CN106587166B - 一种氧化铁介晶纳米粒子及其合成方法和应用方法 - Google Patents

一种氧化铁介晶纳米粒子及其合成方法和应用方法 Download PDF

Info

Publication number
CN106587166B
CN106587166B CN201611201075.1A CN201611201075A CN106587166B CN 106587166 B CN106587166 B CN 106587166B CN 201611201075 A CN201611201075 A CN 201611201075A CN 106587166 B CN106587166 B CN 106587166B
Authority
CN
China
Prior art keywords
particle
iron oxide
nano
oxide mesomorphic
mesomorphic nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611201075.1A
Other languages
English (en)
Other versions
CN106587166A (zh
Inventor
蔡金光
吕超
宋江锋
罗军洪
邓良才
王劲川
姚伟志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICHUAN JUNENG NUCLEAR TECHNOLOGY ENGINEERING Co Ltd
Institute of Materials of CAEP
Original Assignee
SICHUAN JUNENG NUCLEAR TECHNOLOGY ENGINEERING Co Ltd
Institute of Materials of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICHUAN JUNENG NUCLEAR TECHNOLOGY ENGINEERING Co Ltd, Institute of Materials of CAEP filed Critical SICHUAN JUNENG NUCLEAR TECHNOLOGY ENGINEERING Co Ltd
Priority to CN201611201075.1A priority Critical patent/CN106587166B/zh
Publication of CN106587166A publication Critical patent/CN106587166A/zh
Application granted granted Critical
Publication of CN106587166B publication Critical patent/CN106587166B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种氧化铁介晶纳米粒子,由2nm~6nm氧化铁纳米粒子晶体取向排列组成,其尺寸为20nm~80nm;该氧化铁介晶纳米粒子的比表面积达到56 m2/g。该氧化铁介晶纳米粒子的合成方法,包括步骤:步骤一:将硝酸铁充分溶解在水中,然后加入乙醇,混合均匀得到硝酸铁混合溶剂溶液;步骤二:将步骤一中的混合溶剂溶液放入水热反应釜中封闭,并置于130~150℃的环境中反应8小时~48小时;步骤三:将步骤二得到的产物完全冷却后,放入水中离心洗涤三遍,之后放入乙醇中离心洗涤三遍。本发明采用简单且价格低廉的水和乙醇混合溶剂溶液体系,通过硝酸铁在水热反应釜中较低温度水解反应即可得到高纯度高产率的氧化铁介晶纳米粒子。经称量恒算,其产率达到了80%以上。

Description

一种氧化铁介晶纳米粒子及其合成方法和应用方法
技术领域
本发明涉及纳米结构材料领域,具体地讲,是涉及一种氧化铁介晶纳米粒子及其合成方法和应用方法。
背景技术
功能性半导体微纳结构材料的尺寸和形貌对其性能有着至关重要的影响。大量的研究表明,通过调控半导体纳米结构材料的尺寸、结构和形貌,可以改善材料的相关性能,如光、电、磁、催化、储能等。赤铁矿氧化铁是一种n型半导体,是室温下最稳定的铁的氧化物,且具有储量丰富、价格低廉、环境友好、化学稳定等优点,在气体传感、太阳能光催化分解水、光催化降解污染物、废水处理、锂离子电池及超级电容器等环境和能源领域有着广阔的应用空间。尽管文献中已有较多的行之有效的合成赤铁矿纳米结构的体系,但其制备一般需要有机添加剂,反应温度较高,体系相对复杂,因此很有必要开发更为简单温和的反应体系以制备高性能的赤铁矿纳米结构。
介晶是具有相同晶体取向的粒子形成的有序聚集体,自2005年首次提出后便迅速引起众多关注。介晶纳米结构兼具了多晶纳米结构的高孔隙率和高表面积以及单晶结构良好的电荷传输性质等优点,因而在催化、传感、光电子学以及能源存储和转化等领域表现出优异的性能。截止目前,一系列具有不同形貌的无机介晶已经被合成出来,并在上述领域中显示出潜在的应用前景。关于赤铁矿氧化铁介晶结构的合成,文献中已有一些报道,但大都需要辅助添加剂,颗粒较大,比表面积偏低,且体系难以放大进行批量合成,为氧化铁介晶纳米结构的实际应用带来了较大的障碍。因此,有必要发展更简单、条件更温和、成本更低、放大效应小、易于批量生产的方法合成小尺寸高比表面积的氧化铁介晶纳米粒子。
发明内容
为克服现有技术中的上述问题,本发明提供一种成本低、无需添加剂、易于放大批量合成的氧化铁介晶纳米粒子及其合成方法和应用方法。
为了实现上述目的,本发明采用的技术方案如下:
一种氧化铁介晶纳米粒子,由2nm~6nm氧化铁纳米粒子晶体取向排列组成20nm~80nm大小的氧化铁介晶纳米粒子;该氧化铁介晶纳米粒子的比表面积达到56 m2/g。
所述氧化铁介晶纳米粒子的应用方法为:将该氧化铁介晶纳米粒子用于可见光催化降解有机污染物。
所述氧化铁介晶纳米粒子的另一种应用方法为:将该氧化铁介晶纳米粒子用于重金属离子吸附去除。
所述氧化铁介晶纳米粒子的第三种应用方法为:将该氧化铁介晶纳米粒子用于赝电容器。
上述氧化铁介晶纳米粒子的合成方法,包括如下步骤:
步骤一:将硝酸铁充分溶解在水中,然后加入乙醇,混合均匀得到硝酸铁混合溶剂溶液;
步骤二:将步骤一中的混合溶剂溶液放入水热反应釜中封闭,并置于130℃ ~150℃ 的环境中反应8小时~48小时;
步骤三:将步骤二得到的产物完全冷却后,放入水中离心洗涤三遍,之后放入乙醇中离心洗涤三遍;
步骤四:将步骤三中的产物在60℃真空干燥箱中干燥,得到氧化铁介晶纳米粒子。
上述硝酸铁混合溶剂浓度为10-100mM;优选地,所述硝酸铁混合溶剂溶液中水与乙醇的体积比为4:0.5~2;所述水热反应釜的体积为20mL~1L。
优选地,所述硝酸铁混合溶剂浓度为50mM;
优选地,所述硝酸铁混合溶剂中水与乙醇的体积比为4:1;
优选地,所述水热反应釜的体积为50mL。
优选地,所述步骤二中环境温度为140℃ ,反应时间为24小时。该环境温度可由烘箱提供。
与现有技术相比,本发明具有以下有益效果:
(1)本发明采用简单且价格低廉的水和乙醇混合溶液体系,通过硝酸铁在水热反应釜中较低温度水解反应即可得到高纯度高产率的氧化铁介晶纳米粒子。经称量恒算,该合成方法的产率达到了80%以上。
(2)本发明所使用的反应体系放大效应影响很小,1L水热反应釜中能够得到相同的氧化铁介晶纳米粒子,易于批量生产。
(3)本发明得到的产物具有很好的光催化降解污染物、吸附重金属离子以及赝电容性能。预期在诸如光催化降解污染物、重金属粒子吸附、光催化分解水制氢、赝电容器、锂离子电池等领域实现商业应用。因此,本发明具有很高的实用价值和推广价值。
附图说明
图1为本发明合成得到的氧化铁介晶纳米粒子的XRD谱图。
图2为本发明合成得到的氧化铁介晶纳米粒子的扫描电子显微镜照片。
图3为本发明合成得到的氧化铁介晶纳米粒子的透射电子显微镜照片。
图4为本发明合成得到的氧化铁介晶纳米粒子的高分辨透射电子显微镜照片及其傅里叶变换图。
图5为本发明合成得到的氧化铁介晶纳米粒子的可见光催化降解有机污染物浓度曲线图。
图6为本发明合成得到的氧化铁介晶纳米粒子制备的赝电容器的循环伏安曲线。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,本发明的实施方式包括但不限于下列实施例。
实施例
该氧化铁介晶纳米粒子,由2nm~6nm氧化铁纳米粒子晶体取向排列组成,其尺寸为20nm~80nm;该氧化铁介晶纳米粒子的比表面积达到56 m2/g。
上述氧化铁介晶纳米粒子的合成方法,包括如下步骤:
步骤一:将硝酸铁充分溶解在水中,然后加入乙醇,混合均匀得到浓度为50mM硝酸铁混合溶剂溶液,其中,水与乙醇的体积比为4:1;
步骤二:取适量步骤一中的混合溶剂溶液放入体积为50mL的水热反应釜中封闭,并置于140℃的环境中反应24小时;
步骤三:将步骤二得到的产物完全冷却后,放入水中离心洗涤三遍,之后放入乙醇中离心洗涤三遍;
步骤四:将步骤三中的产物在60℃真空干燥箱中干燥,得到上述氧化铁介晶纳米粒子。
如图1给出了该氧化铁介晶纳米粒子的XRD谱图,结果显示为氧化铁结构。而图2~4给出的扫描电子显微镜照片、透射电子显微镜照片以及高分辨透射电子显微镜照片及相应的傅里叶变换图显示该氧化铁为20-80nm尺寸的纳米粒子,且由2-6nm尺寸的晶体取向一致的次级纳米粒子组成,也就是说该结构为氧化铁介晶纳米粒子。经称量恒算,该合成方法的产率达到了80%以上。经气体吸脱附测试,该介晶纳米粒子比表面积为56m2/g,高于大部分文献中报道的氧化铁介晶纳米结构。
当然,根据具体试验情况,所述硝酸铁混合溶剂浓度也可以为10-100mM;所述硝酸铁混合溶剂中水与乙醇的体积比也可以为4:0.5~2;所述水热反应釜的体积也可以为20mL~1L。并且,所述环境温度为也可以为130℃~150℃,反应时间也可以为8~48小时。具体地,该环境温度可由烘箱提供。
本发明还提供了该氧化铁介晶纳米粒子的三种应用方法:
第一种是将氧化铁介晶纳米粒子应用于可见光催化降解有机污染物;按如下方式进行可见光催化降解有机污染物测试,具体为:该测试是通过将氧化铁介晶纳米粒子分散在一定浓度的模拟污染物罗丹明B水溶液中,并对混合分散液进行可见光照射完成的。光照射前,10mg催化剂与50mL 20nM罗丹明B水溶液放入石英容器中,暗处搅拌30分钟后,加入0.255mL过氧化氢溶液(30 wt%)。然后该分散液在装有420nm截止滤光片的氙灯下照射,每隔一定时间取出3mL分散液。离心后测试上清液的紫外可见吸收光谱来确定罗丹明B的浓度。图5给出了氧化铁介晶纳米粒子可见光催化降解罗丹明B的浓度变化曲线,从图中可以看出,相对于添加参照物氧化铁纳米粒子以及无添加氧化铁的情况,氧化铁介晶纳米粒子表现出更好的催化性能。
第二种是将氧化铁介晶纳米粒子应用于重金属离子吸附去除;按如下方式进行重金属离子吸附去除测试,具体为:采用重铬酸钾溶液作为重金属离子Cr(VI)源,浓度为10.6mg/L,并用盐酸调节pH值至4。10mg氧化铁介晶纳米粒子分散在5mL上述溶液中,室温下搅拌5小时达到吸附平衡。离心后,采用ICP原子发射光谱测试上清液中Cr(VI)浓度以确定吸附量。根据ICP原子发射光谱测试结果,相对于氧化铁纳米晶的2.8mg/g的Cr(VI)吸附量,氧化铁介晶纳米粒子的吸附量为达到了4.6mg/g。
第三种是将氧化铁介晶纳米粒子应用于赝电容器;按如下方式测试由该氧化铁介晶纳米粒子制得的赝电容器性能,具体为:为了制备赝电容器电极进行电化学测试,80 wt%氧化铁介晶纳米粒子、10 wt%炭黑与10 wt%聚偏氟乙烯在N-甲基吡咯烷酮溶剂中混合均匀形成浆料,并涂覆在不锈钢片上,80℃真空干燥12小时。负载量大概在2~3mg/cm2。然后采用三电极体系在5M LiCl电解质中测试循环伏安曲线,得到赝电容器电容值,其中对电极为铂片,参比电极为Ag/AgCl电极。图6给出了氧化铁介晶纳米粒子作为活性物质的赝电容器的循环伏安曲线,由此得到的电容值为186F/g,高于文献中大部分的报道值。
本发明通过合理设计反应体系,在没有有机物添加条件下,采用温和的较低温度的溶液相水热反应方法,得到了高比表面积的氧化铁介晶纳米粒子。该反应体系几乎不具备放大效应,易于批量生产。与现有方法相比,本发明具有突出的简易性特点和显著的进步。此外,本发明还证实了该方法合成的氧化铁介晶纳米粒子具有很好的可见光催化降解有机污染物、吸附重金属离子及赝电容器性能。
上述实施例仅为本发明的优选实施例,并非对本发明保护范围的限制,但凡采用本发明的设计原理,以及在此基础上进行非创造性劳动而作出的变化,均应属于本发明的保护范围之内。

Claims (7)

1.一种氧化铁介晶纳米粒子,其特征在于,由2nm~6nm氧化铁纳米粒子晶体取向排列组成,其尺寸为20nm~80nm;该氧化铁介晶纳米粒子的比表面积达到56 m2/g。
2.如权利要求1所述的一种氧化铁介晶纳米粒子的应用方法,其特征在于:将该氧化铁介晶纳米粒子用于可见光催化降解有机污染物。
3.如权利要求1所述的一种氧化铁介晶纳米粒子的应用方法,其特征在于,将该氧化铁介晶纳米粒子用于重金属离子吸附去除。
4.如权利要求1所述的一种氧化铁介晶纳米粒子的应用方法,其特征在于:将该氧化铁介晶纳米粒子用于赝电容器。
5.如权利要求1所述的一种氧化铁介晶纳米粒子的合成方法,其特征在于,包括如下步骤:
步骤一:将硝酸铁充分溶解在水中,然后加入乙醇,混合均匀得到硝酸铁混合溶剂溶液;所述硝酸铁混合溶剂溶液浓度为10-100mM;所述硝酸铁混合溶剂溶液中水与乙醇的体积比为4:0.5~2;
步骤二:将步骤一中的硝酸铁混合溶剂溶液放入水热反应釜中封闭,并置于130℃ ~140℃ 的环境中反应24小时~48小时;
步骤三:将步骤二得到的产物完全冷却后,放入水中离心洗涤三遍,之后放入乙醇中离心洗涤三遍;
步骤四:将步骤三中的产物在60℃真空干燥箱中干燥,得到所述氧化铁介晶纳米粒子。
6.根据权利要求5所述的一种氧化铁介晶纳米粒子的合成方法,其特征在于,所述水热反应釜的体积为20mL~1L。
7.根据权利要求6所述的一种氧化铁介晶纳米粒子的合成方法,其特征在于,所述硝酸铁混合溶剂溶液浓度为50mM;所述硝酸铁混合溶剂溶液中水与乙醇的体积比为4:1;所述水热反应釜的体积为50mL。
CN201611201075.1A 2016-12-22 2016-12-22 一种氧化铁介晶纳米粒子及其合成方法和应用方法 Expired - Fee Related CN106587166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611201075.1A CN106587166B (zh) 2016-12-22 2016-12-22 一种氧化铁介晶纳米粒子及其合成方法和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611201075.1A CN106587166B (zh) 2016-12-22 2016-12-22 一种氧化铁介晶纳米粒子及其合成方法和应用方法

Publications (2)

Publication Number Publication Date
CN106587166A CN106587166A (zh) 2017-04-26
CN106587166B true CN106587166B (zh) 2018-02-02

Family

ID=58603027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611201075.1A Expired - Fee Related CN106587166B (zh) 2016-12-22 2016-12-22 一种氧化铁介晶纳米粒子及其合成方法和应用方法

Country Status (1)

Country Link
CN (1) CN106587166B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288712A (zh) * 2017-12-21 2018-07-17 浙江天能能源科技股份有限公司 一种锂离子电池负极材料Fe2O3的制备方法
CN109850952B (zh) * 2019-04-03 2021-01-26 东北师范大学 一种含重金属离子水溶液中铁离子的高纯分离方法
CN111569820B (zh) * 2020-06-04 2023-08-22 浙江恒昌纺织科技有限公司 一种污染物高效固定材料和污染物高效固定方法
CN111908513A (zh) * 2020-07-08 2020-11-10 傅尚真 一种用于染料吸附的介晶铁氧化物材料及其制备方法
KR102387805B1 (ko) * 2020-10-30 2022-04-19 고려대학교 산학협력단 복합구조 메조결정 나노입자 및 그의 제조방법
CN115055185B (zh) * 2022-06-14 2024-01-23 新余学院 一种氧化铁纳米纤维制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767835A (zh) * 2010-03-23 2010-07-07 青岛科技大学 一种高矫顽力α-Fe2O3介晶微球的制备方法
CN102134102A (zh) * 2011-02-15 2011-07-27 江苏大学 一种氧化铁纳米棒的制备方法
CN103332752A (zh) * 2013-05-25 2013-10-02 湖南省肿瘤医院 一种制备单分散α-Fe2O3纳米颗粒的方法
CN103464740A (zh) * 2013-08-16 2013-12-25 安徽师范大学 一种微纳米α-Fe2O3材料及其制备方法
CN104003448A (zh) * 2014-05-20 2014-08-27 江苏大学 一种α相三氧化二铁多孔核壳微球及其可控合成制备方法
CN105174316A (zh) * 2015-08-28 2015-12-23 河南大学 一种具有分级结构的饼状氧化铁纳米微粒及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767835A (zh) * 2010-03-23 2010-07-07 青岛科技大学 一种高矫顽力α-Fe2O3介晶微球的制备方法
CN102134102A (zh) * 2011-02-15 2011-07-27 江苏大学 一种氧化铁纳米棒的制备方法
CN103332752A (zh) * 2013-05-25 2013-10-02 湖南省肿瘤医院 一种制备单分散α-Fe2O3纳米颗粒的方法
CN103464740A (zh) * 2013-08-16 2013-12-25 安徽师范大学 一种微纳米α-Fe2O3材料及其制备方法
CN104003448A (zh) * 2014-05-20 2014-08-27 江苏大学 一种α相三氧化二铁多孔核壳微球及其可控合成制备方法
CN105174316A (zh) * 2015-08-28 2015-12-23 河南大学 一种具有分级结构的饼状氧化铁纳米微粒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Self-Assembled α-Fe2O3 Mesocrystals/Graphene Nanohybrid for Enhanced Electrochemical Capacitors;Shuhua Yang, et al.;《Small》;20140228;第10卷(第11期);2270-2279 *

Also Published As

Publication number Publication date
CN106587166A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106587166B (zh) 一种氧化铁介晶纳米粒子及其合成方法和应用方法
Raziq et al. Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities
Subudhi et al. A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH2: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution
Lonkar et al. Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity
Kumar et al. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production
Hayat et al. Visible-light enhanced photocatalytic performance of polypyrrole/g-C3N4 composites for water splitting to evolve H2 and pollutants degradation
Shang et al. Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method
Ma et al. Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight
Gao et al. The hierarchical layered microsphere of BiOIxBr1-x solid solution decorated with N-doped CQDs with enhanced visible light photocatalytic oxidation pollutants
Liu et al. Charge transmission channel construction between a MOF and rGO by means of Co–Mo–S modification
Qian et al. Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure
Wang et al. An anti-symmetric dual (ASD) Z-scheme photocatalytic system:(ZnIn2S4/Er3+: Y3Al5O12@ ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution
Yan et al. Covalent organic framework based WO3@ COF/rGO for efficient visible-light-driven H2 evolution by two-step separation mode
Sumathi et al. High capable visible light driven photocatalytic activity of WO 3/gC 3 N 4 hetrostructure catalysts synthesized by a novel one step microwave irradiation route
Chen et al. Excellent visible light photocatalytic efficiency of Na and S co-doped g-C3N4 nanotubes for H2 production and organic pollutant degradation
Wu et al. Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst
Khan et al. Fabrication of highly efficient and hierarchical CdS QDs/CQDs/H-TiO2 ternary heterojunction: surpassable photocatalysis under sun-like illumination
Zhao et al. Direct microwave–hydrothermal synthesis of Fe-doped titania with extended visible-light response and enhanced H2-production performance
Wang et al. Enhanced photocatalytic properties of CeO2/TiO2 heterostructures for phenol degradation
Gao et al. Construction of heterostructured g-C3N4@ TiATA/Pt composites for efficacious photocatalytic hydrogen evolution
Ma et al. Construction of novel Sr0. 4H1. 2Nb2O6· H2O/g-C3N4 heterojunction with enhanced visible light photocatalytic activity for hydrogen evolution
Ece et al. Facile synthesis and comprehensive characterization of Ni-decorated amine groups-immobilized Fe3O4@ SiO2 magnetic nanoparticles having enhanced solar cell efficiency
Tian et al. Fabrication of alveolate g-C3N4 with nitrogen vacancies via cobalt introduction for efficient photocatalytic hydrogen evolution
Sharma et al. Enhanced photocatalytic activity of hierarchical C/ZnO nanocomposite derived from solvothermally restructured Zn-BTC microspheres
Wang et al. Synthesis of Ni-silicate superficially modified CdS and its highly improved photocatalytic hydrogen production

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180202

CF01 Termination of patent right due to non-payment of annual fee