CN107117965A - 掺杂改性的铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法 - Google Patents

掺杂改性的铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN107117965A
CN107117965A CN201710353080.2A CN201710353080A CN107117965A CN 107117965 A CN107117965 A CN 107117965A CN 201710353080 A CN201710353080 A CN 201710353080A CN 107117965 A CN107117965 A CN 107117965A
Authority
CN
China
Prior art keywords
lead
piezoelectric ceramics
titanate piezoelectric
ball milling
doping vario
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710353080.2A
Other languages
English (en)
Other versions
CN107117965B (zh
Inventor
朱小红
王开树
张玉
梁大云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Acoustic Industry Technology Innovation Center
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201710353080.2A priority Critical patent/CN107117965B/zh
Publication of CN107117965A publication Critical patent/CN107117965A/zh
Application granted granted Critical
Publication of CN107117965B publication Critical patent/CN107117965B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明所述铌镍酸铅‑锆钛酸铅压电陶瓷,表示其化学组成组分及组分含量的化学式如下:Pb1‑mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1‑nO3+xwt%Sb2O3+y%PbO+z%NiO,式中0.08≤m≤0.12,0.1≤n≤0.4,0.5≤x≤1,0≤y≤4,0≤z≤5,各参数进一步优选为m=0.1,0.2≤n≤0.24,x=0.75,y=3,0≤z≤4。本发明还提供了上述铌镍酸铅‑锆钛酸铅压电陶瓷的制备方法。所述掺杂改性的铌镍酸铅‑锆钛酸铅压电陶瓷其电学性能显著提高,可满足大功率压电器件的应用需求。

Description

掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
技术领域
本发明属于压电陶瓷领域,特别是涉及一种掺杂改性的高性能铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法。
背景技术
功率型的压电器件是一种压电换能器,它的工作原理是利用陶瓷材料特有的正、逆压电效应,通过机电能量二次转换,依靠器件内部阻抗的变化而实现在谐振频率上应用。这就要求压电器件材料具有高的压电系数d33、高的介电常数εr、大的机电耦合系数kp以及低的介电损耗tanδ。PZT(PbZrO3-PbTiO3,锆钛酸铅)基压电材料由于具有高d33和kp而得到广泛的应用。目前,普遍用于提高PZT基压电陶瓷电学性能的方法主要有三种:1)在PZT基的基础上进行多元复合,常见的复合组元有铌镁酸铅(PMN)、铌锌酸铅(PZN)和铌镍酸铅(PNN)等;2)在PZT系中进行A位和B位离子的掺杂改性,常用的掺杂改性方法有同价取代、硬性掺杂和软性掺杂;3)探索新的制备工艺。对于第一种方法中,在PZT基础上进行多元复合的PNN-PZT(铌镍酸铅-锆钛酸铅)压电陶瓷以其较高的压电系数、相对较高的机电耦合系数、高的介电常数,以及低的机械品质因数而得到广泛的关注和应用。但若不进行掺杂改性,PNN-PZT压电陶瓷的电学性能相对较低,不能满足大功率压电器件的应用需求。掺杂改性由于能显著提升压电器件的电学性能,已成为压电陶瓷与器件方向的研究热点。目前对PNN-PZT压电陶瓷进行了Sm2O3、ZnO、MnO2、Fe2O3、Y2O3、ZnO/Li2O共掺、CuO/Fe2O3共掺等各种掺杂改性研究,但掺杂后所获得产品的压电、介电性能仍相对偏低,压电系数d33≤800pC/N;室温相对介电常数εr≤6000,尚不能满足大功率压电器件的实际应用需求。
发明内容
本发明的目的在于针对现有技术的不足,提供一种掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法,以进一步提高PNN-PZT系压电陶瓷的电学性能,从而满足大功率压电器件的应用需求。
本发明的构思如下:通过选用Sr对A位离子的掺杂和选用Sb对B位离子的掺杂,即以A、B位离子共掺杂,进一步通过Pb和/或Ni过量条件下的制备方法来获得电学性能优良的PNN-PZT系压电陶瓷,以得到具有高压电系数、高介电常数、以及较高机电耦合系数的掺杂改性的高性能PNN-PZT压电陶瓷。
为实现上述目的,本发明通过以下的技术方案来实现:
本发明所述铌镍酸铅-锆钛酸铅压电陶瓷,表示其化学组成组分及组分含量的化学式如下:Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中0.08≤m≤0.12,0.1≤n≤0.4,0.5≤x≤1,0≤y≤4,0≤z≤5。
上述铌镍酸铅-锆钛酸铅压电陶瓷,表示其化学组成组分及组分含量的化学式优选如下:Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中m=0.1,0.2≤n≤0.24,x=0.75,y=3,0≤z≤4。此时,化学式为Pb0.90Sr0.10(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+3%PbO+z%NiO。
上述铌镍酸铅-锆钛酸铅压电陶瓷,其特征在于表示其化学组成组分及组分含量的化学式进一步优选如下:Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中m=0.1,n=0.2,x=0.75,y=3,z=3或m=0.1,n=0.22,x=0.75,y=3,z=0。此时,化学式为Pb0.90Sr0.10(Ni1/3Nb2/3)0.2(Zr0.52Ti0.48)0.8O3+0.75wt%Sb2O3+3%PbO+3%NiO或Pb0.90Sr0.10(Ni1/3Nb2/3)0.22(Zr0.52Ti0.48)0.78O3+0.75wt%Sb2O3+3%PbO。m=0.1,n=0.2,x=0.75,y=3,z=3时,d33=1200,εr=8500;m=0.1,n=0.22,x=0.75,y=3,z=0时,d33=1030,εr=10060。这两种配方下的压电陶瓷的综合电学性能品质因子Q=d33×εr相当,达到最佳。
本发明提供的上述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的制备方法,采用传统固相法制备工艺,包括按照化学配料、球磨混合、预烧、二次球磨、成型、排胶、烧结、被银和极化工序。
上述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的制备方法,具体工艺步骤如下:
(1)配料:以氧化铅(PbO)、碳酸锶(SrCO3)、氧化镍(NiO)、五氧化二铌(Nb2O5)、二氧化钛(TiO2)、氧化锆(ZrO2)、氧化锑(Sb2O3)为原料,按照以下化学式称量各原料Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.522Ti0.478)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中0.08≤m≤0.12,0.1≤n≤0.4,0≤x≤1,0≤y≤4,0≤z≤5;
(2)一次球磨:将配好的各原料混合湿磨至充分混合均匀,干燥后得到一次球磨粉料;
(3)预烧:将所述一次球磨粉料于600~800℃煅烧2~3小时得到预烧粉料;
(4)二次球磨:将预烧粉料混合湿磨至充分混合均匀,干燥后得到二次球磨粉料;
(5)成型:将二次球磨粉料加聚乙烯醇造粒后再压制成型得到胚料;
(6)排胶:将所得坯料于500~600℃保温3~5小时;
(7)烧结:将排胶后的胚料用预留的二次球磨后的粉料做埋料即用二次球磨后的粉料覆盖胚料,于1200~1300℃烧结2~3小时,烧结结束后随炉自然冷却到室温得瓷胚;
(8)被银和极化:将所得瓷胚被银电极后在25~30℃硅油中极化处理5~10分钟,极化电压1.5~2kV/mm。
上述方法中,成型步骤中聚乙烯醇的添加量为二次球磨粉料的5wt%~10wt%。
上述方法中,一次球磨和二次球磨是以无水乙醇为湿磨介质,球磨时间4~8小时。
上述方法中,成型步骤中压制成型的压力为10~20MPa。
上述方法中,排胶和烧结步骤中升温速率为3~6℃/min。
与现有技术相比,本发明具有以下有益技术效果:
1.本发明所述掺杂改性的高性能铌镍酸铅-锆钛酸铅压电陶瓷以铌镍酸铅-锆钛酸铅为基础,通过A位Sr和B位Sb共同掺杂改性结合Pb和Ni适度过量添加,得到综合电学性能优良的PNN-PZT系压电陶瓷,其具有优异的压电性能及介电性能,其中压电系数d33,相对介电常数εr和机电耦合系数kp分别高达1200pC/N、10060和0.67,使其能满足大功率压电器件的应用需求。
2.本发明所述掺杂改性的高性能铌镍酸铅-锆钛酸铅压电陶瓷制备方法稳定成熟,原料获取容易,具有普遍性和工业实用性。
附图说明
图1为实施例所制备的铌镍酸铅-锆钛酸铅的X射线衍射图谱,其中,样品1为实施例3所制备,样品2为实施例5所制备;
图2为实施例3制备的铌镍酸铅-锆钛酸铅压电陶瓷的扫描电镜图片(SEM);
图3为实施例5制备的铌镍酸铅-锆钛酸铅压电陶瓷的扫描电镜图片(SEM);
图4为实施例1~3制备的铌镍酸铅-锆钛酸铅压电陶瓷的d33、εr和Q(Q=d33×εr)的变化图谱;
图5为实施例1和实施例4~6制备的铌镍酸铅-锆钛酸铅压电陶瓷的d33、εr和Q(Q=d33×εr)的变化图谱。
具体实施方式
下面通过具体实施方式对本发明所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法作进一步说明。
以下是各实施例的制备方法:
(1)配料:以市售的分析纯PbO、NiO、Nb2O5、TiO2、ZrO2、SrCO3、Sb2O3为原料,
按照以下化学式称量各原料Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.522Ti0.478)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中0.08≤m≤0.12,0.1≤n≤0.4,0.5≤x≤1,0≤y≤4,0≤z≤5;
(2)一次球磨:将配好的各原料混合以无水乙醇为湿磨介质,球磨4小时至充分混合均匀,干燥后得到一次球磨粉料;
(3)预烧:将所述一次球磨粉料于750℃煅烧2小时得到预烧粉料;
(4)二次球磨:将预烧粉料混合以无水乙醇为湿磨介质球磨8小时至充分混合均匀,干燥后得到二次球磨粉料;
(5)成型:向二次球磨粉料中加入粉料质量8wt%的聚乙烯醇造粒,再在15MPa下干压成直径1厘米、厚度约1毫米的圆片胚料;
(6)排胶:将所得圆片胚料置于刚玉板上在箱式炉中以5℃/min的升温速率升温至550℃保温4小时;
(7)烧结:将排胶后的胚料置于刚玉板上加盖子,用预留的原二次球磨后的粉料(同类粉料)做埋料埋烧,以5℃/min的升温速率升温至1300℃烧结2小时,烧结结束后随炉自然冷却到室温得瓷胚;
(8)被银和极化:将所得瓷胚涂银浆(被银电极)后在30℃硅油中极化处理9分钟,极化电压2kV/mm,得到掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷片。
对以下实施例制备的压电陶瓷片按照IRE的标准进行压电、介电和机电耦合性能的测试。
以下实施例1~3中,掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+y%PbO+z%NiO,其中,m=0.1,n=0.2,烧结温度为1300℃。
实施例1
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.20(Zr0.52Ti0.48)0.80O3+0.75wt%Sb2O3+y%PbO+z%NiO,其中y=3,z=0;
实施例2
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.20(Zr0.52Ti0.48)0.80O3+0.75wt%Sb2O3+y%PbO+z%NiO,其中y=0,z=3;
实施例3
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.20(Zr0.52Ti0.48)0.80O3+0.75wt%Sb2O3+y%PbO+z%NiO,其中y=3,z=3;
本实施例所制备的铌镍酸铅-锆钛酸铅压电陶瓷的X射线衍射图谱见图1,SEM图见图2。由图1可以看出没有出现焦绿石相或第二相,说明其具有纯的钙钛矿相结构。由图2可知制备的材料晶粒大小从1μm到8μm不等,且晶粒分布均匀,晶界清晰可见,孔隙度偏少,陶瓷结构比较致密。
实施例1~3所制备的掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的d33、εr和Q(Q=d33×εr)的变化图谱见图4。从图4中可以看出,实施例3制备的压电陶瓷综合电学性能最高,其Q=1.02×107,即在体系0.2PNN-0.8PZT中Pb和Ni都过量3%能够有效地提高其电学性能,更适合应用于大功率压电器件。
以下实施例4~6中,掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+y%PbO+z%NiO中,m=0.1,y=3,z=0,烧结温度为1300℃。
实施例4
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+3%PbO,n=0.21。
实施例5
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+3%PbO,n=0.22。
本实施例所制备的铌镍酸铅-锆钛酸铅的X射线衍射图谱见图1,SEM图见图3。由图1可以看出没有出现焦绿石相或第二相,说明其具有纯的钙钛矿相结构。由图3可知制备的材料晶粒大小从1μm到8μm不等,且晶粒分布均匀,晶界清晰可见,孔隙度偏少,陶瓷结构比较致密。
实施例6
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+3%PbO,n=0.23。
实施例1和实施例4~6中各样品d33、εr和Q(Q=d33×εr)的变化曲线见图5。实施例1和实施例4~6中变量为PNN-PZT体系中PNN组分n的变化(0.20、0.21、0.22、0.23)。由图5可知,压电系数d33和Q都出现随n的增大先增大后减小的变化趋势,介电常数εr呈现增大的趋势。综合电学性能指标Q在实施例5样品n=0.22处有最大值1.03×107,相对于其它组分配比更适合用于大功率压电器件。
以下实施例7~10中,掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+y%PbO+z%NiO中,m=0.1,n=0.21,y=3,烧结温度为1300℃。
实施例7
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.21(Zr0.52Ti0.48)0.79O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=1。
实施例8
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.21(Zr0.52Ti0.48)0.79O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=2。
实施例9
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.21(Zr0.52Ti0.48)0.79O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=3。
实施例10
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.21(Zr0.52Ti0.48)0.79O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=4。
以下实施例11~14中,掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+0.75wt%Sb2O3+y%PbO+z%NiO中,m=0.1,n=0.22,y=3,烧结温度为1300℃。
实施例11
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.22(Zr0.52Ti0.48)0.78O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=1。
实施例12
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.22(Zr0.52Ti0.48)0.78O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=2。
实施例13
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.22(Zr0.52Ti0.48)0.78O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=3。
实施例14
本实施中掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷化学式为:
Pb0.90Sr0.10(Ni1/3Nb2/3)0.22(Zr0.52Ti0.48)0.78O3+0.75wt%Sb2O3+3%PbO+z%NiO,z=4。
实施例1~14中压电、介电性能测试结果列于表1。
表1各实施例的压电、介电性能测试结果

Claims (8)

1.掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷,其特征在于表示其化学组成组分及组分含量的化学式如下:Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中0.08≤m≤0.12,0.1≤n≤0.4,0.5≤x≤1,0≤y≤4,0≤z≤5。
2.根据权利要求1所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷,其特征在于表示其化学组成组分及组分含量的化学式如下:Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中m=0.1,0.2≤n≤0.24,x=0.75,y=3,0≤z≤4。
3.根据权利要求2所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷,其特征在于表示其化学组成组分及组分含量的化学式如下:Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中m=0.1,n=0.2,x=0.75,y=3,z=3;或m=0.1,n=0.22,x=0.75,y=3,z=0。
4.权利要求1所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的制备方法,其特征在于工艺步骤如下:
(1)配料:以氧化铅、碳酸锶、氧化镍、五氧化二铌、二氧化钛、氧化锆、氧化锑为原料,按照以下化学式称量各原料Pb1-mSrm(Ni1/3Nb2/3)n(Zr0.52Ti0.48)1-nO3+xwt%Sb2O3+y%PbO+z%NiO,式中0.08≤m≤0.12,0.1≤n≤0.4,0≤x≤1,0≤y≤4,0≤z≤5;
(2)一次球磨:将配好的各原料混合湿磨至充分混合均匀,干燥后得到一次球磨粉料;
(3)预烧:将所述一次球磨粉料于600~800℃煅烧2~3小时得到预烧粉料;
(4)二次球磨:将预烧粉料混合湿磨至充分混合均匀,干燥后得到二次球磨粉料;
(5)成型:将所述二次球磨粉料加聚乙烯醇造粒后再压制成型得到胚料;
(6)排胶:将所得坯料于500~600℃保温3~5小时;
(7)烧结:将排胶后的胚料用预留的二次球磨后的粉料做埋料,于1200~1300℃烧结2~3小时,烧结结束后随炉自然冷却到室温得瓷胚;
(8)被银和极化:将所得瓷胚被银电极后在25~35℃硅油中极化处理5~10分钟,极化电压1.5~2kV/mm。
5.根据权利要求4所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的制备方法,其特征在于成型步骤中聚乙烯醇的添加量为二次球磨粉料的5wt%~10wt%。
6.根据权利要求4或5所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的制备方法,其特征在于一次球磨和二次球磨是以无水乙醇为湿磨介质,球磨时间4~8小时。
7.根据权利要求4或5所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的制备方法,其特征在于成型步骤中压制成型的压力为10~20MPa。
8.根据权利要求4或5所述掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷的制备方法,其特征在于排胶和烧结步骤中升温速率为3~6℃/min。
CN201710353080.2A 2017-05-18 2017-05-18 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法 Active CN107117965B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710353080.2A CN107117965B (zh) 2017-05-18 2017-05-18 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710353080.2A CN107117965B (zh) 2017-05-18 2017-05-18 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN107117965A true CN107117965A (zh) 2017-09-01
CN107117965B CN107117965B (zh) 2020-09-11

Family

ID=59728446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710353080.2A Active CN107117965B (zh) 2017-05-18 2017-05-18 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN107117965B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107986782A (zh) * 2017-11-21 2018-05-04 歌尔股份有限公司 掺杂改性锆钛酸铅压电陶瓷及其制备方法
CN111875374A (zh) * 2020-08-06 2020-11-03 湖北大学 一种低温烧结铌镍-锆钛酸铅压电陶瓷材料及其制备方法
CN114436652A (zh) * 2022-01-28 2022-05-06 厦门乃尔电子有限公司 一种锆钛酸铅-铌钽镁酸铅压电陶瓷材料及其制备方法
CN114890789A (zh) * 2022-04-06 2022-08-12 山东国瓷功能材料股份有限公司 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品
CN115403375A (zh) * 2022-08-31 2022-11-29 山东国瓷功能材料股份有限公司 一种锆钛酸铅压电陶瓷材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003717A (zh) * 2014-05-20 2014-08-27 上海师范大学 一种具有高场致应变的锶掺杂铌铝酸铅-铌锌酸铅-锆钛酸铅基压电陶瓷及其制备方法和应用
CN106220169A (zh) * 2016-07-14 2016-12-14 重庆胜普昂凯科技有限公司 改性铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003717A (zh) * 2014-05-20 2014-08-27 上海师范大学 一种具有高场致应变的锶掺杂铌铝酸铅-铌锌酸铅-锆钛酸铅基压电陶瓷及其制备方法和应用
CN106220169A (zh) * 2016-07-14 2016-12-14 重庆胜普昂凯科技有限公司 改性铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107986782A (zh) * 2017-11-21 2018-05-04 歌尔股份有限公司 掺杂改性锆钛酸铅压电陶瓷及其制备方法
CN111875374A (zh) * 2020-08-06 2020-11-03 湖北大学 一种低温烧结铌镍-锆钛酸铅压电陶瓷材料及其制备方法
CN114436652A (zh) * 2022-01-28 2022-05-06 厦门乃尔电子有限公司 一种锆钛酸铅-铌钽镁酸铅压电陶瓷材料及其制备方法
CN114436652B (zh) * 2022-01-28 2023-05-16 厦门乃尔电子有限公司 一种锆钛酸铅-铌钽镁酸铅压电陶瓷材料及其制备方法
CN114890789A (zh) * 2022-04-06 2022-08-12 山东国瓷功能材料股份有限公司 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品
CN114890789B (zh) * 2022-04-06 2023-05-09 山东国瓷功能材料股份有限公司 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品
CN115403375A (zh) * 2022-08-31 2022-11-29 山东国瓷功能材料股份有限公司 一种锆钛酸铅压电陶瓷材料及其制备方法
CN115403375B (zh) * 2022-08-31 2023-07-14 山东国瓷功能材料股份有限公司 一种锆钛酸铅压电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN107117965B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN107117965A (zh) 掺杂改性的铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法
CN101429020B (zh) 浪涌抑制器用正温度系数热敏电阻生产方法
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
JP2001508753A (ja) 低い焼結温度で銀とともに焼成し得る低損失pztセラミック組成物およびそれを製造するための方法
CN101712548A (zh) 一种烧结温度低的高效压电陶瓷材料及其制备工艺
CN101648807A (zh) 锆钛酸钡钙基压电陶瓷及其制备方法
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN101186502A (zh) 一种铌酸钾钠基无铅压电陶瓷的制备方法
CN102260079B (zh) 一种“收/发”两用型PZT-Pb(Sb2/3Mn1/3)三元系压电陶瓷材料及其制备方法
CN106518070B (zh) 一种多元系高压电活性压电陶瓷材料及其制备方法
CN101891474A (zh) 铌酸钾钠-钛酸铋钠钾压电陶瓷及其制备方法
CN103073289B (zh) 压电陶瓷材料、烧结体、压电陶瓷器件及其制备方法
CN103373849A (zh) 一种氧化铌掺杂的锆钛酸钡钙无铅压电陶瓷粉体材料
CN102503409A (zh) 一种锡钛酸钡钙无铅压电陶瓷及其制备工艺
CN102515758A (zh) 压电陶瓷雾化器介质的制备方法
US20070120446A1 (en) Piezoelectric ceramic composition and piezoelectric element comprising the composition
CN102180670A (zh) 铌酸钾钠锂-钛酸铋钠钾无铅压电陶瓷及其制备方法
CN109503157A (zh) 一种高致密度高压电常数的压电陶瓷
CN104129992A (zh) 改性pzt压电陶瓷材料及其制备方法
CN101337815A (zh) 无铅压电陶瓷及其制备方法
CN106699177B (zh) 一种具有高发电特性的无铅压电能量收集材料及其制备方法
CN107021754B (zh) 分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法
CN1673178A (zh) 钛酸铋纳-钛酸钡基压电陶瓷及其制备方法
CN114213121A (zh) 高压电、高介电、高居里压电陶瓷片
CN100366576C (zh) 一种制备热释电陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220525

Address after: No.5, research institute road, Changshu Economic and Technological Development Zone, Suzhou City, Jiangsu Province

Patentee after: Jiangsu acoustic industry technology innovation center

Address before: 610065, No. 24, south section of first ring road, Chengdu, Sichuan, Wuhou District

Patentee before: SICHUAN University