CN107103124B - 基于机电耦合理论的变形阵列天线远场方向图分析方法 - Google Patents

基于机电耦合理论的变形阵列天线远场方向图分析方法 Download PDF

Info

Publication number
CN107103124B
CN107103124B CN201710229466.2A CN201710229466A CN107103124B CN 107103124 B CN107103124 B CN 107103124B CN 201710229466 A CN201710229466 A CN 201710229466A CN 107103124 B CN107103124 B CN 107103124B
Authority
CN
China
Prior art keywords
array antenna
radiating element
anamorphic
array
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710229466.2A
Other languages
English (en)
Other versions
CN107103124A (zh
Inventor
娄顺喜
王伟
钱思浩
葛潮流
段宝岩
周金柱
唐宝富
钟剑锋
张轶群
徐文华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Electronic Science and Technology
Original Assignee
Xian University of Electronic Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Electronic Science and Technology filed Critical Xian University of Electronic Science and Technology
Priority to CN201710229466.2A priority Critical patent/CN107103124B/zh
Publication of CN107103124A publication Critical patent/CN107103124A/zh
Application granted granted Critical
Publication of CN107103124B publication Critical patent/CN107103124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Abstract

本发明公开了一种基于机电耦合理论的变形阵列天线远场方向图分析方法,包括阵列天线结构几何模型建立;阵列天线结构有限元模型的建立;辐射单元位置坐标的提取;根据辐射单元位置坐标计算辐射单元的空间相位参数以及考虑互耦效应的等效激励参数,最后根据阵列天线远场方向图计算表达式得到变形阵列天线辐射远场方向图,据此可求解相关电磁性能参数,分析结构变形对阵列天线电性能的影响关系。本发明可精确分析变形阵列天线辐射特性,对于实际工作中的阵列天线电性能分析具有很强的工程意义。

Description

基于机电耦合理论的变形阵列天线远场方向图分析方法
技术领域
本发明属于天线技术领域,具体涉及一种基于机电耦合理论的变形阵列天线远场方向图分析方法,可用于指导实际工作中的阵列天线电性能分析。
背景技术
阵列天线发展至今已有百余年历史,由于其具有易于实现窄波束、低副瓣、多波束和相控波束扫描的能力,被广泛用于无线电通信系统与雷达系统中。实际工作中的阵列天线会由于重力、风等外载荷产生变形(假定只造成阵元位置偏移,未造成指向偏转),进而造成天线的辐射性能退化,即与理想远场方向图产生偏差。
已有许多方法用于变形阵列天线远场方向图分析,但是这些方法很少考虑互耦效应。然而互耦效应是天线实际工作过程中不可忽视的重要因素之一。天线的机械误差会造成阵元的位置发生改变,一方面会使得阵元空间相位发生改变;另一方面,由于阵元间相对位置发生变化,进而影响其互耦效应,以上两者综合作用使变形阵列天线辐射方向图与理想方向图产生偏差,不能满足工程设计要求。
发明内容
针对现有变形阵列天线电性能分析方法的不足,本发明提供了一种基于机电耦合理论的变形阵列天线远场方向图分析方法,该方法考虑了阵元间的互耦效应,能够精确分析变形阵列天线远场方向图,对实际工作中的阵列天线辐射性能预测具有重要意义。
本发明是通过下述技术方案来实现的。
一种基于机电耦合理论的变形阵列天线远场方向图分析方法,包括如下步骤:
(1)根据天线的实际工程需求,确定阵列天线结构几何参数以及材料参数,
(2)根据阵列天线结构几何参数与材料参数,建立阵列天线结构几何模型;
(3)根据阵列天线结构几何模型及其工作环境,建立结构有限元分析模型;
(4)根据阵列天线的结构有限元模型,确定变形阵列天线辐射单元位置坐标;
(5)由辐射单元位置坐标,确定辐射单元空间相位参数以及考虑互耦效应的等效激励值;
(6)根据辐射单元空间相位参数及其等效激励值,计算阵列天线远场方向图,分析其辐射特性。
进一步,所述步骤(1)中,阵列天线几何参数包括辐射单元形式、阵元栅格排布形式和阵元间局;材料参数包括弹性模量、泊松比、热膨胀系数和密度。
进一步,所述步骤(3)中,建立阵列天线结构有限元模型,按照如下步骤进行:
(3a)建立阵列天线的辐射单元、背架结构和加强筋的有限元结构;
(3b)确定阵列天线工作环境参数,包括重力载荷、风载荷、温度载荷和雨雪载荷;
(3c)施加相应边界条件,即将步骤(3b)中的载荷施加到载荷作用的节点以及将支撑节点进行位移约束。
进一步,所述步骤(4)中,根据阵列天线结构有限元模型,确定变形阵列天线辐射单元位置坐标,按照如下步骤进行:
(4a)确定天线结构有限元离散节点位移信息,包括天线结构的质量矩阵、阻尼矩阵、刚度矩阵、结构节点载荷列阵、结构节点的位移列阵、速度列阵以及加速度列阵;
(4b)选择辐射单元所在节点位移信息;
(4c)计算变形阵列天线辐射单元位置坐标。
进一步,所述步骤(5)中,确定辐射单元空间相位参数以及考虑互耦效应的激励值,包括:
(5a)根据步骤(4)中获得的变形阵列天线辐射单元位置坐标,计算第i个辐射单元空间相位参数;
(5b)根据步骤(4)中获得的变形阵列天线辐射单元位置坐标,计算考虑互耦效应的辐射单元激励值。
进一步,所述步骤(6)包括:
(6a)根据步骤(5a)计算得到辐射单元空间相位参数,确定矩阵Md
(6b)根据步骤(5b)计算结果以及步骤(6a)计算结果,计算阵列天线远场方向图;
(6c)根据步骤(6b)计算变形阵列天线远场方向图,获得第一副瓣电平等参数。
本发明技术与现有技术相比,具有以下特点:
1.实际工程中,阵列天线的环境载荷直接对其电性能产生影响,本发明提出了一种基于机电耦合理论的变形阵列天线远场方向图分析方法,以天线结构有限元模型为基础,施加环境载荷,分析求得辐射单元位置信息,然后根据辐射单元位置信息求解辐射单元空间相位参数以及考虑互耦效应后的等效激励值,最后根据阵列天线远场方向图计算式求得变形阵列天线远场方向图。因为考虑了天线的实际工作环境因素,可以精确分析变形阵列天线远场辐射特性。
2.本发明与传统变形阵列天线分析方法相比,同时考虑了阵列天线机械误差导致的辐射单元间的互耦效应的改变以及辐射单元的空间相位参数的改变,可精确分析变形阵列天线辐射特性,对于实际工作中的阵列天线电性能分析具有很强的工程意义。
附图说明
图1是本发明一种基于机电耦合理论的变形阵列天线远场方向图分析方法的流程图;
图2是1/4辐射单元布局示意图;
图3是阵列天线阵面结构示意图;
图4是阵列天线在仰天工况自重作用下总位移云图;
图5是采用本发明与数值软件FEKO仿真结果E面对比图;
图6是采用本发明与数值软件FEKO仿真结果H面对比图。
具体实施方式
下面结合附图和实施例对发明作进一步的详细说明,但并不作为对发明做任何限制的依据。
参照图1,本发明为一种基于机电耦合理论的变形阵列天线远场方向图分析方法,具体步骤如下:
步骤1,确定阵列天线几何参数
根据该阵列天线的实际工程需求,确定阵列天线几何参数,包括辐射单元形式、阵元栅格排布类型、阵元间距,如图2所示;此外,还需确定所用材料的材料特性参数,包括弹性模量、泊松比、热膨胀系数和密度。
步骤2,建立阵列天线结构几何模型
根据步骤1中确定的结构几何参数以及所用材料的材料特性参数,建立阵列天线结构几何模型,其阵面结构如图3所示。
步骤3,建立阵列天线结构有限元模型
根据步骤2中建立的阵列天线结构建立相应有限元模型,将工作环境载荷施加到作用的节点上,并且将支撑节点位移进行约束,完成阵列天线结构有限元模型的建立。
(3a)建立阵列天线的辐射单元、背架结构和加强筋的有限元结构;
(3b)确定阵列天线工作环境参数,包括重力载荷、风载荷、温度载荷和雨雪载荷;
(3c)施加相应边界条件,即将步骤(3b)中的载荷施加到载荷作用的节点以及将支撑节点进行位移约束。
步骤4,获取辐射单元位置坐标
获取辐射单元位置坐标,包括以下步骤:
(4a)确定天线结构有限元离散节点位移信息,按照下式计算
其中,K1、K2、K3分别为天线结构的质量矩阵、阻尼矩阵以及刚度矩阵,F为结构节点载荷列阵,δ分别为结构节点的位移列阵、速度列阵以及加速度列阵;
(4b)选择辐射单元所在节点位移信息
其中,T为选择矩阵,其具体参数取决于天线结构有限元模型节点分布,N为阵列天线辐射单元个数,(i=1~N)分别为第i个辐射单元在直角坐标系三个轴向方向上的偏移量;
(4c)计算阵列天线辐射单元位置坐标,按照下式求解
其中,矩阵P0为阵元理想位置矩阵,x′i、y′i、z′i(i=1~N)为天线结构变形后第i个辐射单元在直角坐标系下的位置坐标。
步骤5,计算辐射单元空间相位参数以及等效激励
获取辐射单元空间相位参数以及等效激励,包括以下步骤:
(5a)根据步骤(4)中获得的变形阵列天线辐射单元位置坐标,按照下式计算第i个辐射单元空间相位参数:
其中,j为虚数单位,k为电磁波在自由空间中的传播常数,为第i个单元位矢,为辐射空间单位向量;
(5b)根据步骤(4)中获得的变形阵列天线辐射单元位置坐标,按照下式计算考虑互耦效应的辐射单元激励值
Id=CdI0
其中,为天线变形后辐射单元等效激励矩阵,为天线变形前辐射单元激励矩阵。Cd为考虑变形信息的阵列天线互耦矩阵,可采用感应电动势法等解析或矩量法等数值方法求得。
步骤6,计算变形阵列天线远场辐射特性
为计算变形阵列天线远场辐射特性,应按以下步骤进行:
(6a)根据步骤(5a)计算得到辐射单元空间相位参数,确定如下矩阵
Md=[f1SP1 f2SP2 … fNSPN]T
式中,fi、SPi(i=1~N)分别为第i个辐射单元的单元方向图与空间相位因子;
(6b)根据步骤(5b)计算结果以及步骤(6a)计算结果,利用下式计算变形阵列天线远场方向图:
式中,Md矩阵由步骤(6a)给出,Id为天线变形后辐射单元等效激励矩阵;
(6c)根据步骤(6b)计算变形阵列天线远场方向图,获得第一副瓣电平等参数。
本发明的优点可以通过以下的仿真案例得到进一步的说明
1.仿真参数
以中心工作频率f=1GHz的某2m口径平面阵列天线为分析案例,分析该阵列天线在仰天工况下其辐射性能。该阵列天线包括91个辐射单元,辐射单元类型为半波振子,其结构拓扑如图3所示,辐射单元栅格排布如图2所示,该阵列天线阵元采用均匀激励,即理想激励电流为I0=[1 1 … 1]T
2.仿真内容与结果
图4给出了该阵列天线阵面结构总位移云图,图5及图6分别给出了利用该方法计算的E面和H面方向图与数值软件FEKO的仿真结果的对比情况,表1给出了采用本发明与FEKO软件计算的两个主面第一副瓣归一化电平值对比结果,从中可以看出,采用本发明分析变形阵列天线远场方向图与数值软件FEKO计算结果基本一致,验证了该方法的有效性。
表1电性能参数对比
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (4)

1.基于机电耦合理论的变形阵列天线远场方向图分析方法,其特征在于,包括如下步骤:
(1)根据天线的实际工程需求,确定阵列天线结构几何参数以及材料参数;
(2)根据阵列天线结构几何参数与材料参数,建立阵列天线结构几何模型;
(3)根据阵列天线结构几何模型及其工作环境,建立结构有限元分析模型;
(4)根据阵列天线的结构有限元模型,确定变形阵列天线辐射单元位置坐标;
(5)由辐射单元位置坐标,确定辐射单元空间相位参数以及考虑互耦效应的等效激励值;
(6)根据辐射单元空间相位参数及其等效激励值,计算阵列天线远场方向图,分析其辐射特性;
所述步骤(5)中,确定辐射单元空间相位参数以及考虑互耦效应的激励值,按照如下步骤进行:
(5a)根据步骤(4)中获得的变形阵列天线辐射单元位置坐标,按照下式计算第i个辐射单元空间相位参数:
其中,j为虚数单位,k为电磁波在自由空间中的传播常数,为第i个单元位矢,为辐射空间单位向量;
(5b)根据步骤(4)中获得的变形阵列天线辐射单元位置坐标,按照下式计算考虑互耦效应的辐射单元激励值:
Id=CdI0
其中,为天线变形后辐射单元等效激励矩阵,为天线变形前辐射单元激励矩阵,Cd为考虑变形信息的阵列天线互耦矩阵;
所述步骤(6)中,根据辐射单元空间相位参数以及等效激励值,确定变形阵列天线远场方向图,按照以下步骤进行:
(6a)根据步骤(5a)计算得到辐射单元空间相位参数,确定如下矩阵
Md=[f1SP1,f2SP2,…,fNSPN]T
式中,fi、SPi分别为第i个辐射单元的单元方向图与空间相位因子,i=1~N;
(6b)根据步骤(5b)计算结果以及步骤(6a)计算结果,利用下式计算变形阵列天线远场方向图:
式中,Md矩阵由步骤(6a)给出,Id为天线变形后辐射单元等效激励矩阵;
(6c)根据步骤(6b)计算变形阵列天线远场方向图,获得第一副瓣电平参数。
2.根据权利要求1所述的基于机电耦合理论的变形阵列天线远场方向图分析方法,其特征在于,所述步骤(1)中,阵列天线几何参数包括辐射单元形式、阵元栅格排布形式和阵元间局;材料参数包括弹性模量、泊松比、热膨胀系数和密度。
3.根据权利要求1所述的基于机电耦合理论的变形阵列天线远场方向图分析方法,其特征在于,所述步骤(3)中,建立阵列天线结构有限元模型,按照如下步骤进行:
(3a)建立阵列天线的辐射单元、背架结构和加强筋的有限元结构;
(3b)确定阵列天线工作环境参数,包括重力载荷、风载荷、温度载荷和雨雪载荷;
(3c)施加相应边界条件,即将步骤(3b)中的载荷施加到载荷作用的节点以及将支撑节点进行位移约束。
4.根据权利要求1所述的基于机电耦合理论的变形阵列天线远场方向图分析方法,其特征在于,所述步骤(4)中,根据阵列天线结构有限元模型,确定变形阵列天线辐射单元位置坐标,按照如下步骤进行:
(4a)确定天线结构有限元离散节点位移信息,按照下式计算:
其中,K1、K2、K3分别为天线结构的质量矩阵、阻尼矩阵以及刚度矩阵,F为结构节点载荷列阵,δ分别为结构节点的位移列阵、速度列阵以及加速度列阵;
(4b)选择辐射单元所在节点位移信息
其中,T为选择矩阵,其具体参数取决于天线结构有限元模型节点分布,N为阵列天线辐射单元个数;分别为第i个辐射单元在直角坐标系三个轴向方向上的偏移量,i=1~N;
(4c)计算变形阵列天线辐射单元位置坐标,按照下式求解:
其中,矩阵P0为阵元理想位置矩阵,xi′、yi′、zi′分别为天线结构变形后第i个辐射单元在直角坐标系下的位置坐标,i=1~N。
CN201710229466.2A 2017-04-10 2017-04-10 基于机电耦合理论的变形阵列天线远场方向图分析方法 Active CN107103124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710229466.2A CN107103124B (zh) 2017-04-10 2017-04-10 基于机电耦合理论的变形阵列天线远场方向图分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710229466.2A CN107103124B (zh) 2017-04-10 2017-04-10 基于机电耦合理论的变形阵列天线远场方向图分析方法

Publications (2)

Publication Number Publication Date
CN107103124A CN107103124A (zh) 2017-08-29
CN107103124B true CN107103124B (zh) 2019-10-22

Family

ID=59675257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710229466.2A Active CN107103124B (zh) 2017-04-10 2017-04-10 基于机电耦合理论的变形阵列天线远场方向图分析方法

Country Status (1)

Country Link
CN (1) CN107103124B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109815509B (zh) * 2017-11-21 2023-08-08 深圳市通用测试系统有限公司 一种阵列天线的诊断方法、设备、系统以及计算机可读存储介质
CN109813968B (zh) * 2017-11-21 2022-01-25 深圳市通用测试系统有限公司 一种阵列天线方向图的测量方法、设备、系统
CN112446152B (zh) * 2020-11-30 2022-09-13 西安电子科技大学 基于无穷小偶极子模型变形阵列天线远场方向图分析方法
CN113378361A (zh) * 2021-05-26 2021-09-10 东风汽车集团股份有限公司 一种毫米波雷达阵列天线分析方法
CN113919166B (zh) * 2021-10-19 2022-12-09 中国电子科技集团公司第五十四研究所 一种多波束相控阵天线增益和相位中心的分析方法
CN115034075B (zh) * 2022-06-22 2023-11-24 电子科技大学 非规则天线阵列矢量增益方向图的快速精准预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344564A (zh) * 2008-08-14 2009-01-14 西安电子科技大学 基于机电热三场耦合的有源相控阵天线电性能预测方法
CN102253290A (zh) * 2011-03-29 2011-11-23 王从思 基于机电耦合模型的变形对数周期天线电性能预测方法
CN104038295A (zh) * 2014-06-06 2014-09-10 西安电子科技大学 一种基于机电耦合的变形阵列天线散射性能分析方法
CN104701637A (zh) * 2015-02-12 2015-06-10 西安电子科技大学 基于机电耦合与最小二乘法的变形阵列天线电性能补偿方法
CN105740502A (zh) * 2016-01-21 2016-07-06 西安电子科技大学 一种载荷变形下的圆柱共形阵列天线电性能预测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130181880A1 (en) * 2012-01-17 2013-07-18 Lin-Ping Shen Low profile wideband multibeam integrated dual polarization antenna array with compensated mutual coupling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344564A (zh) * 2008-08-14 2009-01-14 西安电子科技大学 基于机电热三场耦合的有源相控阵天线电性能预测方法
CN102253290A (zh) * 2011-03-29 2011-11-23 王从思 基于机电耦合模型的变形对数周期天线电性能预测方法
CN104038295A (zh) * 2014-06-06 2014-09-10 西安电子科技大学 一种基于机电耦合的变形阵列天线散射性能分析方法
CN104701637A (zh) * 2015-02-12 2015-06-10 西安电子科技大学 基于机电耦合与最小二乘法的变形阵列天线电性能补偿方法
CN105740502A (zh) * 2016-01-21 2016-07-06 西安电子科技大学 一种载荷变形下的圆柱共形阵列天线电性能预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Coupled structural-electromagnetic modeling and analysis of hexagonal active phased array antennas with random errors;CongsiWang;《AEU - International Journal of Electronics and Communications》;20160515;第592-598页 *
动载荷对结构功能一体化天线力电性能的影响;周金柱 等;《机械工程学报》;20160615;第105-115页 *

Also Published As

Publication number Publication date
CN107103124A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN107103124B (zh) 基于机电耦合理论的变形阵列天线远场方向图分析方法
CN107038299B (zh) 一种考虑互耦效应的变形阵列天线远场方向图补偿方法
CN102890741B (zh) 一种振动变形对阵列天线电性能影响的预测方法
CN101344564B (zh) 基于机电热三场耦合的有源相控阵天线电性能预测方法
CN104615836B (zh) 星载微带阵列天线热变形对电性能影响的快速预测方法
CN104038295B (zh) 一种基于机电耦合的变形阵列天线散射性能分析方法
CN106021764B (zh) 面向机电耦合的有源相控阵天线性能仿真置信度的计算方法
CN104036114B (zh) 一种基于机电耦合的六边形有源相控阵天线结构公差的快速确定方法
CN105742817B (zh) 面向增益和指向的星载有源相控阵天线结构热变形补偿方法
CN103353904B (zh) 有源夹层微带天线与电磁综合的数据驱动设计方法及天线
CN105740502B (zh) 一种载荷变形下的圆柱共形阵列天线电性能预测方法
CN104036093B (zh) 一种基于阵元互耦的大型变形阵列天线副瓣性能预测方法
Wang et al. Coupled structural–electromagnetic–thermal modelling and analysis of active phased array antennas
CN106940739B (zh) 振动对机翼共形相控阵天线电性能影响的快速预测方法
CN104166765B (zh) 基于器件位置的有源相控阵天线冷板机电热耦合设计方法
CN106991210B (zh) 一种基于机电耦合模型的赋形反射面天线电性能预测方法
CN103246781A (zh) 基于空间映射的阵列天线雷达散射截面减缩方法
CN104933213A (zh) 基于空间映射的大规模相控天线阵列宽角扫描优化方法
CN102708257B (zh) 一种有源相控阵天线结构公差的快速确定方法
CN104701637B (zh) 基于机电耦合与最小二乘法的变形阵列天线电性能补偿方法
CN106599504B (zh) 基于机电耦合模型的空间网状天线动力载荷分析方法
CN102788920B (zh) 基于机电耦合模型的偏置反射面天线电性能预测方法
CN102253290A (zh) 基于机电耦合模型的变形对数周期天线电性能预测方法
CN105161860A (zh) 基于机电耦合与傅里叶变换的变形面阵天线电性能补偿方法
CN106383949B (zh) 动态载荷下共形承载阵列天线电性能快速分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant