CN114890789A - 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品 - Google Patents

匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品 Download PDF

Info

Publication number
CN114890789A
CN114890789A CN202210353653.2A CN202210353653A CN114890789A CN 114890789 A CN114890789 A CN 114890789A CN 202210353653 A CN202210353653 A CN 202210353653A CN 114890789 A CN114890789 A CN 114890789A
Authority
CN
China
Prior art keywords
silver
temperature
piezoelectric ceramic
preparation
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210353653.2A
Other languages
English (en)
Other versions
CN114890789B (zh
Inventor
董鹏飞
付清波
张锋
杨彬
吴燚
应红
骆光恒
朱彬彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Sinocera Functional Material Co Ltd
Original Assignee
Shandong Sinocera Functional Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Sinocera Functional Material Co Ltd filed Critical Shandong Sinocera Functional Material Co Ltd
Priority to CN202210353653.2A priority Critical patent/CN114890789B/zh
Publication of CN114890789A publication Critical patent/CN114890789A/zh
Application granted granted Critical
Publication of CN114890789B publication Critical patent/CN114890789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth based oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3268Manganates, manganites, rhenates or rhenites, e.g. lithium manganite, barium manganate, rhenium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本发明提供了一种匹配银内电极共烧铌锰‑锆钛酸铅压电陶瓷、其制备方法及其制品,属于压电陶瓷材料技术领域。本发明提供的匹配银内电极共烧铌锰‑锆钛酸铅压电陶瓷,其化学通式为:a Pb(Mn1/3Nb2/3)O3‑(0.94‑a)Pb(Zr0.5Ti0.5)‑0.06Bi(Ni1/2Ti1/2)O3+xwt%Li2CO3,其中0<a≤0.12;0<x≤1。本发明提供的压电陶瓷可以与银浆在低温下(820℃)实现共烧,具有优异的低损耗性能(<0.80%),通过第三相和低熔点氧化物掺杂使其满足超声马达的使用要求。

Description

匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其 制品
技术领域
本发明属于压电陶瓷材料技术领域,尤其涉及一种匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品。
背景技术
锆钛酸铅(PZT)是应用最广泛的一种钙钛矿结构的压电陶瓷材料,因其优异的压电特性、高压电常数、高使用温度,可以制备成如超声波换能器、扬声器、传感器、制动器等器件。锆钛酸铅(PZT)分为软瓷和硬瓷体系,软瓷是指具有高压电常数、高损耗材料,其中压电制动器(马达)有着广泛的应用前景,例如用软瓷配方体系的燃油喷射器,其包含压电多层制动器,几乎完全基于PZT陶瓷与合适的金属电极(如银钯合金)共烧制成,具有灵敏度度高,制动位移大等特性。硬瓷是指具有低损耗、高机械品质因素的材料,这类材料的使用频率较高,因此可以制成高频超声马达,利用压电陶瓷的逆压电效应产生超声振动,因长时间工作,需要其拥有较低的损耗(<0.8%),以延长其工作寿命。
传统的PZT压电陶瓷材料的烧结温度在1200-1250℃,而银的熔点是961℃,铜的熔点是1080℃,钯的熔点是1554℃。为了匹配陶瓷的烧结温度,我们通常使用银钯合金,但这会带来高昂的成本。同时高温下,铅更容易挥发,造成环境的污染。现市场上银浆的普遍烧温需要<880℃。因此各国学者都在研究PZT的降烧温的方法,且不同的PZT体系需要不同的方式。CN113149644A公开了一种低温烧结锑锰酸铅-锆钛酸铅低损耗压电材料,0.05Pb(Mn1/3Sb2/3)-0.47PbZrO3-0.48PbTiO3+xLi2CO3,其中0<x≤1,需要在950℃烧结,其原理是引入低熔点氧化物Li2CO3,既降低了烧结温度,又使压电性能提高了27%~34%。再例如CN107573067A公开了一种使用玻璃助烧剂LBBS将Pb1-xSmx(Zr0.52Ti0.48)1-x/4O3,压电材料从原来的1000℃降低到850℃,相对密度可以达到95%,d33为247PC/N,介电损耗为3.1%。以上两种方式虽然可以降低PZT的烧结温度,但不能同时满足高频超声马达低损耗、低烧温的需求,更谈不上与银内电极共烧时,同时满足低损耗、低烧温以及高机械品质的需求。
发明内容
本发明提供了一种匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品,该压电陶瓷可以与银浆在低温下实现共烧,具有优异的低损耗性能以及良好的机械品质,通过第三相和低熔点氧化物掺杂使其满足超声马达的使用要求。
为了达到上述目的,本发明提供了一种匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷,其化学通式为:
a Pb(Mn1/3Nb2/3)O3-(0.94-a)Pb(Zr0.5Ti0.5)-0.06Bi(Ni1/2Ti1/2)O3+xwt%Li2CO3
其中0<a≤0.12;0<x≤1。
作为优选,a的取值选自0.10、0.40或0.12;x的取值选自0.3、0.5或0.7。
作为优选,所述压电陶瓷能够在820℃的温度下与银浆实现共烧,且其介电损耗<0.80%。
本发明还提供了一种匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷的制备方法,包括配料、烘干、预烧、压片、排胶、烧结、烧银、极化步骤,其中:
配料步骤按照化学通式:
a Pb(Mn1/3Nb2/3)O3-(0.94-a)Pb(Zr0.5Ti0.5)-0.06Bi(Ni1/2Ti1/2)O3+xwt%Li2CO3的摩尔比称取PbO、ZrO2、TiO2、MnO2、Nb2O5、Bi2O3、NiO、Li2CO3原料;
将称量好的原料放在聚四氟乙烯型磨罐中,以去离子水作为分散剂,以氧化锆球作为球磨介质,按照原料:氧化锆球:去离子水=1:3.2:1的比例球磨1-3h,得到混合均匀的球磨料。
在上述方案中,按照化学通式称取各原料时,所用的PbO、ZrO2、TiO2、MnO2、Nb2O5、Bi2O3、NiO的用量在摩尔比范围0.94:(0.41-0.47):(0.44-0.50):(0-0.04):(0-0.04):0.03:0.03中进行对应选取即可。进一步,对于Li2CO3而言,必须选择合适的加入量,加入量太少,不能显著的降低陶瓷的烧结温度,加入量太多,会使压电性能出现恶化。此外,球磨时间对于配料步骤很是关键,球磨时间低于1h,容易使得原料未能充分混合均匀,而高于3h,则会使得粉体的比表面增大,影响预烧温度。
作为优选,在预烧步骤中,将于80-100℃烘干后的球磨料过20-40目筛网后,置于氧化铝坩埚中,然后放在马弗炉中,以3-5℃每分钟的速度升温到650-700℃,然后保温2-3h,得到粉料。在本方案中,预烧温度影响作用较大,预烧温度低于650℃,不利于主晶相的合成,而高于700℃,则会使得粉体过烧变硬,难以粉碎。
作为优选,在压片步骤中,将所得粉料二次球磨1-3h,然后继续烘干,向烘干后的二次球磨粉料中加8%-9%的聚乙烯醇溶液,均匀研磨,再过80-120目筛网,于100-120MPa下压制成直径12mm、厚1mm的圆片状胚体。
作为优选,在排胶步骤中,将所得圆片状胚体放在马弗炉中,以每分钟0.5-1.5℃升温到580-620℃,保温2-3h进行排胶,得到排胶后的胚件。在本方案中,尤其注重升温速率,升温速率不能过快,否则易导致胚体开裂。
作为优选,在烧结步骤中,将所得排胶后的胚件放在马弗炉中,以烘干后的二次球磨粉料覆盖胚件,以每分钟3-5℃升温到820-850℃,然后保温1.5-2h,得到陶瓷片。在本方案中,烧结温度不应小于820℃,否则易导致瓷体不能烧熟。
作为优选,在烧银步骤中,将所得烧结好的陶瓷片进行打磨,并将陶瓷片上下均匀涂抹银浆,然后置于马弗炉中,以每分钟5-10℃均匀升温到630-670℃,并在此温度下保温20-40min,然后自然冷却,得到背银的陶瓷片。
作为优选,在极化步骤中,将所得背银的陶瓷片放在硅油中,升温到100-130℃,然后加3-4KV/mm,保持20-40分钟,得到匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷。
本发明还提供了一种高频超声马达,采用上述技术方案所述的匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷制备得到。
与现有技术相比,本发明的优点和积极效果在于:
本发明提供了一种匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷,该压电陶瓷材料采用铌锰酸铅-锆钛酸铅材料,具有优异的低损耗性能,通过第三相和低熔点氧化物掺杂使其满足超声马达的使用要求。具体的,该压电陶瓷通过第三相Bi-Ni-Ti的掺杂,使得烧结温度由原来的1250℃降低到1180℃,同时其介电损耗未发生明显的变化;更进一步,在其基础上,通过加入Li2CO3低熔点氧化物,在固相反应中促进液相烧结,提升驱动力,减少系统的表面自由能,在晶粒间起到润滑作用,促进晶粒重拍向着减少气孔方向进行,进而更加明显的降低烧结温度。
本发明实现了铌锰酸铅-锆钛酸铅压电陶瓷在820℃下烧结,且介电损耗<0.80%,可以与银浆在低温下实现共烧,完全可以应用于高频超声马达的使用,比市面上的银钯内电极成本降低几百倍,而铜电极和镍电极等贱金属虽然成本上较低,但需要在还原气氛下烧结,本发明但烧结氛围更宽,只需要空气气氛下进行就可以。
附图说明
图1为实施例10所得陶瓷片与银在820℃下共烧时的断面微观形貌图;
图2为实施例10所得压电陶瓷片的表面形貌图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷,化学通式为0.01Pb(Mn1/3Nb2/3)O3-0.93Pb(Zr0.5Ti0.5)-0.06Bi(Ni1/2Ti1/2)O3+x%Li2CO3,x=0.3,其制备方法如下:
步骤一:配料:以PbO、ZrO2、TiO2、MnO2、Nb2O5、Bi2O3、NiO、Li2CO3作为原材料,以低温烧结铌锰-锆钛酸铅低损耗压电材料的摩尔比称取原料,将称量好的原料放在聚四氟乙烯行星磨罐里,以去离子水作为分散剂,以1.5mm氧化锆球作为球磨介质,料:球:水=1:3.2:1,球磨2h,得到混合均匀的球磨料。
步骤二:烘干:将得到的均匀的球磨料放在烘箱里进行烘干,烘干温度100℃。
步骤三:预烧:将烘干后的粉体过20目筛网后,置于氧化铝坩埚中,然后放在马弗炉中,以3℃每分钟的速度升温到680℃,然后保温3h。
步骤四:压片:将得到的粉料二次球磨1.5h,然后继续烘干,将烘干后的粉料加9%的聚乙烯醇溶液,均匀研磨,再过80目筛网,与120MPa下压制成直径12mm,厚1mm的圆片状胚体。
步骤五:排胶:将上述圆片状胚体放在马弗炉中,以每分钟1.5℃升温到620℃,保温2h进行排胶,得到排胶后的胚件。
步骤六:烧结:将排胶后的胚件放在马弗炉中,以原粉覆盖胚件,以每分钟4℃升温到820℃,然后保温2h,得到陶瓷片。
步骤七:烧银:将烧结好的陶瓷片进行打磨,然后将陶瓷片上下均匀涂抹银浆,然后置于马弗炉中,以每分钟5℃均匀升温到650℃,并在该温度下保温30min,然后自然冷却,得到背银的陶瓷片。
步骤八:极化:将背银的陶瓷片放在硅油中,升温到120℃,然后加3KV/mm,保持30分钟,得到低温烧结的铌锰-锆钛酸铅压电陶瓷片。
实施例2
制备方法同实施例1,区别在于压电材料化学通式中x=0.5。
实施例3
制备方法同实施例1,区别在于压电材料化学通式中x=0.7。
实施例4
匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷,化学通式为0.04Pb(Mn1/3Nb2/3)O3-0.90Pb(Zr0.5Ti0.5)-0.06Bi(Ni1/2Ti1/2)O3+x%Li2CO3,x=0.3,其制备方法如下:
步骤一:配料:以PbO、ZrO2、TiO2、MnO2、Nb2O5、Bi2O3、NiO、Li2CO3作为原材料,以低温烧结铌锰-锆钛酸铅低损耗压电材料的摩尔比称取原料,将称量好的原料放在聚四氟乙烯行星磨罐里,以去离子水作为分散剂,以1.5mm氧化锆球作为球磨介质,料:球:水=1:3.2:1,球磨1h,得到混合均匀的球磨料。
步骤二:烘干:将得到的均匀的球磨料放在烘箱里进行烘干,烘干温度100℃。
步骤三:预烧:将烘干后的粉体过20目筛网后,置于氧化铝坩埚中,然后放在马弗炉中,以3℃每分钟的速度升温到650℃,然后保温3h。
步骤四:压片:将得到的粉料二次球磨1.5h,然后继续烘干,将烘干后的粉料加9%的聚乙烯醇溶液,均匀研磨,再过80目筛网,与120MPa下压制成直径12mm,厚1mm的圆片状胚体。
步骤五:排胶:将上述圆片状胚体放在马弗炉中,以每分钟1℃升温到600℃,保温3h进行排胶,得到排胶后的胚件。
步骤六:烧结:将排胶后的胚件放在马弗炉中,以原粉覆盖胚件,以每分钟3℃升温到830℃,然后保温2h,得到陶瓷片。
步骤七:烧银:将烧结好的陶瓷片进行打磨,然后将陶瓷片上下均匀涂抹银浆,然后置于马弗炉中,以每分钟7℃均匀升温到630℃,并在该温度下保温20min,然后自然冷却,得到背银的陶瓷片。
步骤八:极化:将背银的陶瓷片放在硅油中,升温到120℃,然后加3KV/mm,保持30分钟,得到低温烧结的铌锰-锆钛酸铅压电陶瓷片。
实施例5
制备方法同实施例4,区别在于压电材料化学通式中x=0.5。
实施例6
制备方法同实施例4,区别在于压电材料化学通式中x=0.7。
实施例7
匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷,化学通式为0.12Pb(Mn1/3Nb2/3)O3-0.82Pb(Zr0.5Ti0.5)-0.06Bi(Ni1/2Ti1/2)O3+x%Li2CO3,x=0.3,其制备方法如下:
步骤一:配料:以PbO、ZrO2、TiO2、MnO2、Nb2O5、Bi2O3、NiO、Li2CO3作为原材料,以低温烧结铌锰-锆钛酸铅低损耗压电材料的摩尔比称取原料,将称量好的原料放在聚四氟乙烯行星磨罐里,以去离子水作为分散剂,以1.5mm氧化锆球作为球磨介质,料:球:水=1:3.2:1,球磨3h,得到混合均匀的球磨料。
步骤二:烘干:将得到的均匀的球磨料放在烘箱里进行烘干,烘干温度100℃。
步骤三:预烧:将烘干后的粉体过20目筛网后,置于氧化铝坩埚中,然后放在马弗炉中,以5℃每分钟的速度升温到700℃,然后保温3h。
步骤四:压片:将得到的粉料二次球磨1.5h,然后继续烘干,将烘干后的粉料加9%的聚乙烯醇溶液,均匀研磨,再过80目筛网,与120MPa下压制成直径12mm,厚1mm的圆片状胚体。
步骤五:排胶:将上述圆片状胚体放在马弗炉中,以每分钟0.5℃升温到580℃,保温2h进行排胶,得到排胶后的胚件。
步骤六:烧结:将排胶后的胚件放在马弗炉中,以原粉覆盖胚件,以每分钟5℃升温到850℃,然后保温2h,得到陶瓷片。
步骤七:烧银:将烧结好的陶瓷片进行打磨,然后将陶瓷片上下均匀涂抹银浆,然后置于马弗炉中,以每分钟10℃均匀升温到670℃,并在该温度下保温40min,然后自然冷却,得到背银的陶瓷片。
步骤八:极化:将背银的陶瓷片放在硅油中,升温到120℃,然后加3KV/mm,保持30分钟,得到低温烧结的铌锰-锆钛酸铅压电陶瓷片。
实施例8
制备方法同实施例7,区别在于压电材料化学通式中x=0.5。
实施例9
制备方法同实施例7,区别在于压电材料化学通式中x=0.7。
实施例10
将通过实施例5制备方法在步骤四二次球磨烘干后所得粉体的基础上,过80目筛网,然后将陶瓷粉体与有机溶液按一定重量比混合,陶瓷粉体为70%,有机溶液30%,有机溶液的组成包括48%的乙醇+甲苯,18%丙烯酸酸树脂,34%的乙二醇,球磨24h,然后消泡,通过流延机流出厚度为50um的膜带。
通过叠层丝印机,印刷纯银电极浆料,然后依次交叉叠片,形成内电极,共叠10层,在等静压机上以每平方厘米0.2吨的压力进行等静压,然后通过切割机切割出1*1cm的正方体。
将切割后的正方体进行排胶,从室温升温到600℃,以每分钟0.5℃,保温1h。然后进行共烧,以烘干后的二次球磨粉末覆盖胚件,然后从室温升温到820℃,以每分种4℃,保温2h,得到陶瓷片。
图1为实施例10所得陶瓷片与银在820℃下共烧时的断面微观形貌图,由该断面形貌图可见,在820℃下与银共烧后,晶粒和银层可以清晰的分辨,未发现银层的挥发。图2为所得压电陶瓷片的表面形貌图。由图2可见,晶粒尺寸非常均匀,无异常长大。
对比例1
制备方法同实施例1,区别在于压电材料化学通式中x=0。
对比例2
制备方法同实施例4,区别在于压电材料化学通式中x=0。
对比例3
制备方法同实施例7,区别在于压电材料化学通式中x=0。
对比例4
制备方法同实施例1,区别在于压电材料化学通式为0.04Pb(Mn1/3Nb2/3)O3-0.90Pb(Zr0.5Ti0.5)+x%Li2CO3,x=0.3。
对比例5
制备方法同实施例1,区别在于压电材料化学通式为0.04Pb(Mn1/3Nb2/3)O3-0.90Pb(Zr0.5Ti0.5)。
性能测试
将实施例1-9与对比例1-5所制备的压电陶瓷片室温下静置24h,然后测试其电学性能,其结果列于表1中。
表1
Figure BDA0003581859660000091
Pb(Mn1/3Nb2/3)O3简称PMN,是一种铅基弛豫铁电体,与PZT复合,可以构建出三元系压电陶瓷,改变纯PZT压电性能。PMN是硬瓷掺杂的主要代表,随着PMN含量的增加,可以提高机械品质因素Qm,降低机械损耗,但对烧结温度影响比较小。进一步,与Bi(Ni1/2Ti1/2)O3和Li2CO3协同,可以有效降低烧结温度,提高压电性能,但需要选择最佳的用量。如果用量过高,会恶化压电性能。本发明提出了新的配方体系,在PMN基础上,通过第三相和低熔点氧化物掺杂,使其满足超声马达的使用要求,和市场上流通的产品相比较,而且其压电性能更高,在相同的d33下,能有效的降低多层马达所需要叠层的层数。

Claims (11)

1.匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷,其特征在于,其化学通式为:
a Pb(Mn1/3Nb2/3)O3-(0.94-a)Pb(Zr0.5Ti0.5)-0.06Bi(Ni1/2Ti1/2)O3+xwt%Li2CO3
其中0<a≤0.12;0<x≤1。
2.根据权利要求1所述的压电陶瓷,其特征在于,a的取值选自0.10、0.40或0.12;x的取值选自0.3、0.5或0.7。
3.根据权利要求1或2所述的压电陶瓷,其特征在于,所述压电陶瓷能够在820℃的温度下与银浆实现共烧,且其介电损耗<0.80%。
4.根据权利要求1-3任一项所述的匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷的制备方法,其特征在于,包括配料、烘干、预烧、压片、排胶、烧结、烧银、极化步骤,其中:
配料步骤按照化学通式:
a Pb(Mn1/3Nb2/3)O3-(0.94-a)Pb(Zr0.5Ti0.5)-0.06Bi(Ni1/2Ti1/2)O3+xwt%Li2CO3的摩尔比称取PbO、ZrO2、TiO2、MnO2、Nb2O5、Bi2O3、NiO、Li2CO3原料;
将称量好的原料放在聚四氟乙烯型磨罐中,以去离子水作为分散剂,以氧化锆球作为球磨介质,按照原料:氧化锆球:去离子水=1:3.2:1的比例球磨1-3h,得到混合均匀的球磨料。
5.根据权利要求4所述的制备方法,其特征在于,在预烧步骤中,将于80-100℃烘干后的球磨料过20-40目筛网后,置于氧化铝坩埚中,然后放在马弗炉中,以3-5℃每分钟的速度升温到650-700℃,然后保温2-3h,得到粉料。
6.根据权利要求5所述的制备方法,其特征在于,在压片步骤中,将所得粉料二次球磨1-3h,然后继续烘干,向烘干后的二次球磨粉料中加8%-9%的聚乙烯醇溶液,均匀研磨,再过80-120目筛网,于100-120MPa下压制成直径12mm、厚1mm的圆片状胚体。
7.根据权利要求6所述的制备方法,其特征在于,在排胶步骤中,将所得圆片状胚体放在马弗炉中,以每分钟0.5-1.5℃升温到580-620℃,保温2-3h进行排胶,得到排胶后的胚件。
8.根据权利要求7所述的制备方法,其特征在于,在烧结步骤中,将所得排胶后的胚件放在马弗炉中,以烘干后的二次球磨粉料覆盖胚件,以每分钟3-5℃升温到820-850℃,然后保温1.5-2h,得到陶瓷片。
9.根据权利要求8所述的制备方法,其特征在于,在烧银步骤中,将所得烧结好的陶瓷片进行打磨,并将陶瓷片上下均匀涂抹银浆,然后置于马弗炉中,以每分钟5-10℃均匀升温到630-670℃,并在此温度下保温20-40min,然后自然冷却,得到背银的陶瓷片。
10.根据权利要求9所述的制备方法,其特征在于,在极化步骤中,将所得背银的陶瓷片放在硅油中,升温到100-130℃,然后加3-4KV/mm,保持20-40分钟,得到匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷。
11.高频超声马达,其特征在于,采用权利要求1-3任一项所述的匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷制备得到。
CN202210353653.2A 2022-04-06 2022-04-06 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品 Active CN114890789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210353653.2A CN114890789B (zh) 2022-04-06 2022-04-06 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210353653.2A CN114890789B (zh) 2022-04-06 2022-04-06 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品

Publications (2)

Publication Number Publication Date
CN114890789A true CN114890789A (zh) 2022-08-12
CN114890789B CN114890789B (zh) 2023-05-09

Family

ID=82715548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210353653.2A Active CN114890789B (zh) 2022-04-06 2022-04-06 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品

Country Status (1)

Country Link
CN (1) CN114890789B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425540A (zh) * 2023-03-14 2023-07-14 山东国瓷功能材料股份有限公司 压电陶瓷管式超声马达及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241825A (ja) * 1986-04-14 1987-10-22 Sumitomo Metal Mining Co Ltd 赤外線センサー用焦電体磁器の製法
US5433917A (en) * 1993-09-16 1995-07-18 The Penn State Research Foundation PZT ceramic compositions having reduced sintering temperatures and process for producing same
CN102659404A (zh) * 2012-05-02 2012-09-12 天津大学 低温烧结铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN102924082A (zh) * 2012-10-22 2013-02-13 南京航空航天大学 锰掺杂铌镍-锆钛酸铅压电陶瓷及其制备方法
CN104844202A (zh) * 2015-04-16 2015-08-19 中国科学院光电技术研究所 一种锰锑酸铅掺杂的铌镍-锆钛酸铅压电陶瓷
CN107089832A (zh) * 2017-06-01 2017-08-25 贵州飞舸电子有限公司六枝分公司 一种基于铌锌、铌镍锆钛酸铅的压电陶瓷及其制备方法
CN107117965A (zh) * 2017-05-18 2017-09-01 四川大学 掺杂改性的铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法
CN113149644A (zh) * 2021-03-24 2021-07-23 哈尔滨工业大学 一种低温烧结的锑锰酸铅-锆钛酸铅低介电损耗压电陶瓷及其制备方法
CN113185289A (zh) * 2021-03-31 2021-07-30 哈尔滨工业大学 一种超低介电损耗的铌锰酸铅-铌镍酸铅-锆钛酸铅高压电性铁电陶瓷及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241825A (ja) * 1986-04-14 1987-10-22 Sumitomo Metal Mining Co Ltd 赤外線センサー用焦電体磁器の製法
US5433917A (en) * 1993-09-16 1995-07-18 The Penn State Research Foundation PZT ceramic compositions having reduced sintering temperatures and process for producing same
CN102659404A (zh) * 2012-05-02 2012-09-12 天津大学 低温烧结铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN102924082A (zh) * 2012-10-22 2013-02-13 南京航空航天大学 锰掺杂铌镍-锆钛酸铅压电陶瓷及其制备方法
CN104844202A (zh) * 2015-04-16 2015-08-19 中国科学院光电技术研究所 一种锰锑酸铅掺杂的铌镍-锆钛酸铅压电陶瓷
CN107117965A (zh) * 2017-05-18 2017-09-01 四川大学 掺杂改性的铌镍酸铅‑锆钛酸铅压电陶瓷及其制备方法
CN107089832A (zh) * 2017-06-01 2017-08-25 贵州飞舸电子有限公司六枝分公司 一种基于铌锌、铌镍锆钛酸铅的压电陶瓷及其制备方法
CN113149644A (zh) * 2021-03-24 2021-07-23 哈尔滨工业大学 一种低温烧结的锑锰酸铅-锆钛酸铅低介电损耗压电陶瓷及其制备方法
CN113185289A (zh) * 2021-03-31 2021-07-30 哈尔滨工业大学 一种超低介电损耗的铌锰酸铅-铌镍酸铅-锆钛酸铅高压电性铁电陶瓷及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
YANG YU: "Enhancing high power performances of Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification", 《CERAMICS INTERNATIONAL》 *
曹林洪等: "锂盐助烧0.68Pb(Mg_(1/3)Nb_(2/3))O_3-0.32PbTiO_3陶瓷的介电性能", 《四川大学学报(工程科学版)》 *
朱秀娟等: "对铌锑锆钛酸铅系压电陶瓷的掺杂改性", 《电子元件与材料》 *
李宝山等: "铌锰锆钛酸铅压电陶瓷烧结行为的研究", 《无机材料学报》 *
杨为中,周大利,孙清池,尹光福,张云,罗庆平: "PMMN-PZT四元系压电陶瓷材料的研究", 电子元件与材料 *
田玉明等: "PZT-PMN-BF高活性粉体及压电变压器的制备", 《硅酸盐学报》 *
马元等: "PZT压电陶瓷液相低温烧结技术的研究进展", 《山东轻工业学院学报(自然科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425540A (zh) * 2023-03-14 2023-07-14 山东国瓷功能材料股份有限公司 压电陶瓷管式超声马达及其制备方法

Also Published As

Publication number Publication date
CN114890789B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
CN102850050B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN110330332B (zh) 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
KR20030074692A (ko) 세라믹 재료 및 이를 이용한 압전소자
US9412932B2 (en) Piezoelectricity ceramic, sinter, method for manufacturing same, and piezoelectricity ceramic device using same
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
CN109650888A (zh) 一种低温织构高电学性能三元系钛酸铅基弛豫铁电取向陶瓷及其制备方法和应用
CN112174663A (zh) 一种高性能压电陶瓷及其制备方法
CN112919903A (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN114890789B (zh) 匹配银内电极共烧铌锰-锆钛酸铅压电陶瓷、其制备方法及其制品
CN112745117A (zh) 一种织构化压电陶瓷叠层驱动器及其制备方法
WO2003104163A1 (ja) 圧電磁器組成物とこれを用いた積層圧電デバイスおよびその製造方法
JP5506731B2 (ja) 圧電素子の製造方法
CN113213918B (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN113979748B (zh) 一种铌酸钠钾基无铅压电陶瓷及其制备方法
CN113582689B (zh) 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法
JP2016000689A (ja) 圧電磁器組成物及び圧電磁器の製造方法
CN1253408C (zh) 低温叠层共烧的介电陶瓷和铁氧体及其制备方法
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
CN106986629B (zh) 一种钛酸铋基铋层状结构铁电陶瓷靶材的制备方法
CN115536392A (zh) 高温叠层压电驱动器用压电陶瓷片及其制备方法
JP4202657B2 (ja) 圧電磁器組成物と圧電デバイス
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN113800904A (zh) 一种高能量低损耗的BNT-SBT-xSMN陶瓷材料及其制备方法
CN113149644A (zh) 一种低温烧结的锑锰酸铅-锆钛酸铅低介电损耗压电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant