳米管的制备方法
CN107010625A (zh) 废糖液制备多孔炭球的方法及用该炭球制备电极片方法
CN109734086A (zh) 一种多孔结构碳材料及其制备方法和应用
CN109301273A (zh) 一种生物质衍生碳材料及其制备方法和应用
WO2021093155A1 (zh) 微生物燃料电池与混合型超级电容器集成的柔性器件及制备方法与应用
CN107235481A (zh) 一种碳纳米颗粒的制备方法、阴极材料及微生物燃料电池系统
CN106058254B (zh) 一种钠离子电池负极材料用生物碳/碳纳米管的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170908

RJ01 Rejection of invention patent application after publication