CN107010645A - 三种不同形貌电池级碳酸锂的制备方法 - Google Patents

三种不同形貌电池级碳酸锂的制备方法 Download PDF

Info

Publication number
CN107010645A
CN107010645A CN201710360766.4A CN201710360766A CN107010645A CN 107010645 A CN107010645 A CN 107010645A CN 201710360766 A CN201710360766 A CN 201710360766A CN 107010645 A CN107010645 A CN 107010645A
Authority
CN
China
Prior art keywords
product
organic phase
organic matter
phase
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710360766.4A
Other languages
English (en)
Inventor
秦炜
李浪
隋金淞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710360766.4A priority Critical patent/CN107010645A/zh
Publication of CN107010645A publication Critical patent/CN107010645A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种以二氧化碳为碳源,氯化锂为原料在有机相制备三种不同形貌(微米层,微米花和纳米棒)电池级碳酸锂的方法,属于化工合成技术领域。该方法首先配制1~12mol/L的LiCl溶液,然后以极性有机物为萃取剂,按照一定的体积比加入有机相,振荡10分钟以上,使两相达到萃取平衡,取出有机相并加入胺类有机物在搅拌状态下通入CO2气体,在10~60℃条件下反应10~60分钟,反应结束后将固液两相进行分离,其中固体产品用乙醇和去离子水洗涤,经干燥后即得到电池级Li2CO3产品。本发明制备的微米层、微米花和纳米棒三种形貌的碳酸锂微粒,纯度高、粒径分布均匀,符合国标YST552‑2013。

Description

三种不同形貌电池级碳酸锂的制备方法
技术领域
本发明属于化工合成技术领域,具体涉及三种不同形貌电池级碳酸锂的制备方法。
背景技术
碳酸锂是重要的工业产品,也是生产其它锂盐的重要中间体,在化学工业、金属冶炼、陶瓷材料制造、医疗卫生及空调制冷等传统行业中应用广泛。近年来,由于电子信息、锂电池以及原子能源领域的迅速发展,尤其是我国新能源汽车产业已进入高速增长期,正极材料产能扩张,带动上游电池级碳酸锂产业的快速发展和需求量迅速增长。
电池级碳酸锂与工业级碳酸锂的产品指标相比,除纯度要求高外,杂质种类及浓度要求更为严格,尤其是对于粒度范围要求更为苛刻。目前,我国制备锂电池正极材料的高纯电池级碳酸锂主要依赖于进口或由进口锂辉石经煅烧及加入可溶性碳酸盐的水相沉淀法生产。由于沉淀过程中加入的碳酸盐会引入新的阳离子,碳酸锂的纯度不高,粒度分布和形貌不易控制,需经过后续精制和纯化。为简化电池级碳酸锂生产的工艺流程,实现电池级碳酸锂产品的可控制备是十分必要的。采用有机相反应结晶法制备的晶体形貌均一的电池级碳酸锂在该领域仍是空白。
发明内容
针对传统方法制备的碳酸锂产品纯度低、粒径分布不均、需进一步精制和纯化、工艺流程长等技术缺陷,本发明提出一种以CO2为碳源,在有机相结晶制备电池级碳酸锂的方法。
本发明所述的三种形貌电池级碳酸锂制备方法包括如下步骤:
(1)LiCl溶液除杂:用极性有机物为萃取剂萃取LiCl,与少量的Ca2+、Mg2+、Na+、BO4 3-杂质分离,有机相与水相的体积比为1:1~5:1:
其中,所述LiCl溶液除杂后的浓度为1~12mol/L,所述的极性有机物萃取剂为C3~C8醇中的一种。
(2)有机相反应液制备:将负载LiCl的极性有机溶液与胺类有机物混合,即为有机相反应液,胺类有机物的体积分数为30%~70%:
其中,所述的胺类有机物为叔胺中的一种或多种。
(3)生成Li2CO3:将步骤(2)得到的有机相反应液加入到带有搅拌装置的容器中,在搅拌状态下经气体分布器向有机相通入二氧化碳气体,在10~60℃条件下反应10~60分钟,反应结束后将固液两相分离。其中固体产品用少量的乙醇和去离子水洗涤除去产品中夹带的有机物和其他杂质。再经60℃的充分干燥,可以得到电池级Li2CO3产品(微米层,微米花和纳米棒)。
其中,所获得的电池级Li2CO3产品在有机相中生成,呈现微米层,微米花和纳米棒形貌。
本发明的有益效果:
与传统的水相碳酸盐沉淀法相比,本发明具有以下优点:
(1)在碳酸锂的制备过程中,采用极性有机物萃取负载LiCl,可以除去LiCl原料中少量的Ca、Mg、Na及硼酸根等杂质,降低原料LiCl纯度的要求;
(2)以CO2为碳源,提高了原料的原子经济性,降低了原料的成本;
(3)有机相沉淀法可以实现碳酸锂产品粒径分布的可控制备,直接达到电池级碳酸锂的国标要求。
本发明的原理如下:
一些极性有机物对LiCl有较高的选择性,通过极性有机物对LiCl水溶液的萃取,可以实现LiCl与其中少量的Ca2+、Mg2+、Na+、BO4 3-杂质的分离,提高后续碳酸锂产品的纯度。LiCl与CO2在水环境下发生可逆化学反应时,生成Li2CO3和HCl,若在反应体系中可以将HCl移除或生成其他络合物,则可以破坏反应平衡,使反应向生成Li2CO3的方向移动,并形成Li2CO3沉淀。
极性有机物/胺类有机物对HCl具有较强的结合力和萃取水效应,若在负载LiCl的极性有机物/胺类有机物的有机相中通入CO2,可以促进Li2CO3的生成。尤其是胺类有机物具有助表面活性剂性质,在有机相有限域效应,可以实现Li2CO3产品粒径的可控制备。其反应方程式如下:
反应结束后,对碳酸锂颗粒进行过滤与离心分离,然后进行干燥。本发明利用上述原理,可以制备符合国标(YST552-2013)的电池级碳酸锂。
附图说明
图1为本发明碳酸锂制备简图。
图2为本发明实施例1制备的微米花碳酸锂晶体图。
图3为本发明实施例2制备的微米层碳酸锂晶体图。
图4实施例3制备的纳米棒碳酸锂晶体图。
图5实施例4制备的微米层碳酸锂晶体图。
具体实施方式
下面结合附图,对本发明进一步详细说明。
实施例1
(1)LiCl溶液除杂:以正丁醇为萃取剂萃取3mol/L LiCl溶液,有机相与水相的体积比为4:1,与少量的Ca2+、Mg2+、Na+、BO4 3-杂质分离。
(2)有机相反应液制备:将负载LiCl的正丁醇与三烷基胺混合,即为有机相反应液,三烷基胺的体积分数为33%。
(3)生成Li2CO3:将有机相反应液加入到带有搅拌装置的容器中,开动搅拌装置,在搅拌状态下经气体分布器向有机相通入二氧化碳气体,在室温条件下搅拌反应45分钟,反应结束后将固液两相分离。其中固体产品用少量的乙醇和去离子水洗涤除去产品中夹带的有机物和其他杂质。再经60℃的充分干燥,可以得到微米花电池级Li2CO3产品(见图2)。使用电感耦合等离子发射光谱法(ICP-AES)分析产品的纯度,使用马尔文粒径仪测量其粒度分布。结果显示,制备的碳酸锂纯度高达99.95wt%,其粒径范围为10-15um。
实施例2
(1)LiCl溶液除杂:以异戊醇为萃取剂萃取3mol/L LiCl溶液,有机相与水相的体积比为2:1,与少量的Ca2+、Mg2+、Na+、BO4 3-杂质分离。
(2)有机相反应液制备:将负载LiCl的异戊醇与三辛胺混合,即为有机相反应液,三辛胺的体积分数为60%。
(3)生成Li2CO3:将有机相反应液加入到带有搅拌装置的容器中,开动搅拌装置,在搅拌状态下经气体分布器向有机相通入二氧化碳气体,在室温条件下搅拌反应30分钟,反应结束后将固液两相分离。其中固体产品用少量的乙醇和去离子水洗涤除去产品中夹带的有机物和其他杂质。再经60℃的充分干燥,可以得到微米层电池级Li2CO3产品。使用电感耦合等离子发射光谱法(ICP-AES)分析产品的纯度,使用马尔文粒径仪测量其粒度分布,结果显示,制备的碳酸锂纯度高达99.95wt%,其粒径范围为5~8um。
实施例3
(1)LiCl溶液除杂:以正丁醇为萃取剂萃取4mol/L LiCl溶液,有机相与水相的体积比为4:1,与少量的Ca2+、Mg2+、Na+、BO4 3-杂质分离。
(2)有机相反应液制备:将负载LiCl的正丁醇与三烷基叔胺混合,即为有机相反应液,三烷基叔胺的体积分数为33%。
(3)生成Li2CO3:将步骤(2)得到的有机相反应液加入到带有搅拌装置的容器中,开动搅拌装置,在搅拌状态下经气体分布器向有机相通入二氧化碳气体,在10℃条件下搅拌反应30分钟,反应结束后将固液两相分离。其中固体产品用少量的乙醇和去离子水洗涤除去产品中夹带的有机物和其他杂质。再经60℃的充分干燥,可以得到纳米棒电池级Li2CO3产品。使用电感耦合等离子发射光谱法(ICP-AES)分析产品的纯度,使用马尔文粒径仪测量其粒度分布,结果显示制备的碳酸锂纯度高达99.95wt%,其粒径范围为80~100nm。
实施例4
(1)LiCl溶液除杂:以异辛醇为萃取剂萃取3mol/L LiCl溶液,有机相与水相的体积比为2:1,与少量的Ca2+、Mg2+、Na+、BO4 3-杂质分离。
(2)有机相反应液制备:将负载LiCl的异辛醇与三烷基叔胺混合,即为有机相反应液,三烷基叔胺的体积分数为60%
(3)生成Li2CO3:将有机相反应液加入到带有搅拌装置的容器中,开动搅拌装置,在搅拌状态下经气体分布器向有机相通入二氧化碳气体,在室温的条件下搅拌反应10分钟,反应结束后将固液两相分离。其中固体产品用少量的乙醇和去离子水洗涤除去产品中夹带的有机物和其他杂质。再经60℃的充分干燥,可以得到微米层电池级Li2CO3产品。使用电感耦合等离子发射光谱法(ICP-AES)分析产品的纯度,使用马尔文粒径仪测量其粒度分布。结果显示制备的碳酸锂纯度高达99.95wt%,其粒径范围为10-15um.
上述实施例对本发明的技术方案进行了详细说明。显然,本发明并不局限于所描述的实施例。基于本发明中的实施例,熟悉本技术领域的人员还可据此做出多种变化,但任何与本发明等同或相类似的变化都属于本发明保护的范围。

Claims (4)

1.三种不同形貌电池级碳酸锂制备方法,其特征在于,包括如下步骤:
(1)LiCl溶液除杂:用极性有机物为萃取剂萃取LiCl,与少量的Ca2+、Mg2+、Na+、BO4 3-杂质分离,有机相与水相的体积比为1:1~5:1;
(2)有机相反应液制备:将负载LiCl的极性有机溶液与胺类有机物混合,即为有机相反应液,胺类有机物的体积分数为30%~70%;
(3)生成Li2CO3:将步骤(2)得到的有机相反应液加入到带有搅拌装置的容器中,在搅拌状态下经气体分布器向有机相通入二氧化碳气体,在10~60℃条件下反应10~60分钟,反应结束后将固液两相分离,其中固体产品用乙醇和去离子水洗涤除去产品中夹带的有机物和杂质,再经60℃干燥,得到电池级Li2CO3产品。
2.根据权利要求1所述的方法,其特征在于,步骤(1)所述的极性有机物萃取剂为C3~C8醇中的一种。
3.根据权利要求1所述的方法,其特征在于,步骤(2)所述的胺类有机物为叔胺中的一种或多种。
4.根据权利要求1所述的方法,其特征在于,步骤(3)中获得的电池级Li2CO3产品在有机相中生成,呈现微米层,微米花和纳米棒形貌。
CN201710360766.4A 2017-05-18 2017-05-18 三种不同形貌电池级碳酸锂的制备方法 Pending CN107010645A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710360766.4A CN107010645A (zh) 2017-05-18 2017-05-18 三种不同形貌电池级碳酸锂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710360766.4A CN107010645A (zh) 2017-05-18 2017-05-18 三种不同形貌电池级碳酸锂的制备方法

Publications (1)

Publication Number Publication Date
CN107010645A true CN107010645A (zh) 2017-08-04

Family

ID=59449318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710360766.4A Pending CN107010645A (zh) 2017-05-18 2017-05-18 三种不同形貌电池级碳酸锂的制备方法

Country Status (1)

Country Link
CN (1) CN107010645A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108245987A (zh) * 2018-04-11 2018-07-06 宜春市鼎鑫高能科技有限公司 一种用于碳酸锂的提纯系统
CN111453748A (zh) * 2020-06-06 2020-07-28 江西南氏锂电新材料有限公司 制备雪花状单晶高纯碳酸锂的沉锂结晶方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408119A (zh) * 2010-09-20 2012-04-11 华东理工大学 一种采用溶析-反应结晶制备碳酸锂超细粉体的方法
CN102897804A (zh) * 2012-09-18 2013-01-30 清华大学 一种由氯化锂和二氧化碳直接制备碳酸锂的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102408119A (zh) * 2010-09-20 2012-04-11 华东理工大学 一种采用溶析-反应结晶制备碳酸锂超细粉体的方法
CN102897804A (zh) * 2012-09-18 2013-01-30 清华大学 一种由氯化锂和二氧化碳直接制备碳酸锂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙建之等: "盐湖卤水直接提取氯化锂的研究概况", 《盐湖研究》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108245987A (zh) * 2018-04-11 2018-07-06 宜春市鼎鑫高能科技有限公司 一种用于碳酸锂的提纯系统
CN111453748A (zh) * 2020-06-06 2020-07-28 江西南氏锂电新材料有限公司 制备雪花状单晶高纯碳酸锂的沉锂结晶方法

Similar Documents

Publication Publication Date Title
KR101973479B1 (ko) 입도, 입도분포 및 형상이 조절된 고순도 탄산리튬의 제조방법
CN105200246B (zh) 一种分离钨钼的方法
WO2016119481A1 (zh) 一种硫化锂粉体的制备方法
WO2011003266A1 (zh) 一种利用氯化锂溶液制备电池级碳酸锂的方法
CN104003445B (zh) 一种生产高溶解度七钼酸铵的方法
CN107381604A (zh) 一种从磷酸铁锂电池中回收碳酸锂的方法
CN106335929B (zh) 一种微纳米结构的四氧化三锰的制备方法
JP2014519468A (ja) ヘマタイトの調製方法
CN107619939A (zh) 一种硫酸锌结晶中砷、镉的去除方法
US20210078056A1 (en) Method for transforming arsenic sulfide slag and curing and stabilizing resulting compound by means of microencapsulation
CN104743613A (zh) 一种连续制备大粒径球形碳酸钴的方法
CN107010645A (zh) 三种不同形貌电池级碳酸锂的制备方法
CN102897804B (zh) 一种由氯化锂和二氧化碳直接制备碳酸锂的方法
CN109368688A (zh) 一种高纯度氧化锌间接法的生产工艺
AU2015247017B2 (en) Method for Producing Nickel Powder for Reducing Carbon Concentration and Low Sulfur Concentration Contained in Nickel Powder
CN104556175B (zh) 从钾长石分解尾渣中制取氢氧化铝的方法
CN102126756B (zh) 一种生产工业级仲钼酸铵的方法
CN106381387A (zh) 一种从低品位菱锰矿浸出液制备高纯磷酸锰的方法
CN103466720A (zh) 硫酸锰溶液制备高纯四氧化三锰的工艺
AU2016345951B2 (en) Method for producing seed crystal of cobalt powder
CN103466712A (zh) 一种硫酸锰溶液制备高纯四氧化三锰的工艺
CN106348330A (zh) Ddtc沉淀杂质提取高纯硫酸铝的方法
CN102728853B (zh) 高纯度纳米级金属镁粉的生产工艺
CN110468275A (zh) 除去稀土沉淀物中硫酸根的方法及由该方法得到的产品
CN109574024A (zh) 利用天然一维纳米黏土矿物制备二氧化硅纳米材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170804

RJ01 Rejection of invention patent application after publication