CN107008158A - 一种陶瓷复合膜的制备方法 - Google Patents

一种陶瓷复合膜的制备方法 Download PDF

Info

Publication number
CN107008158A
CN107008158A CN201710314526.0A CN201710314526A CN107008158A CN 107008158 A CN107008158 A CN 107008158A CN 201710314526 A CN201710314526 A CN 201710314526A CN 107008158 A CN107008158 A CN 107008158A
Authority
CN
China
Prior art keywords
ceramic
preparation
metallic
composite membrane
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710314526.0A
Other languages
English (en)
Other versions
CN107008158B (zh
Inventor
张栋强
杨平
李贵贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN201710314526.0A priority Critical patent/CN107008158B/zh
Publication of CN107008158A publication Critical patent/CN107008158A/zh
Application granted granted Critical
Publication of CN107008158B publication Critical patent/CN107008158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种陶瓷复合膜的制备方法,首先是将粒径为支撑体表面平均孔径1/2‑2/3的金属粉体加入到有机溶剂或水中,通过添加分散剂和增稠剂,制备出稳定、分散均匀的金属粒子悬浮浆,其次将多孔陶瓷支撑体放入金属粒子悬浮浆中进行抽负压浸浆吸附,金属粒子会进入陶瓷支撑体表面的孔道内,将陶瓷支撑体表面的孔道填充。最后将修饰后的陶瓷支撑体进行表面清洗后,固定于耐高温、防氧化材料制备的保护套内,然后放置到含氧气氛围中,进行烧结处理,使金属粒子在陶瓷支撑体孔道内发生原位氧化,生成一种含金属氧化物的混合陶瓷膜层。

Description

一种陶瓷复合膜的制备方法
技术领域
本发明涉及陶瓷复合膜的制备技术。
背景技术
膜由于其占地面积小,分离效率高,对环境无污染等特点广泛应用于化工、生物、医药、能源、环境、冶金等领域。陶瓷膜因其孔径分布均匀、机械强度高、耐酸碱及耐腐蚀性能好也得到了广泛的应用。传统纳滤膜的制备要在大孔支撑体表面依次反复经过粒径从大到小的多层陶瓷膜的制备,并且每制备一层陶瓷膜,都要经过烧结,这样制备周期长,能耗较高,膜层间结合力较差。本发明工艺简单,能耗低,并且将纳米膜分散到大孔支撑体孔内,个别膜性能破坏对整个膜性能影响较小。其次,有效避免了膜层之间结合力较差的问题。
发明内容
本发明的目的在于提供一种陶瓷复合膜的制备方法。
本发明是一种陶瓷复合膜的制备方法,其步骤为:
(1)选择粒径为多孔陶瓷支撑体平均表面孔径1/2-2/3的金属粒子,以所用溶剂或水的质量为基准,按照重量百分比为0.05%-20%加入到有机溶剂或水中,再以溶剂或水的质量为基准,依次加入质量百分比分别为0.1%-5%的分散剂和1%-5%的增稠剂,制备出分散均匀、稳定的金属粒子悬浮浆;
(2)将清洗后的多孔陶瓷支撑体浸入到步骤(1)中制备的浆料中,采用抽负压的方法,将浆料中的金属粒子吸附在多孔陶瓷支撑体表面的孔道内;所抽负压为0.01-0.1MPa,浸浆时间为10-300s,浸浆后清洗掉附着在表面多余的金属粒子;
(3)将步骤(2)中的填充金属粉体的支撑体放入含氧氛围中在400-900℃下烧结1-20小时,使金属粒子在陶瓷表面孔道内发生原位氧化,生成一种含有金属氧化物的陶瓷膜层。
本发明的有益之处是:与传统制膜方法相比,本发明的制膜工艺简单、易于操作。2本发明方法仅需要一次烧结,能耗较低,有效地避免传统制膜过程中反复浸浆反复烧结导致能耗较高的问题。3本发明方法制膜在膜孔内进行,所制备的膜稳定性较好,有效避免了传统制膜过程中膜层之间结合力较差的问题。
附图说明
图1为本发明的制备工艺流程与普通原位氧化流程对比示意图,图2为未经过高温氧化的陶瓷支撑体表面SEM照片。
具体实施方式
如图1所示,本发明是一种陶瓷复合膜的制备方法,其步骤为:
(1)选择粒径为多孔陶瓷支撑体平均表面孔径1/2-2/3的金属粒子(如:Ti、Al等金属),以所用溶剂或水的质量为基准,按照重量百分比为0.05%-20%加入到有机溶剂或水中,再以溶剂或水的质量为基准,依次加入质量百分比分别为0.1%-5%的分散剂和1%-5%的增稠剂,制备出分散均匀、稳定的金属粒子悬浮浆;
(2)将清洗后的多孔陶瓷支撑体浸入到步骤(1)中制备的浆料中,采用抽负压的方法,将浆料中的金属粒子吸附在多孔陶瓷支撑体表面的孔道内;所抽负压为0.01-0.1MPa,浸浆时间为10-300s,浸浆后清洗掉附着在表面多余的金属粒子;
(3)将步骤(2)中的填充金属粉体的支撑体放入含氧氛围中在400-900℃下烧结1-20小时,使金属粒子在陶瓷表面孔道内发生原位氧化,生成一种含有金属氧化物的陶瓷膜层。
以上所述的制备方法所指金属粒子为Ti粉,或者Al粉,或者两种金属粉体的混合物。粒径为多孔陶瓷支撑体平均表面孔径1/2-2/3的金属粒子,加入量以所用溶剂或水的质量为基准,加入的重量百分比为0.05%-20%。
以上所述的制备方法所述的有机溶剂为甲醇、乙醇、或异丙醇,或其中的两种或三种的混合物。
以上所述的制备方法所述的分散剂为聚乙烯,或聚甲基丙烯酸,或聚丙烯酰胺,或十六烷基三甲基季铵盐,或十二烷基硫酸钠,或十二烷基苯磺酸钠,或聚乙二醇,或其中的两种或三中的混合物。其加入量以溶剂或水的质量为基准,加入的质量百分比为0.1%-5%。所述的增稠剂为甲基纤维素,或乙基纤维素,或聚乙烯醇,或聚丙烯甲酸酯,或羧甲基纤维素钠,或其中两种或三种的混合物。其加入量以溶剂或水的质量为基准,加入的质量百分比为1%-5%。
以上所述的制备方法所指的多孔陶瓷支撑体为氧化铝陶瓷,或氧化硅陶瓷,或氧化钛陶瓷,或氧化锆陶瓷,或两种或多种的混合陶瓷。其孔径范围为1μm-15μm。
以上所述的制备方法所指的抽负压范围为0.01-0.1MPa,浸浆时间为10-300s。
以上所述的制备方法的耐高温抗氧化材料为耐高温碳材料,或耐高温陶瓷材料,或其他耐高温、耐氧化非金属材料及复合材料。
以上所述的制备方法所指的含氧气氛为空气,或氧气,或其它含有氧气的气氛环境。其氧化温度为400-900℃,氧化时间为1-20小时。
实施例1:以多孔α-Al2O3片状陶瓷为支撑体,其孔径为3μm。
(1)浆料配制:以水为溶剂,以溶剂质量为基准,分别加入质量百分比为2%、0.5%和1%的1.9μm的Ti粒子、聚乙烯亚胺、乙基纤维素和羧甲基纤维素钠(1:1wt)混合物,其中聚乙烯亚胺为分散剂,乙基纤维素和羧甲基纤维素钠(1:1wt)混合物为增稠剂;
(2)孔道填充:将清洁后的多孔陶瓷支撑体放入到步骤(1)中配置的浆料中抽负压进行浸浆吸附,所抽负压为0.03Mpa,浸浆时间为100s,在多孔陶瓷支撑体孔道内会吸附较多的金属粒子,浸浆后将多余附着在支撑体表面的多余金属粒子。
(3)原位氧化:将步骤(2)中制备的组件放入氧气中进行结烧处理,烧结温度为500℃,时间为8h。其中升降温速度为1℃/min。成功的制备出了陶瓷膜。
实施例2:以多孔α-Al2O3片状陶瓷为支撑体,其孔径为8μm。
(1)浆料配制:以异丙醇为溶剂,以溶剂质量为基准,分别加入质量百分比为10%、2%和3%的5.3μm的Ti粒子、十六烷基三甲基季铵盐、乙基纤维素和羧甲基纤维素钠(1:1wt)混合物,其中十六烷基三甲基季铵盐为分散剂,乙基纤维素和羧甲基纤维素(1:1wt)混合物为增稠剂;
(2)孔道填充:将清洁后的多孔陶瓷支撑体放入到步骤(1)中配置的浆料中抽负压进行浸浆吸附,所抽负压为0.05Mpa,浸浆时间为100s,在多孔陶瓷支撑体孔道内会吸附较多的金属粒子,浸浆后将多余附着在支撑体表面的多余金属粒子。
(3)原位氧化:将步骤(2)中制备的组件放入氧气中进行结烧处理,烧结温度为700℃,时间为7h。其中升降温速度为1℃/min。成功的制备出来了表面致密的陶瓷膜。
实施例3:以多孔α-Al2O3片状陶瓷为支撑体,其孔径为14μm。
(1)浆料配制:以去离子水为溶剂,以溶剂质量为基准,分别加入质量百分比为19%、5%和5%的9.3μm的Ti粒子、聚甲基丙烯酸、乙基纤维素,其中十六烷基三甲基季铵盐为分散剂,乙基纤维素为增稠剂;
(2)孔道填充:将清洁后的多孔陶瓷支撑体放入到步骤(1)中配置的浆料中抽负压进行浸浆吸附,所抽负压为0,1Mpa,浸浆时间为50s,在多孔陶瓷支撑体孔道内会吸附较多的金属粒子,浸浆后将多余附着在支撑体表面的多余金属粒子。
(3)原位氧化:将步骤(2)中制备的组件放入氧气中进行结烧处理,烧结温度为800℃,时间为5h。其中升降温速度为1℃/min。成功的制备出来了表面致密的陶瓷膜。
实施例4:以多孔α-Al2O3片状陶瓷为支撑体,其孔径为3μm。
(1)浆料配制:以去异丙醇为溶剂,以溶剂质量为基准,分别加入质量百分比为3%、0.5%和1%的1.9μm的Al粒子、聚甲基丙烯酸、乙基纤维素,其中十六烷基三甲基季铵盐为分散剂,乙基纤维素为增稠剂;
(2)孔道填充:将清洁后的多孔陶瓷支撑体放入到步骤(1)中配置的浆料中抽负压进行浸浆吸附,所抽负压为0,02Mpa,浸浆时间为150s,在多孔陶瓷支撑体孔道内会吸附较多的金属粒子,浸浆后将多余附着在支撑体表面的多余金属粒子。
(3)原位氧化:将步骤(2)中制备的组件放入氧气中进行结烧处理,烧结温度为450℃,时间为9h。其中升降温速度为1℃/min。成功的制备出来了表面致密的陶瓷膜。
实施例5:以多孔α-Al2O3片状陶瓷为支撑体,其孔径为8μm。
(1)浆料配制:以去离子水为溶剂,以溶剂质量为基准,分别加入质量百分比为10%、2.5%和3%的5.7μm的Al粒子、聚丙烯酸钠。甲基纤维素,其中聚甲基酸钠为分散剂,甲基纤维素为增稠剂。
(2)孔道填充:将清洁后的多孔陶瓷支撑体放入到步骤(1)中配置的浆料中抽负压进行浸浆吸附,所抽负压为0,05Mpa,浸浆时间为100s,在多孔陶瓷支撑体孔道内会吸附较多的金属粒子,浸浆后将多余附着在支撑体表面的多余金属粒子。
(3)原位氧化:将步骤(2)中制备的组件放入氧气中进行结烧处理,烧结温度为650℃,时间为7h。其中升降温速度为1℃/min。成功的制备出来了表面致密的陶瓷膜。
实施例6:以多孔管式氧化锆陶瓷为支撑体,其孔径为14μm。
(1)浆料配制:以异丙醇水为溶剂,以溶剂质量为基准,分别加入质量百分比为20%、5%和5%的9.3μm的Al粒子与Ti粒子混合物(1:1wt)、聚丙烯酰胺和聚乙二醇、聚丙烯酸甲酯,其中聚丙烯酰胺和聚乙二醇为分散剂,聚丙烯酸甲酯为增稠剂。
(2)孔道填充:将清洁后的多孔陶瓷支撑体放入到步骤(1)中配置的浆料中抽负压进行浸浆吸附,所抽负压为0,1Mpa,浸浆时间为50s,在多孔陶瓷支撑体孔道内会吸附较多的金属粒子,浸浆后将多余附着在支撑体表面的多余金属粒子。
(3)原位氧化:将步骤(2)中制备的组件放入氧气中进行结烧处理,烧结温度为800℃,时间为5h。其中升降温速度为1℃/min。成功的制备出来了表面致密的陶瓷膜。

Claims (8)

1.一种陶瓷复合膜的制备方法,其特征在于,其步骤为:
(1)选择粒径为多孔陶瓷支撑体平均表面孔径1/2-2/3的金属粒子,以所用溶剂或水的质量为基准,按照重量百分比为0.05%-20%加入到有机溶剂或水中,再以溶剂或水的质量为基准,依次加入质量百分比分别为0.1%-5%的分散剂和1%-5%的增稠剂,制备出分散均匀、稳定的金属粒子悬浮浆;
(2)将清洗后的多孔陶瓷支撑体浸入到步骤(1)中制备的浆料中,采用抽负压的方法,将浆料中的金属粒子吸附在多孔陶瓷支撑体表面的孔道内;所抽负压为0.01-0.1MPa,浸浆时间为10-300s,浸浆后清洗掉附着在表面多余的金属粒子;
(3)将步骤(2)中的填充金属粉体的支撑体放入含氧氛围中在400-900℃下烧结1-20小时,使金属粒子在陶瓷表面孔道内发生原位氧化,生成一种含有金属氧化物的陶瓷膜层。
2.根据权利要求1所述的陶瓷复合膜的制备方法,其特征在于所指金属粒子为Ti粉,或者Al粉,或者两种金属粉体的混合物;以多孔陶瓷支撑体表面平均孔径为基准,所用金属粒子粒径为其表面平均孔径的1/2-2/3,加入量以所用溶剂或水的质量为基准,加入的重量百分比为0.05%-20%。
3.根据权利要求1所述的陶瓷复合膜的制备方法,其特征在于所述的有机溶剂为甲醇、乙醇、或异丙醇,或其中的两种或三种的混合物。
4.根据权利要求1所述的陶瓷复合膜的制备方法,其特征在于所述的分散剂为聚乙烯,或聚甲基丙烯酸,或聚丙烯酰胺,或十六烷基三甲基季铵盐,或十二烷基硫酸钠,或十二烷基苯磺酸钠,或聚乙二醇,或其中的两种或三中的混合物;其加入量以溶剂或水的质量为基准,加入的质量百分比为0.1%-5%;所述的增稠剂为甲基纤维素,或乙基纤维素,或聚乙烯醇,或聚丙烯甲酸酯,或羧甲基纤维素钠,或其中两种或三种的混合物;其加入量以溶剂或水的质量为基准,加入的质量百分比为1%-5%。
5.根据权利要求1所述的陶瓷复合膜的制备方法,其特征在于所指的多孔陶瓷支撑体为氧化铝陶瓷,或氧化硅陶瓷,或氧化钛陶瓷,或氧化锆陶瓷,或两种或多种的混合陶瓷;其孔径范围为1μm-15μm。
6.根据权利要求1所述的陶瓷复合膜的制备方法,其特征在于所指的抽负压范围为0.01-0.1MPa,浸浆时间为10-300s。
7.根据权利要求1所述的陶瓷复合膜的制备方法,其特征在于耐高温抗氧化材料为耐高温碳材料,或耐高温陶瓷材料,或其他耐高温、耐氧化非金属材料及复合材料。
8.根据权利要求1所述的陶瓷复合膜的制备方法,其特征在于所指的含氧气氛为空气,或氧气,或其它含有氧气的气氛环境;其氧化温度为400-900℃,氧化时间为1-20小时。
CN201710314526.0A 2017-05-06 2017-05-06 一种陶瓷复合膜的制备方法 Active CN107008158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710314526.0A CN107008158B (zh) 2017-05-06 2017-05-06 一种陶瓷复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710314526.0A CN107008158B (zh) 2017-05-06 2017-05-06 一种陶瓷复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN107008158A true CN107008158A (zh) 2017-08-04
CN107008158B CN107008158B (zh) 2020-04-03

Family

ID=59449481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710314526.0A Active CN107008158B (zh) 2017-05-06 2017-05-06 一种陶瓷复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN107008158B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171690A (zh) * 2021-04-09 2021-07-27 西部宝德科技股份有限公司 一种盘式多孔金属膜的制备方法
CN115028473A (zh) * 2022-05-06 2022-09-09 深圳市吉迩技术有限公司 覆有金属涂层的多孔陶瓷的制备方法及气溶胶生成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985084A (zh) * 2010-11-18 2011-03-16 南京工业大学 一种陶瓷Ti-Al合金复合膜的制备方法
CN104099557A (zh) * 2014-07-21 2014-10-15 兰州理工大学 无缺陷多孔陶瓷/Ti-Al合金复合膜的制备方法
CN105854633A (zh) * 2016-05-27 2016-08-17 成都易态科技有限公司 多孔薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985084A (zh) * 2010-11-18 2011-03-16 南京工业大学 一种陶瓷Ti-Al合金复合膜的制备方法
CN104099557A (zh) * 2014-07-21 2014-10-15 兰州理工大学 无缺陷多孔陶瓷/Ti-Al合金复合膜的制备方法
CN105854633A (zh) * 2016-05-27 2016-08-17 成都易态科技有限公司 多孔薄膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171690A (zh) * 2021-04-09 2021-07-27 西部宝德科技股份有限公司 一种盘式多孔金属膜的制备方法
CN115028473A (zh) * 2022-05-06 2022-09-09 深圳市吉迩技术有限公司 覆有金属涂层的多孔陶瓷的制备方法及气溶胶生成装置
CN115028473B (zh) * 2022-05-06 2024-02-09 深圳市吉迩技术有限公司 覆有金属涂层的多孔陶瓷的制备方法及气溶胶生成装置

Also Published As

Publication number Publication date
CN107008158B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
JP5182648B2 (ja) 多孔質アルミニウム焼結体の製造方法
Rak et al. Porous titanium foil by tape casting technique
TWI493581B (zh) Electrode material for electrolytic capacitor and its manufacturing method
CN106041101A (zh) 一种复合金属多孔管及其制备方法
TW201539502A (zh) 鋁電解電容器用電極箔及其製造方法
CN111020329B (zh) 一种基于W-Fe-C体系腐蚀法制备多孔钨材料的方法
CN109745870A (zh) 一种多孔金属膜的制备方法
JP6177132B2 (ja) カーボンナノホーンを含む多孔質材料及びその利用
CN107008158A (zh) 一种陶瓷复合膜的制备方法
JP2006138005A (ja) 圧縮強度に優れたチタンまたはチタン合金スポンジ状焼結体
TW201303938A (zh) 鋁電解電容器用電極材及其製造方法
JP5976354B2 (ja) 多孔質焼結金属およびその製造方法
Mercadelli et al. Stainless steel porous substrates produced by tape casting
JP2007301514A (ja) 水素分離材及びその製造方法
TW477725B (en) Ambient temperature method for increasing the green strength of parts and articles made by consolidating powder, particulate, sheet or foil materials
CN104069741A (zh) 透氢钯复合膜制备中缺陷的修补方法
CN107051223A (zh) 一种高稳定陶瓷复合膜的制备方法
CN108147793A (zh) 一种梯度多孔陶瓷膜的制备方法
CN102389715B (zh) 炭骨架辅助的粒子烧结工艺制备多孔无机膜的方法
CN109055933B (zh) 一种粉体液相等离子表面改性方法及其装置
CN105771681A (zh) 一种多孔载体表面多孔陶瓷层及其制备方法
JP2014109049A (ja) チタン多孔体の製造方法
CN105021074B (zh) 一种具微纳尺度超亲水铜表面结构的铜热管及其制备方法
JP2014126501A (ja) 放射性セシウムの吸着材およびその製造方法
CN113737171A (zh) 一种多孔钽膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant