CN107104166A - 一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池 - Google Patents

一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池 Download PDF

Info

Publication number
CN107104166A
CN107104166A CN201710302712.2A CN201710302712A CN107104166A CN 107104166 A CN107104166 A CN 107104166A CN 201710302712 A CN201710302712 A CN 201710302712A CN 107104166 A CN107104166 A CN 107104166A
Authority
CN
China
Prior art keywords
zno
nife
nano
array
rod array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710302712.2A
Other languages
English (en)
Inventor
何祖明
黄正逸
唐斌
江兴方
伊聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaide College of Changzhou University
Original Assignee
Huaide College of Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaide College of Changzhou University filed Critical Huaide College of Changzhou University
Priority to CN201710302712.2A priority Critical patent/CN107104166A/zh
Publication of CN107104166A publication Critical patent/CN107104166A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种ZnO/NiFe2O4纳米阵列复合异质结材料,采用以下步骤制备:1)、NiFe2O4凝胶的制备;2)、将ZnO纳米棒阵列安装在镀膜机上,镀膜机的旋转速度为1200转/min,把NiFe2O4凝胶滴加到ZnO纳米棒阵列,180℃燥30分钟,将NiFe2O4凝胶循环重复滴加至ZnO纳米棒阵列中,至NiFe2O4自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒的全面包覆,经过热处理形成ZnO/NiFe2O4复合纳米异质结。同时公开了一种太阳能电池,依次包括:ITO或FTO导电玻璃基底、ZnO晶种层、ZnO纳米棒阵列、NiFe2O4薄膜、金属电极或导电氧化物电极和ITO或FTO导电玻璃基底。该电池成本低,制备简单,电池性能好。

Description

一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能 电池
技术领域
本发明涉及光电纳米材料技术领域,具体为一ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池。
背景技术
当前,能源环境问题日益严峻,科学界一直致力于研究除硅以外的资源丰富的能源材料。金属氧化物材料具有非同一般的光学和电学性能,ZnO是重要n型的宽带隙半导体材料,其室温下禁带宽度为 3.37eV,激子束缚能为60meV,远大于室温热离化能(26meV),可在较低阀值下产生激子受激辐射,在室温和高温下可实现激子复合发光,是一种制备短波长发光器件的理想材料。因此研究p-n异质结材料是非常有意义。
研究制备低成本ZnO基太阳能电池对替代高成本电池,实现太阳能电池的大规模民用化具有重要意义。通过界面结构梳状化,制备三维结构复合薄膜异质结太阳能电池,可以有效增加异质结界面面积,这样在增加多重吸光的同时可以缩短光生载流子的收集长度,降低光生载流子的复合几率,有利于提高电池效率。由于固体无机半导体材料在填充过程中受到与复杂几何结构有关的阴影效应的制约往往无法在纳米结构表面保形覆盖或很难实现其在纳米多孔中致密化填充,因此,探索一种在取向阵列中充分填充无机固体半导体的技术制备复合异质结电池是提高电池技术的关键。
目前尚未有ZnO/NiFe2O4纳米阵列复合异质结太阳电池制备方法的相关报道。
发明内容
本发明要解决的技术问题是提供一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池。
为了解决上述技术问题,本发明提供了如下的技术方案:
一种ZnO/NiFe2O4纳米阵列复合异质结材料,采用以下步骤制备:
1)、将适量六水合氯化镍和六水合三氯化铁溶解于去离子水中,优选的,铁和镍的摩尔比为2:1~1.5;搅拌均匀后加热至90℃,调整溶液的pH值为10~14,90℃保温3小时,100℃燥箱中干燥1小时,得到NiFe2O4凝胶;
2)、将ZnO纳米棒阵列安装在镀膜机上,镀膜机的旋转速度为 1200转/min,把NiFe2O4凝胶滴加到ZnO纳米棒阵列,180℃燥30分钟,将NiFe2O4凝胶循环重复8~12次滴加至ZnO纳米棒阵列中,一般要重复10次,至NiFe2O4自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒的全面包覆,经过热处理形成 ZnO/NiFe2O4复合纳米异质结,优选的热处理的温度为500℃。
进一步的,所述ZnO纳米棒阵列采用水热生长方法制备而成,利用溶胶凝胶法制备ZnO种子前驱体,然后在基底上涂敷ZnO种子前驱体,形成薄膜,经热处理得到一层均匀的纳米级ZnO晶种层;在反应容器中将基底带有晶种层的面悬空倒扣浸没于ZnO生长溶液中,水浴条件下反应得到高度取向的ZnO纳米棒阵列。优选的,所述ZnO 纳米棒阵列采用以下步骤制备:采用旋涂镀膜的方法在清洗好的基底上制备一层ZnO胶体膜;真空管式炉中350℃~550℃退火10min~ 30min,在基底表面形成一层均匀致密的纳米级ZnO晶种层;按照摩尔比1:8将KOH和Zn(NO3)2按配制成浓度为0.10~0.25M的[Zn(OH)4]2-水溶液,充分磁力搅拌,得到一澄清溶液,然后倒入反应容器内,将基底制备有晶种层的面向下悬浮于阵列生长液中,之后密封好反应容器,将其置于电热恒温水槽中,在20~50℃水浴条件下,保温10min~12h,取出,依次用去离子水漂洗,无水乙醇冲洗,室温真空烘干。
进一步的,所述的ZnO晶种层的制备过程如下:以二水合醋酸锌 Zn(Ac)2·2H2O为反应前驱体、单乙醇胺NH2CH2CH2OH为稳定剂、乙二醇甲醚CH3OCH2CH2OH为溶剂、聚乙二醇PEG4000为表面活性剂制备出0.3M~0.5M的ZnO溶胶。以0.5M的ZnO溶胶为例,具体配制过程如下:称取5.488g二水合醋酸锌,放入烧杯中,并向其中加入25ml 的乙二醇甲醚,磁力搅拌15min;量取1.5ml乙醇胺加入到15ml的乙二醇甲醚中,机械搅拌并超声分散5min;将乙醇胺的乙二醇甲醚溶液逐滴的滴加到磁力搅拌着的醋酸锌的乙二醇甲醚溶液中,再滴加 0.9ml的去离子水,而后加入适量乙二醇甲醚调整溶液体积达50ml,密封烧杯,并在60℃水浴强烈磁力搅拌2h,静置陈化24h。最后加入0.25g聚乙二醇[HO(CH2CH2O)nH]4000,60℃水浴搅拌30min,得到淡黄色ZnO前驱体溶胶。采用旋涂镀膜的方法在清洗好的基底上制备一层ZnO胶体膜;真空管式炉中350℃~550℃退火℃10min~30min,即在基底表面形成一层均匀致密的纳米级ZnO晶种层。
进一步的,所述基底为ITO或FTO导电玻璃。
一种采用上述纳米阵列复合异质结制备所得的太阳能电池,其结构依次包括:ITO或FTO透明导电玻璃基底、ZnO晶种层、ZnO纳米棒阵列、NiFe2O4薄膜、金属电极或导电氧化物电极和ITO或FTO 导电玻璃基底。
进一步的,所述NiFe2O4薄膜自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒的全面包覆。
进一步的,在ZnO晶种层表面生长ZnO纳米棒阵列。
进一步的,在NiFe2O4薄膜表面溅射金属电极或导电氧化物电极。
进一步的,所用金属电极为Au或Pt;所用导电氧化物电极为ITO 或FTO。
本发明提供了一种全新的ZnO/NiFe2O4纳米阵列复合异质结材料,在ZnO纳米棒阵列空隙中,NiFe2O4自下而上充分填充到纳米棒阵列的空隙中经过热处理后形成ZnO/NiFe2O4,NiFe2O4薄膜将ZnO纳米棒的全面包覆,形成了ZnO/NiFe2O4复合纳米异质结纳米棒表面,充分利用纳米阵列结构对光生载流子特有的光电传输分离效应,有效传递光生载流子,降低界面复合几率,提高输出效率,电池成本低,制备简单,电池性能好。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为水热法合成的ZnO纳米棒阵列的横断面场发射扫描电镜 (SEM)照片;
图2为本发明所得的ZnO/NiFe2O4纳米阵列复合异质结横断面的场发射扫描电子(SEM)照片;
图3为本发明的ZnO/NiFe2O4太阳电池的示意图。
具体实施方式
实施例1
ZnO晶种层的制备过程如下:以二水合醋酸锌Zn(Ac)2·2H2O为反应前驱体、单乙醇胺NH2CH2CH2OH为稳定剂、乙二醇甲醚 CH3OCH2CH2OH为溶剂、聚乙二醇PEG4000为表面活性剂制备出 0.3M~0.5M的ZnO溶胶。以0.5M的ZnO溶胶为例,具体配制过程如下:称取5.488g二水合醋酸锌,放入烧杯中,并向其中加入25ml 的乙二醇甲醚,磁力搅拌15min;量取1.5ml乙醇胺加入到15ml的乙二醇甲醚中,机械搅拌并超声分散5min;将乙醇胺的乙二醇甲醚溶液逐滴的滴加到磁力搅拌着的醋酸锌的乙二醇甲醚溶液中,再滴加 0.9ml的去离子水,而后加入适量乙二醇甲醚调整溶液体积达50ml,密封烧杯,并在60℃水浴强烈磁力搅拌2h,静置陈化24h。最后加入0.25g聚乙二醇[HO(CH2CH2O)nH]4000,60℃水浴搅拌30min,得到淡黄色ZnO前驱体溶胶。采用旋涂镀膜的方法在清洗好的基底上制备一层ZnO胶体膜;真空管式炉中350℃~550℃退火℃10min~30min,即在基底表面形成一层均匀致密的纳米级ZnO晶种层。
ZnO纳米棒阵列的生长的过程如下:用KOH和Zn(NO3)2按摩尔比1:8配制浓度为0.10~0.25M的[Zn(OH)4]2-水溶液,充分磁力搅拌,得到一澄清溶液,即为所需的阵列生长液。将阵列生长液倒入反应容器内,然后将基底制备有晶种层的面向下悬浮于阵列生长液中,之后密封好反应容器,将其置于电热恒温水槽中,在50℃水浴条件下,保温10min~12h,取出,依次用去离子水漂洗,无水乙醇冲洗,室温真空烘干,即得到ZnO纳米棒阵列。图1为本发明实施例1中制备的 ZnO纳米棒阵列薄膜的横断面场发射扫描电镜(SEM)照片,由图1可以看出,高度规整的纳米棒阵列紧密矗立在基底表面上,纳米棒直径约80-100nm,长约2μm,棒间距约100-120nm。
实施例2
一种ZnO/NiFe2O4纳米阵列复合异质结材料,采用以下步骤制备:
1)、NiFe2O4的制备
按照铁和镍的摩尔比为2:1将适量六水合氯化镍和六水合三氯化铁溶解于去离子水中,搅拌均匀后加热至90℃,滴加氢氧化钠使溶液的pH值为10,90℃保温3小时,100℃燥箱中干燥1小时,得到NiFe2O4凝胶;
2)、将ZnO纳米棒阵列安装在镀膜机上,镀膜机的旋转速度为 1200转/min,把NiFe2O4凝胶滴加到ZnO纳米棒阵列,180℃燥30分钟,循环重复8次至NiFe2O4自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒的全面包覆,形成了ZnO/NiFe2O4复合纳米异质结。
实施例3
一种ZnO/NiFe2O4纳米阵列复合异质结材料,采用以下步骤制备:
1)、NiFe2O4的制备
按照铁和镍的摩尔比为2:1.5将适量六水合氯化镍和六水合三氯化铁溶解于去离子水中,搅拌均匀后加热至90℃,滴加氢氧化钠使溶液的pH值为14,90℃保温3小时,100℃燥箱中干燥1小时,得到NiFe2O4凝胶;
2)、将ZnO纳米棒阵列安装在镀膜机上,镀膜机的旋转速度为 1200转/min,把NiFe2O4凝胶滴加到ZnO纳米棒阵列,180℃燥30分钟,循环重复12次至NiFe2O4自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒的全面包覆,形成了 ZnO/NiFe2O4复合纳米异质结。
实施例4
一种ZnO/NiFe2O4纳米阵列复合异质结材料,采用以下步骤制备:
1)、NiFe2O4的制备
按照铁和镍的摩尔比为2:1.2将适量六水合氯化镍和六水合三氯化铁溶解于去离子水中,搅拌均匀后加热至90℃,滴加氢氧化钠使溶液的pH值为12,90℃保温3小时,100℃燥箱中干燥1小时,得到NiFe2O4凝胶;
2)、将ZnO纳米棒阵列安装在镀膜机上,镀膜机的旋转速度为 1200转/min,把NiFe2O4凝胶滴加到ZnO纳米棒阵列,180℃燥30分钟,循环重复10次至NiFe2O4自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒的全面包覆,形成了ZnO/NiFe2O4复合纳米异质结。
图2为本发明实施例4所得的ZnO/NiFe2O4纳米阵列复合异质结横断面的场发射扫描电子(SEM)照片;从该图可以看出,从图中看出,ZnO纳米棒之间几乎没有空隙,说明NiFe2O4胶粒充分填充到了 ZnO纳米棒之间空隙处,且异质结结合紧密。ZnO纳米棒全部被直径约为100-300nm的NiFe2O4颗粒紧密覆盖,形成了ZnO/NiFe2O4复合纳米异质结结构阵列。
实施例5
一种基于ZnO/NiFe2O4复合纳米阵列异质结的太阳能电池,如图 3所示。其结构依次包括:ITO电玻璃基底1、ZnO晶种层2、ZnO纳 米棒阵列3、NiFe2O4薄膜4、金属电极5和FTO导电玻璃基底1。NiFe2O4薄膜4自下而上充分填充到ZnO纳米棒阵列3的空隙中,NiFe2O4薄 膜4将ZnO纳米棒全面包覆。ZnO晶种层2表面生长ZnO纳米棒阵 列3,在NiFe2O4薄膜4表面溅射金属电极5,金属电极为Au。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种ZnO/NiFe2O4纳米阵列复合异质结材料,其特征在于,采用以下步骤制备:
1)、将适量六水合氯化镍和六水合三氯化铁溶解于去离子水中,搅拌均匀后加热至90℃,调整溶液的pH值为10~14,90℃保温3小时,100℃燥箱中干燥1小时,得到NiFe2O4凝胶;
2)、将ZnO纳米棒阵列安装在镀膜机上,镀膜机的旋转速度为1200转/min,把NiFe2O4凝胶滴加到ZnO纳米棒阵列,180℃燥30分钟,将NiFe2O4凝胶循环重复8~12次滴加至ZnO纳米棒阵列中,至NiFe2O4自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒的全面包覆,经过热处理形成ZnO/NiFe2O4复合纳米异质结。
2.如权利要求1所述的ZnO/NiFe2O4纳米阵列复合异质结材料,其特征在于,所述步骤1)中,铁和镍的摩尔比为2:1~1.5。
3.如权利要求2所述的ZnO/NiFe2O4纳米阵列复合异质结材料,其特征在于,所述步骤2)中,把NiFe2O4凝胶滴加到ZnO纳米棒阵列,180℃燥30分钟,循环重复10次。
4.如权利要求1-3任一项所述的一种ZnO/NiFe2O4纳米阵列复合异质结材料,其特征在于,经过热处理形成ZnO/NiFe2O4复合纳米异质结时的温度为500℃。
5.如权利要求1所述的ZnO/NiFe2O4纳米阵列复合异质结材料,其特征在于,所述ZnO纳米棒阵列采用水热生长方法制备而成,利用溶胶凝胶法制备ZnO种子前驱体,然后在基底上涂敷ZnO种子前驱体,形成薄膜,经热处理得到一层均匀的纳米级ZnO晶种层;在反应容器中将基底带有晶种层的面悬空倒扣浸没于ZnO生长溶液中,水浴条件下反应得到高度取向的ZnO纳米棒阵列。
6.如权利要求5所述的ZnO/NiFe2O4纳米阵列复合异质结材料,其特征在于,所述ZnO纳米棒阵列采用以下步骤制备:采用旋涂镀膜的方法在清洗好的基底上制备一层ZnO胶体膜;真空管式炉中350℃~550℃退火10min~30min,在基底表面形成一层均匀致密的纳米级ZnO晶种层;按照摩尔比1:8将KOH和Zn(NO3)2按配制成浓度为0.10~0.25M的[Zn(OH)4]2-水溶液,充分磁力搅拌,得到一澄清溶液,然后倒入反应容器内,将基底制备有晶种层的面向下悬浮于阵列生长液中,之后密封好反应容器,将其置于电热恒温水槽中,在20~50℃水浴条件下,保温10min~12h,取出,依次用去离子水漂洗,无水乙醇冲洗,室温真空烘干。
7.如权利要求5或6所述的ZnO/NiFe2O4纳米阵列复合异质结材料,其特征在于,所述基底为ITO或FTO导电玻璃。
8.一种太阳能电池,其特征在于,其结构依次包括:ITO或FTO导电玻璃基底、ZnO晶种层、ZnO纳米棒阵列、NiFe2O4薄膜、金属电极或导电氧化物电极和ITO或FTO导电玻璃基底。
9.一种如权利要求8所述的太阳能电池,其特征在于,所述NiFe2O4薄膜自下而上充分填充到ZnO纳米棒阵列的空隙中,NiFe2O4薄膜将ZnO纳米棒全面包覆。
10.一种如权利要求8所述的太阳能电池,其特征在于,在ZnO晶种层表面生长ZnO纳米棒阵列。
CN201710302712.2A 2017-05-03 2017-05-03 一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池 Pending CN107104166A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710302712.2A CN107104166A (zh) 2017-05-03 2017-05-03 一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710302712.2A CN107104166A (zh) 2017-05-03 2017-05-03 一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池

Publications (1)

Publication Number Publication Date
CN107104166A true CN107104166A (zh) 2017-08-29

Family

ID=59656501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710302712.2A Pending CN107104166A (zh) 2017-05-03 2017-05-03 一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池

Country Status (1)

Country Link
CN (1) CN107104166A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030578A (zh) * 2018-07-30 2018-12-18 清华大学 一种基于CdTe/ZnO纳米异质结结构的NO2气敏传感器的制备方法
CN112071944A (zh) * 2020-08-26 2020-12-11 西安理工大学 基于NiFe2O4/Ga2O3的紫外光电二极管及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028424A1 (ja) * 2007-08-24 2009-03-05 National University Corporation Okayama University 電子素子及び電気伝導度制御方法
CN102010015A (zh) * 2010-10-15 2011-04-13 哈尔滨工业大学 一种磁场诱导磁性纳米线的制备方法
CN102368506A (zh) * 2011-09-26 2012-03-07 浙江大学 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
CN102544137A (zh) * 2012-01-20 2012-07-04 中国科学院上海技术物理研究所 一种基于宝石衬底的宽波段薄膜型光电探测器
CN102610687A (zh) * 2012-03-09 2012-07-25 天津理工大学 一种p-CuO-n-ZnO太阳能电池及其制备方法
CN104803421A (zh) * 2015-03-20 2015-07-29 济南大学 尖晶石型复合铁酸盐纳米管及其制备方法
CN105336816A (zh) * 2015-11-02 2016-02-17 河南师范大学 溶液法制备MoO3/硅纳米线阵列异质结太阳能电池的方法
CN106505112A (zh) * 2016-11-03 2017-03-15 天津理工大学 一种紫外/红光双波段光探测器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028424A1 (ja) * 2007-08-24 2009-03-05 National University Corporation Okayama University 電子素子及び電気伝導度制御方法
CN102010015A (zh) * 2010-10-15 2011-04-13 哈尔滨工业大学 一种磁场诱导磁性纳米线的制备方法
CN102368506A (zh) * 2011-09-26 2012-03-07 浙江大学 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
CN102544137A (zh) * 2012-01-20 2012-07-04 中国科学院上海技术物理研究所 一种基于宝石衬底的宽波段薄膜型光电探测器
CN102610687A (zh) * 2012-03-09 2012-07-25 天津理工大学 一种p-CuO-n-ZnO太阳能电池及其制备方法
CN104803421A (zh) * 2015-03-20 2015-07-29 济南大学 尖晶石型复合铁酸盐纳米管及其制备方法
CN105336816A (zh) * 2015-11-02 2016-02-17 河南师范大学 溶液法制备MoO3/硅纳米线阵列异质结太阳能电池的方法
CN106505112A (zh) * 2016-11-03 2017-03-15 天津理工大学 一种紫外/红光双波段光探测器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RAHMAYENI: ""Synthesis of ZnO-NiFe2 by Simple Solvothermal Method for Photocatalytic Dye Degradation under Solar Light"", 《ORIENTAL JOURNAL OF CHEMISTRY》 *
RAHMAYENI: ""Synthesis of ZnO-NiFe2O4 Magnetic Nanocomposites by Simple Solvothermal Method for Photocatalytic Dye Degradation under Solar Light"", 《ORIENTAL JOURNAL OF CHEMISTRY》 *
YUYU BU: ""A ZnFe2O4–ZnO nanorod array p–n junction composite and its photoelectrochemical performance"", 《DALTON TRANSACTIONS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030578A (zh) * 2018-07-30 2018-12-18 清华大学 一种基于CdTe/ZnO纳米异质结结构的NO2气敏传感器的制备方法
CN112071944A (zh) * 2020-08-26 2020-12-11 西安理工大学 基于NiFe2O4/Ga2O3的紫外光电二极管及其制备方法

Similar Documents

Publication Publication Date Title
CN105469996B (zh) 一种基于金属纳米粒子界面修饰的钙钛矿太阳能电池及其制备方法
CN104966781B (zh) 一种钙钛矿纳米纤维膜太阳能电池及其制备方法
CN107221441B (zh) 一种基于复合纳米结构光阳极的太阳能电池
CN102760581B (zh) 一种二氧化钛光电极及其制备方法
CN101894674B (zh) 一种染料敏化太阳能电池复合光阳极及其制备方法
CN105568313B (zh) 3d分枝状半导体纳米异质结光电极材料及其制备方法
CN107833752B (zh) 一种用于染料敏化太阳能电池对电极的材料及其制备方法
CN107287615A (zh) 一种钒掺杂ZnO纳米棒阵列光阳极及其制备方法和应用
CN107475745A (zh) 一种金修饰的磷掺杂氮化碳复合材料修饰二氧化钛光电极、其制备方法及应用
CN107104166A (zh) 一种ZnO/NiFe2O4纳米阵列复合异质结材料及其制备的太阳能电池
Liu et al. The effects of nano/micro-scale hierarchical structures on the performance of silicon/organic heterojunction solar cells
CN110241439A (zh) 一种等离子体处理制备表面羟基化wo3薄膜光电极材料的方法
CN104966617B (zh) 用于量子点敏化太阳能电池的复合光阳极及制备方法
CN105420780B (zh) 复合纳米异质结薄膜材料及复合异质结太阳电池制备方法
CN108483483B (zh) 一种超薄氧化锌纳米片电极的制备方法
CN114150338B (zh) 一种碳量子点和氮掺杂氮化碳共修饰的氧化锌光阳极及其制备方法
CN102332358B (zh) 一种海胆状Zn/ZnO微纳结构电极及其制备方法
CN106252088A (zh) 一种电子点和染料敏化复合异质结太阳能电池及其制备方法
CN206076057U (zh) 一种电子点和染料复合敏化异质结太阳能电池
CN107437586A (zh) 一种有机分子无机上转换纳米异质结构的聚合物太阳能电池制备方法
CN102254693B (zh) 染料敏化太阳电池光阳极的制备方法
CN110359058B (zh) 一种锆钛酸铅修饰的赤铁矿纳米棒阵列光阳极的制备方法
CN102324309B (zh) 染料敏化太阳能电池光阳极用氧化锌复合纳米结构及制法
CN105914041B (zh) 一种利用太阳能的电动汽车充电站
CN105957719B (zh) 一种节能型室外空气净化机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170829

RJ01 Rejection of invention patent application after publication