CN106978531A - 酸碱联合分解混合型稀土精矿的方法 - Google Patents

酸碱联合分解混合型稀土精矿的方法 Download PDF

Info

Publication number
CN106978531A
CN106978531A CN201710152283.5A CN201710152283A CN106978531A CN 106978531 A CN106978531 A CN 106978531A CN 201710152283 A CN201710152283 A CN 201710152283A CN 106978531 A CN106978531 A CN 106978531A
Authority
CN
China
Prior art keywords
rare earth
concentrate
thorium
slag
mixed rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710152283.5A
Other languages
English (en)
Other versions
CN106978531B (zh
Inventor
崔建国
王哲
侯睿恩
张丽
郝肖丽
高婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Rare Earth Research Institute
Santoku Corp
Original Assignee
Baotou Rare Earth Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Rare Earth Research Institute filed Critical Baotou Rare Earth Research Institute
Priority to CN201710152283.5A priority Critical patent/CN106978531B/zh
Publication of CN106978531A publication Critical patent/CN106978531A/zh
Application granted granted Critical
Publication of CN106978531B publication Critical patent/CN106978531B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种酸碱联合分解混合型稀土精矿的方法,包括:将混合稀土精矿与质量百分含量>92%浓硫酸按比例混合,混合物在120‑180℃下焙烧分解150‑300min;水浸液经过中和后,形成磷铁钍渣和硫酸稀土溶液;含磷矿物和磷铁钍渣与质量百分含量为45%‑70%的氢氧化钠溶液按照混合精矿与氢氧化钠重量比为1:0.1‑0.2,在130‑180℃下分解;碱解矿经过洗涤、盐酸溶解、中和除杂后形成酸溶渣、铁钍渣和氯化稀土溶液。本发明大幅降低酸、碱、能源消耗,解决三废污染问题,并综合回收氟、磷、钍等有价资源。

Description

酸碱联合分解混合型稀土精矿的方法
技术领域
本发明涉及一种湿法冶金技术,具体说,涉及一种酸碱联合分解混合型稀土精矿的方法。
背景技术
产业化的混合型稀土精矿分解技术主要有浓硫酸高温焙烧分解工艺和浓碱液常压分解工艺。每年约有10万吨REO品位为50%的稀土精矿(以下简称“50精矿”)采用浓硫酸高温分解工艺处理,由于工艺产出大量的高温混合酸性尾气(SO2、SO3、H2SO4、HF、SIF4),转型硫酸盐废水和放射性废渣均难以处理,导致整个环保处理工程体系庞大。另外,每年约有2万吨的60精矿采用浓碱液分解工艺处理,该工艺氢氧化钠消耗量大,产出的盐酸除钙废水和混合钠盐废水(NaOH、Na3PO4、NaF、Na2CO3、Na2SO4和NaCl)资源回收难度大,只能简单的相互中和后达标排海,造成氟、磷等资源浪费。鉴于上述原因,国内许多学者开展新型冶炼技术的开发。
申请号:200510063032.7的专利文献公开了一种分步法硫酸稀土焙烧分解包头稀土精矿,将1.1-1.4:1的浓硫酸与包头精矿混合后,先在100-320℃条件下焙烧1-7小时,尾气喷淋吸收;然后将固体无聊在600-680℃条件下,焙烧1-4小时,产生的尾气用80-92%的浓硫酸吸收,剩余气体再用冷却水喷淋吸收。存在的问题是精矿与硫酸混合后,分别在两个炉窑内进行,分别采用了两套尾气吸收系统,操作复杂;且没用充分应用硫酸与精矿反应过程机理,整体酸耗较高;形成大量酸性尾气经吸收、浓缩分离处理,能耗高。
专利号:201110221839.4的专利文献公开了一种白云鄂博稀土精矿制备氯化稀土的新方法,以高品位稀土精矿(REO品位为60-68%)为原料,将处理四川氟碳铈矿的氧化焙烧工艺与浓碱液工艺结合。先将混合型精矿中氟碳铈矿氧化焙烧,盐酸提取非铈三价稀土,再用浓碱液分解提取剩余四价铈和独居石矿物。但存在的问题是碱废水含有NaOH、Na3PO4、NaF和NaCl等组成,分离难度大,碱消耗量依然偏高等问题。
申请号:201310018072.4的专利文献公开了一种分解包头稀土矿的工艺方法,申请号:201510571527.4的专利文献公开了一种从包头稀土矿硫酸浸出液中萃取分离铈、氟、磷的方法。同样将氧化焙烧工艺与浓碱液工艺结合,与上述工艺不同之处是氧化焙烧后的矿物采用了硫酸全溶技术获得四价铈与其他三价稀土的混合硫酸稀土溶液,再优先萃取四价铈与氟、磷形成的络合物制取氟化铈和磷酸铈混合产品。虽然碱消耗量有所下降,但同样存在混合钠盐废水以及混合铈盐产品应用开发等难题。因此,上述工艺均存在氟、磷资源没有综合利用,碱耗高,成本高等问题。
发明内容
本发明所解决的技术问题是提供一种酸碱联合分解混合型稀土精矿的方法,大幅降低酸、碱、能源消耗,解决三废污染问题,并综合回收氟、磷、钍等有价资源。
技术方案如下:
一种酸碱联合分解混合型稀土精矿的方法,包括:
将混合稀土精矿与质量百分含量>92%浓硫酸按比例混合,混合物在120-180℃下焙烧分解150-300min;
水浸液经过中和后,形成磷铁钍渣和硫酸稀土溶液;
含磷矿物和磷铁钍渣与质量百分含量为45%-70%的氢氧化钠溶液按照混合精矿与氢氧化钠重量比为1:0.1-0.2,在130-180℃下分解;
碱解矿经过洗涤、盐酸溶解、中和除杂后形成酸溶渣、铁钍渣和氯化稀土溶液。
进一步:水浸液经过中和后,形成磷铁钍渣和REO浓度为35-50g/L的硫酸稀土溶液。
进一步:将REO≥50%、CaO≤12%和SiO2≤1.5%的混合稀土精矿与质量百分含量>92%的浓硫酸按照重量比为1:0.6-0.9的比例混合。
进一步:浓硫酸优先分解精矿中含氟矿物,分解后尾气出口温度≤100℃,尾气中包含氟化氢,F/Si质量比≥80,F/S质量比≥120,吸收后形成单一氢氟酸副产品。
进一步:焙烧矿用水提取稀土形成的水浸渣含有硫酸钙与未分解的含磷矿物,硫酸钙颗粒平均粒径在0.5-2.0um,未分解含磷矿物颗粒平均粒径在10-40um;利用硫酸钙颗粒与含磷矿物颗粒之间的平均粒径、相对密度差异分离为硫酸钙废渣和含磷矿物。
进一步:氢氧化钠分解后的碱废水经冷却至30-50℃,结晶出磷酸三钠副产品,剩余碱溶液继续分解含磷矿物和磷铁钍渣。
进一步:废水循环至一定程度后,浓缩结晶得到粗硫酸钠,余液补充氢氧化钠后继续参与矿物分解。
进一步:磷铁钍渣包括磷酸铁、磷酸钍、氢氧化铁、氢氧化钍和氢氧化稀土,用硫酸洗涤回收稀土。
进一步:磷铁钍渣用氢氧化钠溶液分解回收磷酸钠副产品。
进一步:粗硫酸钠为硫酸钠与氟化钠的混合晶体,混合晶体用水溶解后利用溶解度差异继续浓缩分级析出硫酸钠和氟化钠副产品。
与现有技术相比,本发明技术效果包括:
本发明在远低于浓硫酸分解温度的条件下,采用少量浓硫酸优先分解混合型稀土精矿中氟碳铈矿,将尾气成为单一化为氟化氢气体回收氟资源。又利用反应生成硫酸钙与未分解含磷矿物之间平均粒径和密度等差异分离硫酸钙,得到含磷矿物。进一步采用碱液处理该矿物回收稀土,使得碱废水成为以氢氧化钠和磷酸三钠为主的废水,再利用溶解度差异实现磷资源回收和剩余碱液的循环利用。从而大幅降低酸、碱、能源消耗,解决三废污染问题,并综合回收氟、磷、钍等有价资源。
(1)本发明方法对混合型稀土矿物采用了分步分解技术,充分结合了低温酸法和浓碱液分解工艺的技术优点,规避了两工艺的技术缺陷,该技术对精矿稀土品位适应性强。
(2)本发明方法焙烧温度较现有低温焙烧工艺温度更低,降低了硫酸酸耗和焙烧能耗,并纯化了酸性尾气成分,综合回收了精矿中的氟资源,简化了尾气处理程序。
(3)本发明方法利用反应生成硫酸钙与未分解含磷矿物之间平均粒径和密度等物理性质差异实现物质分离,减少了因化学分离带来的物耗、能耗,以及对环境的危害,降低了成本,减少了稀土损失。
(4)本发明方法将磷铁钍渣与含磷矿物合并进行碱分解,充分回收了精矿中的磷资源,实现了碱废水的循环再利用,最大程度的降低了单位矿物的碱耗成本。
附图说明
图1是本发明中酸碱联合分解混合型稀土精矿的方法的工艺流程图。
具体实施方式
下面参考示例实施方式对本发明技术方案作详细说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
如图1所示,是本发明中酸碱联合分解混合型稀土精矿的方法的工艺流程图。
酸碱联合分解混合型稀土精矿的方法,具体如下:
步骤1:将REO≥50%,CaO≤12%和SiO2≤1.5%的混合稀土精矿(钙和硅杂质含量越低,稀土含量越高的精矿对工艺的适应性越好)与质量百分含量>92%的浓硫酸按照重量比为1:0.6-0.9的比例混合;
步骤2:混合物在120-180℃下焙烧分解150-300min;
浓硫酸优先分解精矿中含氟矿物(氟碳铈矿),使得含氟矿物的分解率≥92%。分解后尾气出口温度≤100℃,主要有价成分为氟化氢,几乎不产生硫氧化物和氟化硅等杂质气体,F/Si质量比≥80;F/S质量比≥120,吸收后形成单一氢氟酸副产品。
步骤3:水浸液经过中和后,形成磷铁钍渣和REO浓度为35-50g/L的硫酸稀土溶液;
焙烧矿用水提取稀土形成的水浸渣主要由反应生成的硫酸钙与未分解的含磷矿物组成,硫酸钙颗粒平均粒径在0.5-2.0um,未分解含磷矿物颗粒平均粒径在10-40um。利用硫酸钙颗粒与含磷矿物颗粒之间的平均粒径、相对密度等性质差异分离为硫酸钙废渣和含磷矿物。
步骤4:含磷矿物和磷铁钍渣与质量百分含量为45%-70%的氢氧化钠溶液按照混合精矿与氢氧化钠重量比为1:0.1-0.2,在130-180℃下分解;
分解后的碱废水经冷却至30-50℃,结晶出磷酸三钠副产品,剩余碱溶液继续分解含磷矿物和磷铁钍渣。待该废水循环至一定程度后,浓缩结晶得到粗硫酸钠,余液补充氢氧化钠后继续参与矿物分解。磷铁钍渣由磷酸铁、磷酸钍、氢氧化铁、氢氧化钍和氢氧化稀土等组成,可以用硫酸洗涤回收稀土;也可以用氢氧化钠溶液分解回收磷酸钠副产品。
粗硫酸钠为硫酸钠与氟化钠的混合晶体。该混合物用水溶解后,可以利用溶解度差异继续浓缩分级析出硫酸钠和氟化钠副产品,也可以加入石灰进行苛化,生成氢氧化钠溶液,回用至碱分解过程中。
步骤5:碱解矿经过洗涤、盐酸溶解、中和除杂后形成少许酸溶渣、铁钍渣和氯化稀土溶液。
实施例1
将200g的REO为52.3%,CaO为11.6%和SiO2为1.4%的混合稀土精矿与180g质量百分含量为92.5%的工业硫酸混合,在150℃下分解240min,氟的分解率为94%。尾气出口温度为60℃,尾气吸收液中F/Si质量比为82;F/S质量比为123,为单一氢氟酸副产品。焙烧矿水浸形成的水浸渣利用重力沉降差异分离为68.6g硫酸钙废渣与37.5g含磷矿物;水浸液经过中和形成磷铁钍渣和REO浓度为36g/L硫酸稀土溶液。其中,磷铁钍渣用0.2mol/L硫酸溶液洗涤回收稀土,洗涤液用于焙烧矿水浸,剩余铁钍渣为含钍放射性废渣。
取35g含磷矿物、20g氢氧化钠配置成质量百分含量为50%氢氧化钠溶液,在140℃下分解6小时。碱解矿经过水洗涤、盐酸溶解形成酸溶渣,中和除杂形成放射性铁钍渣和氯化稀土溶液。碱废水冷却至40℃,结晶出纯度为98%的磷酸三钠副产品,剩余碱溶液继续分解含磷矿物和磷铁钍渣。废水循环5次后,浓缩结晶6.4g得到含氟化钠的粗硫酸钠,余液补充氢氧化钠后继续参与矿物分解。粗硫酸钠用水溶解后,利用溶解度岁温度变化差异浓缩分级析出硫酸钠和氟化钠副产品。
实施例2
将200g的REO为59.4%,CaO为7.3%和SiO2为0.64%的混合稀土精矿与150g质量百分含量为92.5%的工业硫酸混合,在120℃下分解300min,氟的分解率为93.6%。尾气出口温度为50℃,尾气吸收液中F/Si质量比为95;F/S质量比为128,为单一氢氟酸副产品。焙烧矿水浸形成的水浸渣利用重力沉降差异分离为39.2g硫酸钙废渣与42.7g含磷矿物,硫酸钙废渣平均粒径在0.8um,未分解含磷矿物颗粒平均粒径在23um。;水浸液经过中和形成磷铁钍渣和REO浓度为40.1g/L硫酸稀土溶液。
取40g含磷矿物、30g氢氧化钠配置成质量百分含量为60%氢氧化钠溶液,在150-160℃下分解2.5小时。碱解矿经过水洗涤、盐酸溶解形成酸溶渣,中和除杂形成放射性铁钍渣和氯化稀土溶液。碱废水冷却至30℃,结晶出纯度为98%的磷酸三钠副产品,剩余碱溶液继续分解含磷矿物和磷铁钍渣。废水循环6次后,浓缩结晶6.2g得到含氟化钠的粗硫酸钠,余液补充氢氧化钠后继续参与矿物分解。粗硫酸钠加入4.0g石灰在90℃进行苛化1.5小时,过滤得到氢氧化钠溶液回用至碱分解过程。
实施例3
将200g的REO为64.1%,CaO为4.66%和SiO2为0.52%的混合稀土精矿与135g质量百分含量为98.2%的工业硫酸混合,在160℃下分解180min,氟的分解率为95.2%。尾气出口温度为50-55℃,尾气吸收液中F/Si质量比为97;F/S质量比为121,为单一氢氟酸副产品。焙烧矿水浸形成的水浸渣利用重力沉降差异分离为27.2g硫酸钙废渣与46.7g含磷矿物,硫酸钙废渣平均粒径在0.7um,未分解含磷矿物颗粒平均粒径在20um。水浸液经过中和形成7.3g磷铁钍渣和REO浓度为48g/L硫酸稀土溶液。
取45g含磷矿物、5g磷铁钍渣和40g氢氧化钠配置成质量百分含量为70%氢氧化钠溶液,在170-180℃下分解1小时。碱解矿经过水洗涤、盐酸溶解形成酸溶渣,中和除杂形成放射性铁钍渣和氯化稀土溶液。碱废水冷却至50℃,结晶出纯度为98%的磷酸三钠副产品,剩余碱溶液继续分解含磷矿物和磷铁钍渣。废水循环5次后,浓缩结晶5.8g得到含氟化钠的粗硫酸钠,余液补充氢氧化钠后继续参与矿物分解。粗硫酸钠用水溶解后,利用溶解度岁温度变化差异浓缩分级析出硫酸钠和氟化钠副产品。
实施例4
将200g的REO为69.95%,CaO为0.57%和SiO2为0.32%的混合稀土化选精矿与120g质量百分含量为98.2%的工业硫酸混合,在180℃下分解120min,氟的分解率为95.7%。尾气出口温度为60-70℃,尾气吸收液中F/Si质量比为98;F/S质量比为120,为单一氢氟酸副产品。焙烧矿水浸形成的水浸渣利用重力沉降差异分离为5.2g硫酸钙废渣与32.6g含磷矿物,硫酸钙废渣平均粒径在0.7um,未分解含磷矿物颗粒平均粒径在18um。水浸液经过中和形成2.5g磷铁钍渣和REO浓度为42g/L硫酸稀土溶液。
取30g含磷矿物、2g磷铁钍渣和12g氢氧化钠配置成质量百分含量为60%氢氧化钠溶液,在150-160℃下分解2.5小时。碱解矿经过水洗涤、盐酸溶解形成酸溶渣,中和除杂形成放射性铁钍渣和氯化稀土溶液。碱废水冷却至40℃,结晶出纯度为98%的磷酸三钠副产品,剩余碱溶液继续分解含磷矿物和磷铁钍渣。废水循环8次后,浓缩结晶6.5g得到含氟化钠的粗硫酸钠,余液补充氢氧化钠后继续参与矿物分解。粗硫酸钠用水溶解后,利用溶解度岁温度变化差异浓缩分级析出硫酸钠和氟化钠副产品。
本发明所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (10)

1.一种酸碱联合分解混合型稀土精矿的方法,包括:
将混合稀土精矿与质量百分含量>92%浓硫酸按比例混合,混合物在120-180℃下焙烧分解150-300min;
水浸液经过中和后,形成磷铁钍渣和硫酸稀土溶液;
含磷矿物和磷铁钍渣与质量百分含量为45%-70%的氢氧化钠溶液按照混合精矿与氢氧化钠重量比为1:0.1-0.2,在130-180℃下分解;
碱解矿经过洗涤、盐酸溶解、中和除杂后形成酸溶渣、铁钍渣和氯化稀土溶液。
2.如权利要求1所述酸碱联合分解混合型稀土精矿的方法,其特征在于:水浸液经过中和后,形成磷铁钍渣和REO浓度为35-50g/L的硫酸稀土溶液。
3.如权利要求1所述酸碱联合分解混合型稀土精矿的方法,其特征在于:将REO≥50%、CaO≤12%和SiO2≤1.5%的混合稀土精矿与质量百分含量>92%的浓硫酸按照重量比为1:0.6-0.9的比例混合。
4.如权利要求1所述酸碱联合分解混合型稀土精矿的方法,其特征在于:浓硫酸优先分解精矿中含氟矿物,分解后尾气出口温度≤100℃,尾气中包含氟化氢,F/Si质量比≥80,F/S质量比≥120,吸收后形成单一氢氟酸副产品。
5.如权利要求1所述酸碱联合分解混合型稀土精矿的方法,其特征在于:焙烧矿用水提取稀土形成的水浸渣含有硫酸钙与未分解的含磷矿物,硫酸钙颗粒平均粒径在0.5-2.0um,未分解含磷矿物颗粒平均粒径在10-40um;利用硫酸钙颗粒与含磷矿物颗粒之间的平均粒径、相对密度差异分离为硫酸钙废渣和含磷矿物。
6.如权利要求1所述酸碱联合分解混合型稀土精矿的方法,其特征在于:氢氧化钠分解后的碱废水经冷却至30-50℃,结晶出磷酸三钠副产品,剩余碱溶液继续分解含磷矿物和磷铁钍渣。
7.如权利要求6所述酸碱联合分解混合型稀土精矿的方法,其特征在于:废水循环至一定程度后,浓缩结晶得到粗硫酸钠,余液补充氢氧化钠后继续参与矿物分解。
8.如权利要求6所述酸碱联合分解混合型稀土精矿的方法,其特征在于:磷铁钍渣包括磷酸铁、磷酸钍、氢氧化铁、氢氧化钍和氢氧化稀土,用硫酸洗涤回收稀土。
9.如权利要求6所述酸碱联合分解混合型稀土精矿的方法,其特征在于:磷铁钍渣用氢氧化钠溶液分解回收磷酸钠副产品。
10.如权利要求7所述酸碱联合分解混合型稀土精矿的方法,其特征在于:粗硫酸钠为硫酸钠与氟化钠的混合晶体,混合晶体用水溶解后利用溶解度差异继续浓缩分级析出硫酸钠和氟化钠副产品。
CN201710152283.5A 2017-03-15 2017-03-15 酸碱联合分解混合型稀土精矿的方法 Active CN106978531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710152283.5A CN106978531B (zh) 2017-03-15 2017-03-15 酸碱联合分解混合型稀土精矿的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710152283.5A CN106978531B (zh) 2017-03-15 2017-03-15 酸碱联合分解混合型稀土精矿的方法

Publications (2)

Publication Number Publication Date
CN106978531A true CN106978531A (zh) 2017-07-25
CN106978531B CN106978531B (zh) 2018-12-14

Family

ID=59339528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710152283.5A Active CN106978531B (zh) 2017-03-15 2017-03-15 酸碱联合分解混合型稀土精矿的方法

Country Status (1)

Country Link
CN (1) CN106978531B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774270A (zh) * 2017-10-17 2018-03-09 内蒙古科技大学 改性稀土精矿scr脱硝催化剂的制备方法
CN109022838A (zh) * 2018-09-14 2018-12-18 包头稀土研究院 含氟的稀土矿物颗粒的处理方法
CN109536746A (zh) * 2018-12-03 2019-03-29 包头稀土研究院 一种低钙高品位混合稀土精矿循环浆化分解的方法
CN111470526A (zh) * 2020-04-03 2020-07-31 安徽科安废盐资源化有限公司 一种利用工业废杂盐生产盐酸-液碱-复合材料的方法
CN114480835A (zh) * 2022-01-28 2022-05-13 包头稀土研究院 混合稀土精矿的分解方法和组合物的用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173050C (zh) * 2002-09-25 2004-10-27 包头稀土研究院 稀土精矿浓硫酸低温焙烧分解工艺
CN100348748C (zh) * 2004-12-15 2007-11-14 北京有色金属研究总院 从稀土矿中综合回收稀土和钍工艺方法
CN100519783C (zh) * 2006-11-23 2009-07-29 贵州蓝天科大矿业发展有限公司 对磷块岩矿综合利用清洁化生产及从中提取稀土的工艺
AU2008201945B2 (en) * 2008-05-02 2014-03-06 Arafura Resources Limited Recovery of rare earth elements
CN104404243B (zh) * 2014-12-12 2016-07-20 钢研集团稀土科技有限公司 一种酸碱联合低温分解低品位微山稀土精矿的方法
CN105543509A (zh) * 2016-01-04 2016-05-04 李梅 一种混合型稀土精矿或氟碳铈精矿制备氯化稀土的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774270A (zh) * 2017-10-17 2018-03-09 内蒙古科技大学 改性稀土精矿scr脱硝催化剂的制备方法
CN107774270B (zh) * 2017-10-17 2020-06-16 内蒙古科技大学 改性稀土精矿scr脱硝催化剂的制备方法
CN109022838A (zh) * 2018-09-14 2018-12-18 包头稀土研究院 含氟的稀土矿物颗粒的处理方法
CN109022838B (zh) * 2018-09-14 2020-03-06 包头稀土研究院 含氟的稀土矿物颗粒的处理方法
CN109536746A (zh) * 2018-12-03 2019-03-29 包头稀土研究院 一种低钙高品位混合稀土精矿循环浆化分解的方法
CN111470526A (zh) * 2020-04-03 2020-07-31 安徽科安废盐资源化有限公司 一种利用工业废杂盐生产盐酸-液碱-复合材料的方法
CN114480835A (zh) * 2022-01-28 2022-05-13 包头稀土研究院 混合稀土精矿的分解方法和组合物的用途
CN114480835B (zh) * 2022-01-28 2023-12-12 包头稀土研究院 混合稀土精矿的分解方法和组合物的用途

Also Published As

Publication number Publication date
CN106978531B (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN106978531B (zh) 酸碱联合分解混合型稀土精矿的方法
CN109517974B (zh) 从氟碳铈矿中综合回收稀土和氟的冶炼方法
CN111233003B (zh) 一种完全实现高氟二次铝灰资源化利用的酸碱联合工艺
CN103934258B (zh) 钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法
CN105039699B (zh) 锂云母固氟重构提取碱金属渣处理与资源化利用方法
CN101914679B (zh) 氟碳铈矿制备富镧氯化稀土的方法
CN102212674A (zh) 混合稀土精矿液碱焙烧资源综合回收工艺
CN101974678A (zh) 一种从锂云母矿中提取锂和其它碱金属元素的方法
CN109734115B (zh) 一种铝电解槽废旧阴极中氟浸出与回收的方法
CN101880782A (zh) 稀土冶炼资源化回收及循环生产的工艺方法
CN103103349B (zh) 酸碱联合低温分解白云鄂博稀土精矿的方法
CN107630143A (zh) 一种从稀土荧光粉废料和含氟稀土电解废渣中提取稀土的方法
CN101824554A (zh) 一种混合稀土精矿液碱焙烧分解提取工艺
CN109536746A (zh) 一种低钙高品位混合稀土精矿循环浆化分解的方法
CN108584994A (zh) 一种锂云母回转窑煅烧制碳酸锂的方法
CN107344725A (zh) 硫酸直浸法提取锂矿石中锂元素的制备工艺
CN102251106A (zh) 一种碱法分解包头稀土精矿的方法
CN103349994A (zh) 一种从煤灰中回收催化剂并分离得到含铝化合物的方法
CN108118143B (zh) 两段氯化焙烧-碱液浸出法从锂云母中提锂制备碳酸锂的方法
CN109022772A (zh) 一种硫酸熟化浸出锂云母矿的方法
CN109694092A (zh) 一种含氯固废的综合治理方法
CN111270092B (zh) 分解混合稀土矿的方法
CN109055737A (zh) 一种硫酸浸出锂云母矿的方法
CN103408050B (zh) 一种煤矸石中高效提取铝铁钛的方法
CN115057445B (zh) 硅氟氢酸的生产方法及混合稀土精矿的处理工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant