CN107051584A - 一种介孔TiO2‑SiO2负载磺酸金属酞菁催化剂的制备方法 - Google Patents

一种介孔TiO2‑SiO2负载磺酸金属酞菁催化剂的制备方法 Download PDF

Info

Publication number
CN107051584A
CN107051584A CN201710330010.5A CN201710330010A CN107051584A CN 107051584 A CN107051584 A CN 107051584A CN 201710330010 A CN201710330010 A CN 201710330010A CN 107051584 A CN107051584 A CN 107051584A
Authority
CN
China
Prior art keywords
sio
mesoporous tio
metal phthalocyanine
sulfonic acid
acid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710330010.5A
Other languages
English (en)
Other versions
CN107051584B (zh
Inventor
李明田
谭苏芸
聂鑫
钟丽萍
杨瑞嵩
王红
曾宪光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University of Science and Engineering
Original Assignee
Sichuan University of Science and Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University of Science and Engineering filed Critical Sichuan University of Science and Engineering
Priority to CN201710330010.5A priority Critical patent/CN107051584B/zh
Publication of CN107051584A publication Critical patent/CN107051584A/zh
Application granted granted Critical
Publication of CN107051584B publication Critical patent/CN107051584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种介孔TiO2‑SiO2负载磺酸金属酞菁催化剂的制备方法,包括以下步骤:S1:在室温下,将介孔TiO2‑SiO2分散于醇水混合溶剂中,再加入磺酸金属酞菁溶液并搅拌24h,制得介孔TiO2‑SiO2反应原液;S2:将介孔TiO2‑SiO2反应原液进行抽滤,再进行真空干燥,制得介孔TiO2‑SiO2负载的磺酸金属酞菁。本发明制备的介孔TiO2‑SiO2负载的磺酸金属酞菁具有对催化底物儿茶酚胺选择性高、催化速度快、反应条件温和等特点。

Description

一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法
技术领域
本发明属于催化剂合成技术领域,具体涉及一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法。
背景技术
儿茶酚胺包括肾上腺素、去甲肾上腺素和多巴胺等神经类物质,分子中含有儿茶酚和胺基,具有重要的生理功能和药理特性,研究儿茶酚胺在人体内的转化过程及其最终产物,对于某些常见疾病(如高血压、冠心病、帕金森病、心肌梗塞等)的早期诊断和治疗具有重要意义。
邻苯二酚骨架(图1)使得儿茶酚胺容易被氧化,而其生物功能又与其氧化过程密切相关。目前,很多人工合成的催化剂用于儿茶酚胺的催化氧化,其催化过程主要是通过催化底物与催化剂的配位作用,发生分子间的电子传递。
金属酞菁已经用于催化儿茶酚胺的氧化,刘传银利用酞菁镍和Nafion修饰的多层膜玻碳电极构建了用于人尿液中复合胺测定的电化学传感器,检测下限为0.80±0.04 µg/L;李明田等采用电子吸收光谱法研究了5种金属酞菁MPcs(M = Mn(II),Fe(II),Co(II),Ni(II),Cu(II))催化肾上腺素和去甲肾上腺素的氧化性质。游离金属酞菁溶解能力较弱,在溶液 中呈分散状态,易形成二聚体而降低催化能力、而且回收困难造成二次污染。严萍等以八羧基铁酞菁和多孔二氧化硅负载的八羧基铁酞菁进行制备了肾上腺素仿生催化剂,八羧基铁酞菁需要在叔丁基过氧化氢的作用下才能催化肾上腺素的氧化;专利ZL201410053217.9公开了一种介孔二氧化硅负载金属酞菁的负载型磁性催化剂及其制备方法,该催化剂虽然具有回收性能,但制备过程复杂,成本高,产业化困难。
发明内容
针对现有技术存在的上述不足,本发明提供一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,旨在制备一种成本低、催化速度快、选择性高、反应条件温和的负载型催化剂。
为了实现上述目的,本发明采用的技术方案如下:
一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,包括以下步骤:
S1:在室温下,将介孔TiO2-SiO2分散于醇水混合溶剂中,再加入磺酸金属酞菁溶液并搅拌24h,制得介孔TiO2-SiO2反应原液;
S2:将介孔TiO2-SiO2反应原液进行抽滤,再进行真空干燥,制得介孔TiO2-SiO2负载的磺酸金属酞菁,即负载型催化剂MPcTs- TiO2-SiO2
其中:在S1中,所述的醇水混合溶剂是体积比为1:1的乙醇和水的混合溶剂。
所述的磺酸金属酞菁溶液为二磺酸酞菁铜或二磺酸酞菁钴的水溶液。
所述的介孔TiO2-SiO2与醇水混合溶剂的质量体积比为1 g : 30 mL。之所采用该比例,是因为能够形成较为稳定的分散液。
所述的介孔TiO2-SiO2反应原液中磺酸金属酞菁和介孔TiO2-SiO2的质量比为1 :8 ~ 10。之所采用该比例,是因为能够保证反应的充分进行并确保有足够的负载量。
所述的介孔TiO2-SiO2采用以下方法制备:
a、在室温下,将钛酸四丁酯溶解在盐酸溶液中,配制成溶液A;
b、将十六烷基三甲基溴化胺溶解在氨水中,在搅拌条件下滴加四烷基硅酸酯,配制成溶液B;
c、在搅拌条件下将溶液A滴加到溶液B中,继续于40℃下搅拌反应4h,得反应产物;
d、将反应产物抽滤,并用乙醇洗涤滤饼,在大气环境下干燥至恒重,再置于500~700℃下煅烧6h,得白色固体,即为介孔TiO2-SiO2。在该温度和时间下能够使模板完全烧掉,且有利于介孔TiO2-SiO2稳定。
之所以采用本方法制备介孔级的TiO2-SiO2是因为:1、共水解法保证在原子层次上的混合,能够形成稳定的TiO2-SiO2结构;2、采用十六烷基三甲基溴化胺作模板剂是因为其结构大小合适,且在水溶液中溶解度较大。
其中:在步骤a中,钛酸四丁酯与盐酸溶液的体积比为1 : 3~ 5;其中,盐酸溶液的浓度为5 mol/L。在酸性条件下,可以保证反应充分进行。
在步骤b中,所述的四烷基硅酸酯为正硅酸甲酯或正硅酸乙酯。十六烷基三甲基溴化胺、四烷基硅酸酯和氨水的质量比为1:(4~ 6):(25 ~ 35);其中,氨水的质量浓度为15%。
在步骤c中,溶液A与溶液B的体积比为1 : 1~ 1.5。该比例不仅能保证反应充分进行,还可以保持TiO2和SiO2的比例,有助于形成稳定的介孔结构。
与现有的技术相比,本发明具有如下有益效果:
1、本发明采用模板法制备的介孔TiO2-SiO2负载剂具有孔道垂直微球表面、开口向外的特点,然后采用共混法将磺酸金属酞菁高密度组装到孔道表面,制备的负载型催化剂具有对催化底物儿茶酚胺选择性高、催化速度快、反应条件温和的特点。
2、本发明合成具有表面开孔结构和孔径大小可控的介孔TiO2-SiO2微球,并用于磺酸金属酞菁的高密度负载,制备了能够用于儿茶酚胺氧化的催化剂;介孔TiO2-SiO2微球具有比表面积大、表面活性高、突出的生物倍增修饰功效和优良的生物相容性,为提高生物分子固定化性能提供了可能性,有利于催化剂从反应体系中分离和回收,操作简便,可反复使用,降低成本。
附图说明
图1为儿茶酚胺结构示意图;
图2为肾上腺素加入催化剂前后的紫外可见吸收光谱图。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
在以下实施例中所述的室温为25土2℃。
实施例1
1) TiO2-SiO2的制备
a. 室温下将9.0 mL钛酸四丁酯溶解在30.0 mL 浓度为5.0 mol/L的稀盐酸溶液中配制成溶液A;
b. 首先将1.2 g十六烷基三甲基溴化胺溶解在35.0 mL浓度为15%的氨水中,在搅拌条件下,然后逐渐滴加6.0 mL正硅酸乙酯,配制成溶液B。
c. 在搅拌条件下将溶液A缓慢滴加到溶液B中,继续于50℃下搅拌反应4小时,然后将反应产物,抽滤,并用乙醇洗涤滤饼,空气干燥后,固体于550℃煅烧6小时,得白色固体,即为介孔TiO2-SiO2
2) 介孔TiO2-SiO2负载二磺酸酞菁铜的制备
室温下,首先将1.0 g TiO2-SiO2分散25.0 mL于水和乙醇(1:1)的混合溶剂中,然后加入0.1 g二磺酸酞菁铜的水溶液5 mL,搅拌反应24小时,抽滤、真空干燥得介孔TiO2-SiO2负载的二磺酸酞菁铜催化剂。
实施例2
1) TiO2-SiO2的制备
a. 室温下将9.0 mL钛酸四丁酯溶解在30.0 mL浓度为5.0 mol/L的稀盐酸溶液中配制成溶液A;
b. 首先将1.2 g十六烷基三甲基溴化胺溶解在35.0 mL浓度为15%的氨水中,在搅拌条件下,然后逐渐滴加6.0 mL正硅酸乙酯,配制成溶液B。
c. 在搅拌条件下将溶液A缓慢滴加到溶液B中,继续于50℃下搅拌反应4小时,然后将反应产物,抽滤,并用乙醇洗涤滤饼,空气干燥后,固体于550℃煅烧6小时,得白色固体,即为介孔TiO2-SiO2
2) 介孔TiO2-SiO2负载二磺酸酞菁钴的制备
室温下,首先将1.0 g TiO2-SiO2分散25.0 mL于水和乙醇(1:1)的混合溶剂中,然后加入0.12 g二磺酸酞菁钴的水溶液5 mL,搅拌反应24小时,抽滤、真空干燥得介孔TiO2-SiO2负载的二磺酸酞菁钴催化剂。
实施例3
1) TiO2-SiO2的制备
a. 室温下将9.0 mL钛酸四丁酯溶解在36.0 mL浓度为5.0 mol/L的稀盐酸溶液中配制成溶液A;
b. 首先将1.2 g十六烷基三甲基溴化胺溶解在30.0 mL浓度为15%的氨水中,在搅拌条件下,然后逐渐滴加6.5 mL正硅酸甲酯,配制成溶液B。
c. 在搅拌条件下将溶液A缓慢滴加到溶液B中,继续于60℃下搅拌反应4小时,然后将反应产物,抽滤,并用乙醇洗涤滤饼,空气干燥后,固体于650℃煅烧6小时,得白色固体,即为介孔TiO2-SiO2
2) 介孔TiO2-SiO2负载二磺酸酞菁铜的制备
室温下,首先将1.0 g TiO2-SiO2分散25.0 mL于水和乙醇(1:1)的混合溶剂中,然后加入0.13 g二磺酸酞菁铜的水溶液5 mL,搅拌反应24小时,抽滤、真空干燥得介孔TiO2-SiO2负载的二磺酸酞菁铜催化剂。
实施例4
1) TiO2-SiO2的制备
a. 室温下将9.0 mL钛酸四丁酯溶解在40.0 mL浓度为5.0 mol/L的稀盐酸溶液中配制成溶液A;
b. 首先将1.2 g十六烷基三甲基溴化胺溶解在30.0 mL浓度为15%的氨水中,在搅拌条件下,然后逐渐滴加7.5 mL正硅酸乙酯,配制成溶液B。
c. 在搅拌条件下将溶液A缓慢滴加到溶液B中,继续于60℃下搅拌反应4小时,然后将反应产物,抽滤,并用乙醇洗涤滤饼,空气干燥后,固体于700℃煅烧6小时,得白色固体,即为介孔TiO2-SiO2
2) 介孔TiO2-SiO2负载二磺酸酞菁钴的制备
室温下,首先将1.0 g TiO2-SiO2分散25.0 mL于水和乙醇(1:1)的混合溶剂中,然后加入0.13 g二磺酸酞菁钴的水溶液5 mL,搅拌反应24小时,抽滤、真空干燥得介孔TiO2-SiO2负载的二磺酸酞菁钴催化剂。
实施例五
以下通过实验说明本发明制备的介孔TiO2-SiO2负载磺酸金属酞菁的催化效果。
在pH = 7.0的磷酸缓冲溶液中,加入一定量的肾上腺素,在紫外可见光谱仪上,以磷酸缓冲溶液为参比,测量此时反应底物的光谱;然后配制相同的含有反应底物的磷酸缓冲溶液4份,并分别加入实施例1-4制备的介孔TiO2-SiO2负载磺酸金属酞菁,待反应30分钟后,再测量反应底物的光谱;反应前和反应后实施例1-4对应的光谱对比如图2所示。从图上可以看出,肾上腺素的特征吸收峰为279 nm,而加入介孔TiO2-SiO2负载磺酸金属酞菁后,肾上腺素的吸收光谱发生了明显的变化,说明肾上腺素在本发明制备的介孔TiO2-SiO2负载磺酸金属酞菁催化作用下,发生了氧化反应。
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (10)

1.一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,包括以下步骤:
S1:在室温下,将介孔TiO2-SiO2分散于醇水混合溶剂中,再加入磺酸金属酞菁溶液并搅拌24h,制得介孔TiO2-SiO2反应原液;
S2:将介孔TiO2-SiO2反应原液进行抽滤,再进行真空干燥,制得介孔TiO2-SiO2负载的磺酸金属酞菁,即负载型催化剂MPcTs- TiO2-SiO2
2.根据权利要求1所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,S1中所述的醇水混合溶剂是体积比为1:1的乙醇和水的混合溶剂。
3.根据权利要求1所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,S1中所述的磺酸金属酞菁溶液为二磺酸酞菁铜或二磺酸酞菁钴的水溶液。
4.根据权利要求1所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,S1中所述的介孔TiO2-SiO2与醇水混合溶剂的质量体积比为1 g : 30 mL。
5.根据权利要求1所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,S1中所述的介孔TiO2-SiO2反应原液中磺酸金属酞菁和介孔TiO2-SiO2的质量比为1 :8 ~ 10。
6.根据权利要求1所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,所述的介孔TiO2-SiO2采用以下方法制备:
a、在室温下,将钛酸四丁酯溶解在盐酸溶液中,配制成溶液A;
b、将十六烷基三甲基溴化胺溶解在氨水中,在搅拌条件下滴加四烷基硅酸酯,配制成溶液B;
c、在搅拌条件下将溶液A滴加到溶液B中,继续于40℃下搅拌反应4h,得反应产物;
d、将反应产物抽滤,并用乙醇洗涤滤饼,在大气环境下干燥至恒重,再置于500~700℃下煅烧6h,得白色固体,即为介孔TiO2-SiO2
7.根据权利要求6所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,在步骤a中,钛酸四丁酯与盐酸溶液的体积比为1 : 3~ 5;其中,盐酸溶液的浓度为5mol/L。
8.根据权利要求6所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,在步骤b中,所述的四烷基硅酸酯为正硅酸甲酯或正硅酸乙酯。
9.根据权利要求6所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,在步骤b中,十六烷基三甲基溴化胺、四烷基硅酸酯和氨水的质量比为1:(4~ 6):(25~ 35);其中,氨水的质量浓度为15 %。
10.根据权利要求6所述的介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法,其特征在于,在步骤c中,溶液A与溶液B的体积比为1 : 1~ 1.5。
CN201710330010.5A 2017-05-11 2017-05-11 一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法 Active CN107051584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710330010.5A CN107051584B (zh) 2017-05-11 2017-05-11 一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710330010.5A CN107051584B (zh) 2017-05-11 2017-05-11 一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN107051584A true CN107051584A (zh) 2017-08-18
CN107051584B CN107051584B (zh) 2020-04-07

Family

ID=59596305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710330010.5A Active CN107051584B (zh) 2017-05-11 2017-05-11 一种介孔TiO2-SiO2负载磺酸金属酞菁催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107051584B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435256A (zh) * 2018-04-26 2018-08-24 四川理工学院 一种金属(ii)功能化氧化石墨烯催化剂的制备方法
CN109794294A (zh) * 2019-02-11 2019-05-24 盐城师范学院 一种磺化金属酞菁@zif-8的光催化剂及其制备方法和应用
CN111229233A (zh) * 2020-04-08 2020-06-05 福州大学 一种用于合成松油烯-4-醇的镍/氧化钛-氧化硅催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731466A (zh) * 2014-12-10 2016-07-06 中国石油天然气股份有限公司 一种单分散的纳米介孔二氧化硅与二氧化钛复合球及其合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105731466A (zh) * 2014-12-10 2016-07-06 中国石油天然气股份有限公司 一种单分散的纳米介孔二氧化硅与二氧化钛复合球及其合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪淑廉等: "TiO2@SiO2负载MnPcS光催化降解有毒有机污染物", 《科学通报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435256A (zh) * 2018-04-26 2018-08-24 四川理工学院 一种金属(ii)功能化氧化石墨烯催化剂的制备方法
CN108435256B (zh) * 2018-04-26 2020-11-10 四川理工学院 一种金属(ii)功能化氧化石墨烯催化剂的制备方法
CN109794294A (zh) * 2019-02-11 2019-05-24 盐城师范学院 一种磺化金属酞菁@zif-8的光催化剂及其制备方法和应用
CN109794294B (zh) * 2019-02-11 2021-10-08 盐城师范学院 一种磺化金属酞菁@zif-8的光催化剂及其制备方法和应用
CN111229233A (zh) * 2020-04-08 2020-06-05 福州大学 一种用于合成松油烯-4-醇的镍/氧化钛-氧化硅催化剂及其制备方法和应用
CN111229233B (zh) * 2020-04-08 2022-07-08 福州大学 一种用于合成松油烯-4-醇的镍/氧化钛-氧化硅催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN107051584B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
Qin et al. One-step construction of a hollow Au@ Bimetal–Organic framework core–shell catalytic nanoreactor for selective alcohol oxidation reaction
CN112678802B (zh) 一种钴氮共掺杂碳纳米笼的制备方法
Gao et al. CuMn2O4 spinel nanoflakes for amperometric detection of hydrogen peroxide
CN107051584A (zh) 一种介孔TiO2‑SiO2负载磺酸金属酞菁催化剂的制备方法
CN106784881B (zh) 一种贵金属/竖直生长水滑石纳米片甲醇燃料电池催化剂及其制备方法
CN106694006A (zh) 一种氧化还原固定方法制备高分散碳化钼/碳复合电催化剂
CN108806998A (zh) 溶剂热法合成基于ZIF-8的三元复合ZnO/ZnCo2O4/NiO的方法及其应用
CN109529932A (zh) 花瓣状金属有机框架材料的制备方法及其应用
CN106587166B (zh) 一种氧化铁介晶纳米粒子及其合成方法和应用方法
CN108786792A (zh) 一种金属/半导体复合光催化剂及其制备与应用
CN112521617B (zh) 一种可用于吸附抗生素的多酸基金属有机框架材料及其制备方法和用途
CN108855220A (zh) 一种二氧化钛掺杂zif及其制备方法和应用
CN101451133B (zh) 硅基介孔分子筛sba-15固定化酶生物催化剂的制备方法
CN103274441A (zh) 一种水热法制备纳米级片状氧化铈的方法
Jiang et al. Dimension conversion: from a 1D metal–organic gel into a 3D metal–organic porous network with high-efficiency multiple enzyme-like activities for cascade reactions
CN112663076A (zh) 一种具有中空结构的铁掺杂二硒化钼纳米材料及其制备方法与电催化氮还原应用
CN108155392A (zh) 一种还原氧化石墨烯负载Pd-M纳米复合催化剂的制备方法
CN110350205A (zh) ZIFs衍生金属氮化物/碳复合材料及制备方法和用途
CN102205224A (zh) 一种CdS/TiO2纳米复合材料的制备方法
CN103769217B (zh) 一种负载型磁性催化剂
CN108832140A (zh) 一种原子层沉积法制备低铂负载铜纳米线复合催化剂及其氧还原反应应用
CN106914231B (zh) 单层纳米TiO2@酵母碳球的自组装合成方法及其应用
CN109659576B (zh) 微纳电池催化剂及制备方法与用途
CN107262135B (zh) 球形含铝高岭土介孔复合材料和负载型催化剂及其制备方法和应用及油酸异丙酯的制备方法
CN108889336B (zh) 一种三维体相石墨烯基钴基MOFs复合材料的制备及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant