CN106944124A - 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法 - Google Patents

一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法 Download PDF

Info

Publication number
CN106944124A
CN106944124A CN201710221719.1A CN201710221719A CN106944124A CN 106944124 A CN106944124 A CN 106944124A CN 201710221719 A CN201710221719 A CN 201710221719A CN 106944124 A CN106944124 A CN 106944124A
Authority
CN
China
Prior art keywords
pdir
composite nano
catalysts
formic acid
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710221719.1A
Other languages
English (en)
Other versions
CN106944124B (zh
Inventor
卢章辉
杨齐凤
姚淇露
罗明洪
陈祥树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201710221719.1A priority Critical patent/CN106944124B/zh
Publication of CN106944124A publication Critical patent/CN106944124A/zh
Application granted granted Critical
Publication of CN106944124B publication Critical patent/CN106944124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法。该催化剂是以钯盐和铱盐作为金属前躯体,氨基功能化的介孔分子筛(NH2‑SBA‑15)为载体,采用浸渍共还原方法合成。所制备的PdIr复合纳米催化剂可以在室温25℃下催化甲酸分解制氢,其氢气转换频率达到了2270(mol H2·mol‑1metal·h‑1),氢气选择性为100%。该催化剂制备过程简单,反应条件温和,重复性好,容易扩大生产,是一种很有前景的催化剂。

Description

一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法
技术领域
本发明涉及一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法,属于储氢材料领域。
背景技术
能源问题是制约当前社会发展的一个重要难题。石油以及天然气等化石能源由于储量有限,不可再生,并且使用过程中会造成严重的环境污染,威胁人类的生存和发展。因而寻找一种高效,清洁,稳定可持续的新能源是当前人类亟待解决的任务。
近年来,国内外科学家们发展了各种新能源,如风能、太阳能、地热能和氢能等。众多新能源中,氢能由于能量密度高、来源广泛、安全无污染等优点,并且可以直接作为发动机的燃料,而被认为最有可能替代化石能源。
目前制约氢气实际应用的难点在于高效可控的制备并安全稳定的存储氢气。许多研究者尝试了多种可能的储氢材料,如金属氢化物、吸附材料与化学氢化物等。其中液相化学储氢体系因具有易装卸和运输方便等优点,受到了广泛的关注。甲酸的储氢含量为4wt.%、无毒无害、室温下安全稳定。更重要的是,甲酸的价格低廉且来源广泛,因此甲酸是一种很有潜力的储氢材料。
在合适的催化剂下,甲酸在室温常压下即可通过脱氢反应可分解为H2和CO2(式1)。到目前为止,甲酸是唯一一种可以在如此温和条件下产生氢气的有机物。但甲酸也可以经脱水反应生成H2O和CO(式2),而生成的CO能使催化剂中毒而失活。因此必须抑制反应(2)的发生。
HCOOH(l)→H2(g)+CO2(g)ΔG293K=-30.5kJ mol-1 (式1)
HCOOH(l)→H2O(l)+CO(g)ΔG293K=-14.9kJ mol-1 (式2)
甲酸制氢的催化剂可分为均相催化剂和异相催化剂两大类。有文献(Science.2011,333,1733)报道了Fe(BF)2·6H2O和三[2-(二苯基磷)乙基]磷酸(PP3)作为催化剂前驱体得到的催化剂可以从甲酸的碳酸丙烯脂溶液中产生H2和CO2。文献(Chem SusChem.2011,1,827)使用不同的均相催化剂,包括RhCl3·xH2O、RuBr3·xH2O、[{RuCl2(p-cymene)}2]、[RuCl2(PPh3)3]和[{RuCl2(benzene2)2}]等考察了甲酸脱氢反应的速率。研究发现,使用RhCl3·xH2O和3当量的PPh3通过原位合成并经过四氢呋喃处理得到的催化剂,在40℃条件下、FA/Net3体系中活性最高。但以上报道的均相催化剂,制备中均使用了污染性的含磷有机化合物,且催化剂不易分离,回收困难,限制了催化剂的实际应用。也有文献报道了非均相催化剂PdAu@Pd/C(Chemistry of Materials.2010,22,5122)和AuPd@ED-MOF(Journal of the American Chemical Society.2011,133,11822)用于甲酸制氢,但反应都需要的较高的温度(≥90℃),且催化活性较低。因此开发能在室温下高选择性和高活性的催化甲酸制氢的非均相催化剂,对甲酸制氢的实际应用具有重要的价值和意义。
发明内容
本发明目的在于提供一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法。主要解决的技术问题是:提供一种室温下高效催化甲酸高选择性完全分解制备氢气的催化剂及其制备方法。
本发明是一种用于甲酸分解制氢的PdIr复合纳米催化剂,其特征在于,采用浸渍共还原法制备,具体合成步骤如下:
1)称取30~142.5mg的NH2-SBA-15,溶于5mL水中,搅拌混合均匀。
2)向步骤1)所得溶液中加入0.0619mmol Pd的前驱体盐,超声10min,室温下搅拌1h。
3)向步骤2)所得溶液中加入0.0131mmol Ir的前驱体盐,超声30min,室温下搅拌6h。
4)向步骤3)所得溶液加入37mg的硼氢化钠,剧烈搅拌40min。
5)将步骤4)所得反应液进行离心,然后使用乙醇洗涤3次,再在40℃下烘干12h,得到PdIr复合纳米催化剂。
步骤2)所述Pd的前驱体盐为四氯钯酸钠、氯钯酸、氯化钯或硝酸钯中的一种。
步骤3)所述Ir的前驱体盐为氯化铱、氯铱酸或六氯铱酸钾中的一种。
步骤4)步骤3)加入Pd与Ir前驱体的摩尔比为4.7。
步骤5)所得催化剂的金属负载量为5~20wt.%。
本发明所述的PdIr复合纳米催化剂是一种黑色粉末状物质,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明直径为2.3nm左右的PdIr纳米粒子均匀的分布在具有介孔结构的氨基功能化SBA-15中。红外吸收光谱测试表明PdIr复合纳米材料含有氨基官能团。通过氮气吸附脱附测试表明,制备的催化剂具有高的比表面积的和孔体积,并且孔道内也分布PdIr合金纳米粒子。催化甲酸分解制氢实验表明,负载量为10wt.%PdIr纳米催化剂对甲酸分解制氢催化效果最好,在室温25℃下,氢气转换频率为2270(mol H2·mol- 1metal·h-1),氢气的选择性为100%,反应的活化能(Ea)为42.1kJ/mol。
附图说明
图1为PdIr复合纳米催化剂的SEM和TEM图。
图2为PdIr复合纳米催化剂的红外吸收光谱图。
图3为PdIr复合纳米催化剂的氮气吸附脱等温线。
图4为PdIr复合纳米催化剂催化甲酸分解制氢图。
图5为不同负载量的PdIr复合纳米催化剂催化甲酸分解制氢图。
图6为不同温度的PdIr复合纳米催化剂催化甲酸分解制氢图。
具体实施方式
下面结合实施例,具体说明PdIr复合纳米催化剂的制备与应用,但专利权利并不局限于这些实施例。
实施例1:
1)称取67.5mg的NH2-SBA-15,溶于5mL水中,搅拌混合均匀。
2)向步骤1)所得溶液中加0.0619mmol四氯钯酸钠,超声10min,室温下搅拌1h。
3)向步骤2)所得溶液中加入0.0131mmol三氯化铱,超声30min,室温下搅拌6h。
4)向步骤3)所得溶液加入37mg的硼氢化钠,剧烈搅拌25min。
5)将步骤4)所得反应液进行离心,然后使用乙醇洗涤3次,再在40℃下烘干12h,得到负载量为10wt.%的PdIr复合纳米催化剂。
实施例2:
将实施例1中的步骤1)中NH2-SBA-15用量改为30mg,其他的步骤同实施例1,得到负载量为20wt.%的PdIr复合纳米催化剂。
实施例3:
将实施例1中的步骤1)中NH2-SBA-15用量改为42.5mg,其他的步骤同实施例1,得到负载量为15wt.%的PdIr复合纳米催化剂。
实施例4:
将实施例1中的步骤1)中NH2-SBA-15用量改为50.2mg,其他的步骤同实施例1,得到负载量为13wt.%的PdIr复合纳米催化剂。
实施例5:
将实施例1中的步骤1)中NH2-SBA-15用量改为99.5mg,其他的步骤同实施例1,得到负载量为7wt.%的PdIr复合纳米催化剂。
实施例6:
将实施例1中的步骤1)中NH2-SBA-15用量改为142.5mg,其他的步骤同实施例1,得到负载量为5wt.%的PdIr复合纳米催化剂。
实施例7-12:
将实施例1、2、3、4、5、6制备的不同负载量的催化剂催化甲酸分解制氢(分别对应实施例7、8、9、10、11、12),将催化剂分散于盛有5ml水的50ml单口烧瓶中,使用磁力搅拌,在298K下反应,得到的结果如图5和下表(表一)所示:
表一
实施例13:
将实施例1中的步骤2)中Pd前驱体盐四氯钯酸钠改为硝酸钯,其他的步骤同实施例1,得到负载量为10wt.%的PdIr复合纳米催化剂。
实施例14:
将实施例1中的步骤2)中Pd前驱体盐四氯钯酸钠改为氯化钯,其他的步骤同实施例1,得到负载量为10wt.%的PdIr复合纳米催化剂
实施例15:
将实施例1中的步骤2)中Pd前驱体盐四氯钯酸钠改为氯钯酸,其他的步骤同实施例1,得到负载量为10wt.%的PdIr复合纳米催化剂。
实施例16:
将实施例1中的步骤3)中Ir前驱体盐氯化铱改为氯铱酸,其他的步骤同实施例1,得到负载量为10wt.%的PdIr复合纳米催化剂。
实施例17:
将实施例1中的步骤3)中Ir前驱体盐氯化铱改为六氯铱酸钾,其他的步骤同实施例1,得到负载量为10wt.%的PdIr复合纳米催化剂。
实施例18-22
将实施例1制备得到的PdIr复合纳米催化剂分散于盛有5mL水的50mL单口
烧瓶中,磁力搅拌,分别控制温度为288K、298K、308K、313K、318K条件下(分别对应实施例18、19、20、21、22),得到结果如图6和下表所示(表二):
表二

Claims (5)

1.一种用于甲酸分解制氢的PdIr复合纳米催化剂的制备方法,其特征在于,采用浸渍共还原法制备,具体步骤如下:
1)称取30~142.5mg的NH2-SBA-15,溶于5mL水中,搅拌混合均匀;
2)向步骤1)所得溶液中加入0.0619mmol Pd的前驱体盐,超声10min,室温下搅拌1h;
3)向步骤2)所得溶液中加入0.0131mmol Ir的前驱体盐,超声30min,室温下搅拌6h;
4)向步骤3)所得溶液加入37mg的硼氢化钠,剧烈搅拌40min;
5)将步骤4)所得反应液进行离心,然后使用乙醇洗涤3次之后,在40℃下真空干燥12h,得到PdIr复合纳米催化剂。
2.根据权利要求1所述的一种用于甲酸分解制氢的PdIr复合纳米催化剂的制备方法,其特征在于,步骤2)所述Pd的前驱体为四氯钯酸钠、氯钯酸、氯化钯或硝酸钯。
3.根据权利要求1所述的一种用于甲酸分解制氢的PdIr复合纳米催化剂的制备方法,其特征在于,步骤3)所述Ir的前驱体为氯化铱、氯铱酸或六氯铱酸钾。
4.根据权利要求1所述的一种用于甲酸分解制氢的PdIr复合纳米催化剂的制备方法,其特征在于,Pd与Ir的摩尔比为4.7,金属负载量为5~20wt.%。
5.一种权利要求1所述的一种用于甲酸分解制氢的PdIr复合纳米催化剂,其特征在于,所述的催化剂以活性组分金属Pd和Ir组成PdIr合金纳米粒子粒径为2.3nm,以氨基功能化的介孔分子筛(NH2-SBA-15)为载体构成PdIr@NH2-SBA-15复合纳米催化剂。
CN201710221719.1A 2017-04-06 2017-04-06 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法 Active CN106944124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710221719.1A CN106944124B (zh) 2017-04-06 2017-04-06 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710221719.1A CN106944124B (zh) 2017-04-06 2017-04-06 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106944124A true CN106944124A (zh) 2017-07-14
CN106944124B CN106944124B (zh) 2019-06-21

Family

ID=59474065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710221719.1A Active CN106944124B (zh) 2017-04-06 2017-04-06 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106944124B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126695A (zh) * 2017-12-29 2018-06-08 吉林大学 一种功能化碳纳米管负载钯纳米催化剂及其制备和应用
CN108816289A (zh) * 2018-06-02 2018-11-16 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN112473721A (zh) * 2020-12-02 2021-03-12 青岛科技大学 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833914A (zh) * 2016-04-13 2016-08-10 大连理工大学 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833914A (zh) * 2016-04-13 2016-08-10 大连理工大学 一类双核配合物催化剂、制备方法及其应用于催化甲酸分解制氢

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. KOH等: "Ultrasmall palladium nanoparticles supported on amine-functionalized SBA-15 efficiently catalyze hydrogen evolution from formic acid", 《J. MATER. CHEM.》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108126695A (zh) * 2017-12-29 2018-06-08 吉林大学 一种功能化碳纳米管负载钯纳米催化剂及其制备和应用
CN108126695B (zh) * 2017-12-29 2021-02-05 吉林大学 一种功能化碳纳米管负载钯纳米催化剂及其制备和应用
CN108816289A (zh) * 2018-06-02 2018-11-16 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN108816289B (zh) * 2018-06-02 2021-05-07 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN112473721A (zh) * 2020-12-02 2021-03-12 青岛科技大学 一种PdAg/NH2-MCM-41催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106944124B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
Zhu et al. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction
Wang et al. Hierarchically micro-and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction
Jia et al. Single-atom catalysis for electrochemical CO2 reduction
Xu et al. Thermocatalytic formic acid dehydrogenation: recent advances and emerging trends
CN105251522B (zh) 同时负载双助催化剂的复合可见光光催化剂及其应用
Yang et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction
CN105833891A (zh) 一种功能化石墨烯支撑的镍钯双金属纳米催化剂及其制备和应用
Wang et al. Metal organic framework derived nitrogen-doped carbon anchored palladium nanoparticles for ambient temperature formic acid decomposition
CN109772407A (zh) 镍纳米颗粒负载的镍氮共掺杂的碳纳米片电催化剂及制备方法和应用
CN107159214A (zh) 一种多孔活性碳材料负载钴纳米粒子材料及其制备方法和应用
CN106944124B (zh) 一种用于甲酸分解制氢的PdIr复合纳米催化剂及其制备方法
CN110523424B (zh) 一种基于Ru/NPC-CoxO制氢催化剂及制备方法
Lyu et al. A novel one-step calcination tailored single-atom iron and nitrogen co-doped carbon material catalyst for the selective reduction of CO2 to CO
CN111346677B (zh) 一种用于催化甲酸自分解制取氢气的钯/富氨基多孔聚合物催化剂的制备方法
CN105214711A (zh) 一种制备Ag/g-C3N4催化剂的方法
Liang et al. Preparation and hydrogen storage performance of poplar sawdust biochar with high specific surface area
Gu et al. Cobalt fluoride/nitrogen-doped carbon derived from ZIF-67 for oxygen evolution reaction
CN110090668A (zh) 一种电化学还原二氧化碳制取一氧化碳的催化剂及其制备方法和应用
Yang et al. Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate
Prabu et al. Ultrafine Ru nanoparticles in shape control hollow octahedron MOF derived cobalt oxide@ carbon as high-efficiency catalysts for hydrolysis of ammonia borane
CN114517304B (zh) 具有PdCu合金颗粒负载的NiFe-LDH金属纳米片材料电催化剂制备方法
CN114308094A (zh) 钴单原子/氮掺杂介孔碳纤维材料及其制备方法与应用
Ye et al. Construction of ZnIn2S4/Sv-MoS2 photocatalysts with subtle atomic-level intimate contacts: Enhancing interfacial interactions to improve photocatalytic H2 evolution in visible light
CN110368999B (zh) 一种催化剂及其制备方法和用途
Zhang et al. Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2electroreduction to CO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant