CN106984324B - 可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法 - Google Patents

可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法 Download PDF

Info

Publication number
CN106984324B
CN106984324B CN201710220819.2A CN201710220819A CN106984324B CN 106984324 B CN106984324 B CN 106984324B CN 201710220819 A CN201710220819 A CN 201710220819A CN 106984324 B CN106984324 B CN 106984324B
Authority
CN
China
Prior art keywords
photochemical catalyst
visible
preparation
acid copper
vanadic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710220819.2A
Other languages
English (en)
Other versions
CN106984324A (zh
Inventor
王平
杨姮妍
王现英
杨俊和
孙峰
苏文强
冯召付
李慧珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710220819.2A priority Critical patent/CN106984324B/zh
Publication of CN106984324A publication Critical patent/CN106984324A/zh
Application granted granted Critical
Publication of CN106984324B publication Critical patent/CN106984324B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法,称取NH4VO3固体,溶解于去离子水中,获得NH4VO3水溶液;称取Cu(NO3)2·3H2O固体,溶解于上述NH4VO3水溶液中;将溶液转移到高压反应釜中,再将反应釜置于高温干燥箱中;反应结束后冷至室温,用循环水式多用真空泵过滤样品,用去离子水充分洗涤过滤,干燥过夜;将充分干燥后的样品研磨,得到水热法制备的可见光响应型笼型结构钒酸铜水合物光催化剂。本发明制备的光催化剂可作为产氧剂用于可见光下分解水产氧,其产氧量远远高于目前所熟知的其他产氧剂。本发明制备方法简单,成本低,光催化性能优异,可应用于能源转换及环境治理等领域。

Description

可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法
技术领域
本发明化工领域,涉及一种光催化剂,具体来说是一种可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法。
背景技术
随着环境污染和能源危机日益加剧,环境治理和可再生能源利用受到广泛关注。其中光催化技术具有操作简单、绿色无污染、可直接转化利用太阳能等优点,成为当代化学与材料研究领域热点之一。而传统光催化材料TiO2,由于其能带隙过大(3.2eV左右)导致其只在紫外光激发下才具有光催化活性,紫外光部分能量仅占太阳能总能量约4%,而未利用的可见光能量占43%左右,因此开发出高效稳定的可见光响应光催化剂成为了光催化领域的研究热点。
过渡金属钒酸盐材料,包括BiVO4、Cu3V2O8、InVO4、Ag3VO4和Ag2V4O11等,一直以来在电催化和锂电池等领域都有着极为广泛的应用。其中,Cu3V2O7(OH)2·2H2O水钒铜矿作为一种天然矿产,自从被人类发现以来,大多数研究均基于其结构和磁性的性质研究,以及钠离子电池和超级电容器领域的应用研究。迄今为止,有关Cu3V2O7(OH)2·2H2O光催化性能的研究未见报道,尤其是光解水产氧方面。基于其笼型晶格结构特性,Cu3V2O7(OH)2·2H2O极可能是一种极具潜力的光催化材料,因此探究Cu3V2O7(OH)2·2H2O可见光催化性能具有一定的研究价值,此外,明晰Cu3V2O7(OH)2·2H2O的光催化活性与其特殊晶体结构之间的构-效关系有助于解释材料光催化机制。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法,所述的这种可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法要解决现有技术中的光催化剂可见光光催化效果不佳的技术问题。
本发明提供了一种可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法,包括如下步骤:
1)称取NH4VO3固体,溶解于70~90℃去离子水中,搅拌至NH4VO3溶解完全,获得浓度为0.04~0.08mol/L的NH4VO3水溶液;
2)称取Cu(NO3)2·3H2O固体,溶解于上述NH4VO3水溶液中,所述的NH4VO3与Cu(NO3)2·3H2O的摩尔之比为2:3,搅拌至Cu(NO3)2·3H2O溶解完全;
3)将溶液转移到高压反应釜中,再将反应釜置于高温干燥箱中,反应温度为180℃,反应时间为8h,反应时间从升温到180℃开始计时;
4)反应结束后取出反应釜,空气中冷至室温,用循环水式多用真空泵过滤样品,用去离子水充分洗涤过滤,放入80℃真空干燥箱中过夜干燥;
5)将充分干燥后的样品研磨,得到水热法制备的可见光响应型笼型结构钒酸铜水合物光催化剂。
进一步的,步骤1)中离子水的温度为80℃。
本发明还提供了上述制备的光催化剂用于可见光催化降解有机染料亚甲基蓝中。
本发明还提供了上述制备的光催化剂用于催化分解水产氧剂中。
本发明以NH4VO3和Cu(NO3)2·3H2O为原料,在高温干燥箱中反应温度为180℃的条件下,水热8h制备出笼型结构钒酸铜水合物光催化剂,再以亚甲基蓝为目标有机污染物,通过测试黑暗条件下亚甲基蓝被光催化剂吸附后其吸光度随时间变化情况表征光催化材料的亚甲基蓝吸附性能;再在可见光照射下(λ>420nm),通过计算亚甲基蓝降解速率表征其可见光光催化活性。本发明采用简单水热处理制备Cu3V2O7(OH)2·2H2O光催化剂具有极强的亚甲基蓝吸附性能及优异可见光亚甲基蓝降解和分解水产氧活性。
本发明制备的V基光催化剂HT在可见光下具有高光催化活性,可见光(>420nm)下催化80min时,HT对亚甲基蓝(50ppm)的降解率已经达到90%,其光催化降解有机污染物亚甲基蓝活性远高于其他焙烧或共沉淀制备的V基样品。本发明制备的V基光催化剂HT还可作为产氧剂用于可见光下分解水产氧,其产氧量远远高于目前所熟知的其他产氧剂。综合来看,该样品制备方法简单,成本低,光催化性能优异,可应用于能源转换及环境治理等领域。
本发明和已有技术相比,其技术进步是显著的。以亚甲基蓝为目标污染物,在可见光激发下(λ>420nm),使用水热法制备的HT可见光催化剂具有优于CP、CC-200、CC-250、CC-300、CP-2000、P25等样品的强物理吸附性能和可见光催化降解活性;在可见光激发下,所制备的HT光催化剂产氧效果要优于BiVO4、WO3、g-C3N4等目前常见产氧光催化剂;而且Cu3V2O7(OH)2·2H2O是一种天然矿产,在自然界中储量丰富,其实验室制备工艺简单,反应条件温和,合成成本低,有利于实现规模化生产,具有巨大的经济价值和社会价值。
附图说明
图1为采用本发明方法制备的笼型结构钒酸铜水合物光催化剂X射线衍射图。
图2为采用本发明方法制备的笼型结构钒酸铜水合物光催化剂扫描电镜图。
图3a为采用本发明方法制备的笼型结构钒酸铜水合物光催化剂黑暗条件下对亚甲基蓝(50ppm)的吸附-时间曲线。
图3b为采用本发明方法制备的笼型结构钒酸铜水合物光催化剂可见光照射下(λ>420nm)对亚甲基蓝(50ppm)的光催化降解-时间曲线。
图4为采用本发明方法制备的笼型结构钒酸铜水合物光催化剂可见光照射下(λ>420nm)在不同硝酸钴负载量时光催化分解水产氧速率。
具体实施方式
以下用实例对本发明作进一步说明,但不限于此。
实施例1:
笼型结构钒酸铜水合物光催化剂制备具体步骤:
(1)称取0.2808g(0.0024mol)NH4VO3固体,溶解于40ml 80℃去离子水中,搅拌至NH4VO3溶解完全,获得浓度为0.06mol/L的NH4VO3水溶液;
(2)称取0.8698g(0.0036mol)Cu(NO3)2·3H2O固体,溶解于上述NH4VO3水溶液中,搅拌至Cu(NO3)2·3H2O溶解完全;
(3)将溶液用循环水式多用真空泵过滤,用去离子水充分洗涤过滤固体,放入80℃真空干燥箱中过夜干燥,将充分干燥后的样品研磨,获得共沉淀法制备的Cu3V2O7(OH)2·2H2O样品(简称CP);
(4)将溶液转移到高压反应釜中,再将反应釜置于高温干燥箱中,反应温度为180℃,反应时间为8h(从升温到180℃开始计时);
(5)反应结束后立马取出反应釜,空气中冷至室温。用循环水式多用真空泵过滤样品,用去离子水充分洗涤过滤,放入80℃真空干燥箱中过夜干燥;
(6)将充分干燥后的样品研磨,得到水热法制备的Cu3V2O7(OH)2·2H2O样品(简称HT);
(7)将水热法制备的纯相Cu3V2O7(OH)2·2H2O样品,在持续通入氩气的管式炉中分别焙烧200℃、250℃、300℃,获得样品分别标记为CC-200、CC-250、CC-300。
(8)将共沉淀法制备的纯相Cu3V2O7(OH)2·2H2O样品,在持续通入氩气的管式炉中焙烧200℃,获得样品标记为CP-200。
图1为笼型结构钒酸铜水合物光催化剂X射线衍射图,由图1可知,按照上述步骤,可以制备出纯相高结晶度的笼型结构钒酸铜水合物。图2为笼型结构钒酸铜水合物光催化剂扫描电镜图,由图2可知,按照上述步骤制备出的可见光响应型笼型结构钒酸铜水合物光催化剂有着不同的微观形貌。
实施例2:高效V基可见光催化剂性能分析
分别取10mg HT、CP、CC-200、CC-250、CC-300、CP-2000、P25样品粉末,加入到50ml50ppm的亚甲基蓝溶液中,在黑暗条件下搅拌溶液直至催化剂吸附-脱附平衡,并在吸附0min、10min、30min、60min、90min、150min时,在以上6种溶液中分别取3ml,除去光催化剂后测试亚甲基蓝溶液的吸光度;
吸附-脱附平衡后,打开已装有滤光片(λ>420nm)的光催化反应仪汞灯(500W),在可见光条件下照射溶液直至亚甲基蓝降解完全,同时在0min、1min、3min、5min、10min、20min、50min、80min、140min时,在以上6种溶液中分别取X ml,除去光催化剂后测试亚甲基蓝溶液的吸光度,对比6种样品的可见光催化降解性能。
图3(a)为黑暗条件下笼型结构钒酸铜水合物光催化剂对亚甲基蓝(50ppm)的吸附-时间曲线;图3(b)可见光照射下(λ>420nm)笼型结构钒酸铜水合物光催化剂对亚甲基蓝(50ppm)的光催化降解-时间曲线。由图3可知,以亚甲基蓝为目标污染物,在可见光激发下(λ>420nm),使用水热法制备的HT可见光催化剂具有优于CP、CC-200、CC-250、CC-300、CP-2000、P25等样品的强物理吸附性能和可见光催化降解活性,同时HT黑暗条件下吸附脱附污染物的活性也为最佳。
实施例3
取50mg HT、BiVO4、WO3、g-C3N4样品,分别分散于50ml去离子水中,在获得的4种溶液中继续加入20mg NaIO3作为牺牲剂。在容器中充分搅拌溶液,并使用高纯氮气赶走溶液和容器中的空气。在保证良好气密性的容器中,在可见光条件下照射溶液(λ>420nm);
可见光照射1h后,测量不同溶液单位小时产氧量,并分别在光催化剂上负载0wt%硝酸钴,于2h后测量不同溶液单位小时产氧量。继续负载0.4wt%硝酸钴,于3h后测量不同溶液单位小时产氧量。继续负载1.2wt%硝酸钴,于4h后测量不同溶液单位小时产氧量。继续负载2.0wt%硝酸钴,于5h后测量不同溶液单位小时产氧量。最后负载3.0wt%硝酸钴,于6h后测量不同溶液单位小时负氧量。对比4种样品的可见光催化产氧性能,确定V基可见光催化剂上硝酸钴的最优负载比例。
硝酸钴在HT光催化剂上的负载比例为2.0wt%时,HT样品的可见光催化产氧效果最好。
图4为可见光照射下(λ>420nm)笼型结构钒酸铜水合物光催化剂在不同硝酸钴负载量时光催化分解水产氧速率,由图4可知,在可见光激发下,所制备的HT光催化剂产氧效果要优于BiVO4、WO3、g-C3N4等目前常见产氧光催化剂。
上述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所做的任何等效变换,均应属本发明的保护范围。

Claims (4)

1.一种可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法,其特征在于包括如下步骤:
1)称取NH4VO3固体,溶解于70~90℃去离子水中,搅拌至NH4VO3溶解完全,获得浓度为0.04~0.08 mol/L的NH4VO3水溶液;
2)称取Cu(NO3)2·3H2O固体,溶解于上述NH4VO3水溶液中,所述的NH4VO3与Cu(NO3)2·3H2O的摩尔之比为2:3,搅拌至Cu(NO3)2·3H2O溶解完全;
3)将溶液转移到高压反应釜中,再将反应釜置于高温干燥箱中,反应温度为180℃,反应时间为8 h,反应时间从升温到180℃开始计时;
4)反应结束后取出反应釜,空气中冷至室温,用循环水式多用真空泵过滤样品,用去离子水充分洗涤过滤,放入80℃真空干燥箱中过夜干燥;将充分干燥后的样品研磨,将充分干燥后的样品研磨,得到水热法制备的可见光响应型笼型结构钒酸铜水合物光催化剂。
2.根据权利要求 1 所述一种可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法,其特征在于:步骤1)中去离子水的温度为80℃。
3.权利要求1制备的光催化剂用于可见光催化降解有机染料亚甲基蓝中。
4.权利要求1制备的光催化剂用于催化分解水产氧。
CN201710220819.2A 2017-04-06 2017-04-06 可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法 Expired - Fee Related CN106984324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710220819.2A CN106984324B (zh) 2017-04-06 2017-04-06 可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710220819.2A CN106984324B (zh) 2017-04-06 2017-04-06 可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN106984324A CN106984324A (zh) 2017-07-28
CN106984324B true CN106984324B (zh) 2018-04-17

Family

ID=59414822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710220819.2A Expired - Fee Related CN106984324B (zh) 2017-04-06 2017-04-06 可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106984324B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372035A (zh) * 2019-08-29 2019-10-25 中北大学 一种钒酸铜纳米带及其制备方法
CN112791730B (zh) * 2021-01-11 2021-11-19 中南大学 一种z型纳米钒酸铜基复合光催化剂及其制备方法和应用
CN113295744B (zh) * 2021-04-30 2022-03-11 广东省科学院测试分析研究所(中国广州分析测试中心) 一种基于CuV2O6的光电传感器及其在精氨酸检测中的应用
CN114289035B (zh) * 2021-12-28 2023-04-11 中南大学 一种银掺杂钒酸铜复合光催化材料及其制备方法和作为还原二氧化碳光催化剂的应用
CN115043429A (zh) * 2022-06-24 2022-09-13 重庆镁储新材料科技有限公司 一种层状羟基焦钒酸铜正极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492723C (zh) * 2007-04-11 2009-05-27 南开大学 过渡金属钒酸盐一维纳米电极材料的制备方法及其应用
CN102942221A (zh) * 2012-11-14 2013-02-27 陕西科技大学 一种水热合成法制备棒状Fe4(VO4)4·5H2O 微晶的方法
CN104638241B (zh) * 2015-02-06 2017-01-11 武汉理工大学 石墨烯包覆的无定型纳米花钒酸铜及其制备方法和应用
CN106367773B (zh) * 2016-09-23 2018-08-17 上海应用技术大学 一种钒酸铜的制备方法

Also Published As

Publication number Publication date
CN106984324A (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
CN106984324B (zh) 可见光响应型笼型结构钒酸铜水合物光催化剂的制备方法
CN104525266B (zh) 一种金属有机骨架材料光催化剂的制备方法与应用
Li et al. Composite Si-O-metal network catalysts with uneven electron distribution: Enhanced activity and electron transfer for catalytic ozonation of carbamazepine
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
CN104324733B (zh) 无贵金属高活性光解水制氢催化剂的制备方法
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN113457711B (zh) 一种石墨相氮化碳负载镁单原子复合材料及其制备方法、光催化制备过氧化氢的方法
CN109821528A (zh) 一种Bi/ZnO纳米异质材料及其制备方法与应用
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
CN108355647A (zh) 一种锰基氧化物催化剂
Gu et al. Facile interface engineering of hierarchical flower spherical-like Bi-metal–organic framework microsphere/Bi2MoO6 heterostructure for high-performance visible–light photocatalytic tetracycline hydrochloride degradation
CN105148964B (zh) 一种三维还原氧化石墨烯‑Mn3O4/MnCO3纳米复合材料及其制备方法
CN109225222B (zh) 一种复合光催化剂及其应用
CN109174145A (zh) 一种碳化二钼/二氧化钛复合光催化剂及其制备方法和应用
CN110465318A (zh) 一种碳量子点负载中空多孔氮化碳球复合光催化剂及其制备方法和应用
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
CN101433833B (zh) 一种钽掺杂氧化锌纳米粉末光催化剂,其制备方法及应用
CN107670697B (zh) 可见光催化环己烷选择性氧化的催化剂及其制备方法
Mei et al. Facilely fabrication of the direct Z-scheme heterojunction of NH2-UiO-66 and CeCO3OH for photocatalytic reduction of CO2 to CO and CH4
CN106362742A (zh) 一种Ag/ZnO纳米复合物及其制备方法和应用
CN113893840B (zh) 一种复合光催化剂、制备方法及在染料废水中的应用
CN106111179B (zh) 一种小尺寸氮掺杂石墨烯光催化剂及其制备方法和应用
CN112495400B (zh) 一种具有S空位的SnS2纳米片的制备及其在光降解Cr(Ⅵ)上的应用
CN109621971A (zh) 一种Fe基三元复合可见光催化剂及制备方法和应用
Wang et al. Enhanced photocatalytic performance and stability of multi-layer core-shell nanocomposite C@ Pt/MoS2@ CdS with full-spectrum response

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180417

Termination date: 20210406