CN106929830A - 一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法 - Google Patents

一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法 Download PDF

Info

Publication number
CN106929830A
CN106929830A CN201710132913.2A CN201710132913A CN106929830A CN 106929830 A CN106929830 A CN 106929830A CN 201710132913 A CN201710132913 A CN 201710132913A CN 106929830 A CN106929830 A CN 106929830A
Authority
CN
China
Prior art keywords
electrode material
high temperature
preparation
titanium sheet
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710132913.2A
Other languages
English (en)
Other versions
CN106929830B (zh
Inventor
刘冀锴
颜德健
罗和安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201710132913.2A priority Critical patent/CN106929830B/zh
Publication of CN106929830A publication Critical patent/CN106929830A/zh
Application granted granted Critical
Publication of CN106929830B publication Critical patent/CN106929830B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法。本发明以钛片为导电基底、钛片表面通过水热法生长羟基氧化铁纳米棒、利用葡萄糖为碳源在高温下合成纳米结构可控的复合电极材料碳层包覆的钛掺杂三氧化二铁纳米棒,即C/Ti‑Fe2O3。所述电极材料包括钛金属片和三氧化二铁纳米棒、碳层。所述碳层包覆在三氧化二铁纳米棒表面,在高温下能有效维持纳米棒的微观形貌,显著改善电极材料的光电化学性能。可应用于太阳能光伏电池制备、光电化学传感器构建以及光催化水分解制氢、光催化降解有机污染物等领域。

Description

一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料 的制备方法
技术领域
本发明涉及一种高温下合成纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法,所制备的纳米结构金属氧化物半导体薄膜电极材料具有光电化学性能,可应用于太阳能光伏电池制备、光电化学传感器构建以及光催化水分解制氢、光催化降解有机污染物等领域。本发明属于纳米功能电极材料与绿色能源技术领域。
背景技术
能源短缺和环境恶化一直是人类社会面临的棘手问题,因此寻找清洁可再生能源是科研工作者的努力方向。光电化学分解水利用清洁可再生的太阳能分解水制取氢气,反应过程不会造成环境污染,氢气的使用亦不会对环境造成破坏(氢气燃烧生成水),因此,光电化学分解水技术在绿色能源可再生利用等方面引起了科研工作者的广泛关注。这一技术现已成为新能源、新材料、催化和环保等领域的研究热点之一。
金属氧化物因其性质稳定、来源丰富、成本低廉且无毒性等优点引起了人们的格外关注,其中金属氧化物半导体在太阳能光伏电池、光电化学传感器、光催化分解水制氢等领域显示出广泛的应用前景。具有一定微观形貌的纳米金属氧化物半导体,通常拥有更大的比表面积,能有效减少光生电子和空穴的复合,因而具有更优良的光电化学性能。目前,国内外科研工作者已成功制备出了具有各种微观形貌的纳米金属氧化物半导体,如:纳米线、纳米带、纳米片、纳米棒等,并对其光电化学性能进行了深入的研究。为了进一步提高纳米金属氧化物半导体的光电化学性能,提高其结晶度或对其掺杂改性是较常用的方法,而高温煅烧是最常用的处理手段之一。然而纳米金属氧化物半导体的微观结构经高温处理后往往会因为团聚遭到破坏,如何在高温下对纳米金属氧化物半导体的微观结构进行精确控制,获得具有一定微观结构的纳米金属氧化物半导体薄膜电极材料成为大家普遍关心和亟待解决的问题。
综上可知,研发一种成本低、方法简单、在高温下能有效控制纳米金属氧化物半导体电极材料的微观结构的合成方法,具有重要的科学意义和应用价值。
发明内容
本发明的目的在于提供一种高温下微观结构可控的纳米金属氧化物半导体薄膜电极材料的制备方法,具有成本低、制备简单的优点,且所得材料具备完好的纳米棒微观结构和高光电化学活性。
本发明的技术方案如下:
一种高温下微观结构可控的纳米金属氧化物半导体薄膜电极材料的制备方法,以钛片为导电基底、钛片表面通过水热法生长羟基氧化铁纳米棒、利用葡萄糖为碳源,在高温下合成纳米结构可控的复合电极材料碳层包覆的钛掺杂三氧化二铁纳米棒,即C/Ti-Fe2O3,具体包括如下步骤:
(1)配制铁盐和非铁无机盐的水溶液,搅拌分散均匀;
(2)将纯钛片用砂纸打磨光滑后,依次用自来水、超纯水、丙酮乙醇混合液和超纯水超声清洗干净,将其放置于聚四氟乙烯内胆水热反应釜中,将步骤(1)所得溶液加入到水热反应釜中,然后在80~200℃反应2~24h;
(3)步骤(2)反应完成后,自然冷却至室温,将钛片用去离子水和乙醇分别清洗干净,然后将钛片浸渍于葡萄糖溶液中,然后利用氩气将钛片吹干,50~80℃下真空干燥1~6h;
(4)将步骤(3)所得干燥钛片放置于管式炉中,在氩气气氛,600~900℃下煅烧10~60min,得到高温下纳米结构可控的金属氧化物半导体薄膜电极材料,即C/Ti-Fe2O3
进一步地,所述的铁盐优选氯化铁、硝酸铁、硫酸铁中的一种或两种以上。
进一步地,所述的非铁无机盐优选硫酸钠或硝酸钠中的一种或两种。
进一步地,步骤(1)的铁盐浓度为0.05~1mol/L,非铁无机盐浓度为0.05~1mol/L。
进一步地,步骤(3)的浸渍,浸渍时间为10~60min,葡萄糖溶液浓度为0.1~0.5mg/mL。
本发明的有益效果在于:
本发明的制备方法工艺简单,条件容易控制,所得金属氧化物半导体薄膜电极为纳米结构,在导电基底钛表面生长的钛掺杂三氧化二铁纳米棒,在纳米棒表面进一步包覆碳层,制得电极的光电化学性能得到明显提高,光电化学性能优良,具有重要的科学意义和应用价值。
附图说明
图1为高温下未利用碳层控制纳米结构制得Ti-Fe2O3电极的微观照片。
图2为高温下利用碳层有效控制纳米结构制得C/Ti-Fe2O3电极的微观照片。
图3为C/Ti-Fe2O3电极和Ti-Fe2O3电极光电化学性能测试,即模拟太阳光下的线性扫描曲线:(a)C/Ti-Fe2O3电极材料(b)Ti-Fe2O3电极材料。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明,但本发明并不限于此。
实施例1
C/Ti-Fe2O3的制备
(1)配制0.05mol/L的氯化铁和0.05mol/L硫酸钠的水溶液,搅拌分散20min;
(2)将纯钛片用砂纸打磨光滑后,依次用自来水、超纯水、丙酮乙醇混合液和超纯水超声清洗干净,将其放置于聚四氟乙烯内胆水热反应釜中,取20ml步骤(1)所得溶液加入到水热反应釜中,然后在120℃恒温箱中反应4h;
(3)步骤(2)反应完后,自然冷却至室温,将钛片用去离子水和乙醇清洗三遍,然后将钛片浸渍于0.1mg/ml的葡萄糖溶液中10min,浸渍完后,再利用氩气将钛片吹干,60℃下真空干燥2h;
(4)将步骤(3)干燥好的钛片放置于管式炉中,在氩气气氛,800℃下煅烧20min,即制得C/Ti-Fe2O3
实施例2
C/Ti-Fe2O3的制备
(1)配制0.1mol/L的硝酸铁和0.1mol/L的硝酸钠的水溶液,搅拌分散20min;
(2)将金属钛片放置于聚四氟乙烯内胆水热反应釜中,取20ml步骤(1)所得溶液加入到水热反应釜中,然后在120℃恒温箱中反应4h;
(3)步骤(2)反应完后,自然冷却至室温,将钛片用去离子水和乙醇清洗三遍,然后将钛片浸渍于0.5mg/ml的葡萄糖溶液中30min,浸渍完后,再利用氩气将钛片吹干,80℃下真空干燥3h;
(4)将步骤(3)干燥好的钛片放置于管式炉中,在氩气气氛,900℃下煅烧40min,即制得C/Ti-Fe2O3
实施例3
C/Ti-Fe2O3的制备
(1)配制1mol/L的硫酸铁和1mol/L的硫酸钠的水溶液,搅拌分散20min;
(2)将金属钛片放置于聚四氟乙烯内胆水热反应釜中,取20ml步骤(1)所得溶液加入到水热反应釜中,然后在80℃恒温箱中反应8h;
(3)步骤(2)反应完后,自然冷却至室温,将钛片用去离子水和乙醇清洗三遍,然后将钛片浸渍于0.2mg/ml的葡萄糖溶液中60min,浸渍完后,再利用氩气将钛片吹干,50℃下真空干燥6h;
(4)将步骤(3)干燥好的钛片放置于管式炉中,在氩气气氛,600℃下煅烧60min,即制得C/Ti-Fe2O3
实施例4
C/Ti-Fe2O3的制备
(1)配制1mol/L的硫酸铁和1mol/L的硫酸钠的水溶液,搅拌分散20min;
(2)将金属钛片放置于聚四氟乙烯内胆水热反应釜中,取20ml步骤(1)所得溶液加入到水热反应釜中,然后在200℃恒温箱中反应2h;
(3)步骤(2)反应完后,自然冷却至室温,将钛片用去离子水和乙醇清洗三遍,然后将钛片浸渍于0.4mg/ml的葡萄糖溶液中50min,浸渍完后,再利用氩气将钛片吹干,70℃下真空干燥1h;
(4)将步骤(3)干燥好的钛片放置于管式炉中,在氩气气氛,600℃下煅烧60min,即制得C/Ti-Fe2O3
实施例5
C/Ti-Fe2O3的制备
(1)配制1mol/L的硫酸铁和1mol/L的硫酸钠的水溶液,搅拌分散20min;
(2)将金属钛片放置于聚四氟乙烯内胆水热反应釜中,取20ml步骤(1)所得溶液加入到水热反应釜中,然后在80℃恒温箱中反应24h;
(3)步骤(2)反应完后,自然冷却至室温,将钛片用去离子水和乙醇清洗三遍,然后将钛片浸渍于0.2mg/ml的葡萄糖溶液中60min,浸渍完后,再利用氩气将钛片吹干,50℃下真空干燥6h;
(4)将步骤(3)干燥好的钛片放置于管式炉中,在氩气气氛,600℃下煅烧60min,即制得C/Ti-Fe2O3
实施例6
C/Ti-Fe2O3的光电化学测试
将实施例1所制备的C/Ti-Fe2O3的金属片电极作为光阳极;以银氯化银电极作为参比电极,铂片电极作为辅助电极,共同组成三电极体系,链接到电化学工作站设备上:在石英电解槽中加入30ml的0.1mol/L的NaOH溶液;采用LSV测试手段,测试所得光电流强度较之未有碳层控制其纳米棒结构有约20%光电流的提高(偏压1.6V)。因此本发明在高温下有效控制纳米结构金属氧化物半导体薄膜电极材料的制备方法具有实际应用价值。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。

Claims (5)

1.一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法,其特征在于,以钛片为导电基底、钛片表面通过水热法生长羟基氧化铁纳米棒、利用葡萄糖为碳源,在高温下合成纳米结构可控的复合电极材料碳层包覆的钛掺杂三氧化二铁纳米棒,即C/Ti-Fe2O3,具体包括如下步骤:
(1)配制铁盐和非铁无机盐的水溶液,搅拌分散均匀;
(2)将纯钛片用砂纸打磨光滑后,依次用自来水、超纯水、丙酮乙醇混合液和超纯水超声清洗干净,将其放置于聚四氟乙烯内胆水热反应釜中,将步骤(1)所得溶液加入到水热反应釜中,然后在80~200℃反应2~24h;
(3)步骤(2)反应完成后,自然冷却至室温,将钛片用去离子水和乙醇分别清洗干净,然后将钛片浸渍于葡萄糖溶液中,然后利用氩气将钛片吹干,50~80℃下真空干燥1~6h;
(4)将步骤(3)所得干燥钛片放置于管式炉中,在氩气气氛,600~900℃下煅烧10~60min,得到高温下纳米结构可控的金属氧化物薄膜电极材料,即C/Ti-Fe2O3
2.如权利要求1所述的制备方法,其特征在于,所述的铁盐为氯化铁、硝酸铁、硫酸铁中的一种或两种以上。
3.如权利要求1所述的制备方法,其特征在于,所述的非铁无机盐为硫酸钠或硝酸钠中的一种或两种。
4.如权利要求1所述的制备方法,其特征在于,步骤(1)的铁盐浓度为0.05~1mol/L,非铁无机盐浓度为0.05~1mol/L。
5.如权利要求1所述的制备方法,其特征在于,步骤(3)的浸渍,浸渍时间为10~60min,葡萄糖溶液浓度为0.1~0.5mg/mL。
CN201710132913.2A 2017-03-07 2017-03-07 一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法 Expired - Fee Related CN106929830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710132913.2A CN106929830B (zh) 2017-03-07 2017-03-07 一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710132913.2A CN106929830B (zh) 2017-03-07 2017-03-07 一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN106929830A true CN106929830A (zh) 2017-07-07
CN106929830B CN106929830B (zh) 2019-01-25

Family

ID=59423546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710132913.2A Expired - Fee Related CN106929830B (zh) 2017-03-07 2017-03-07 一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN106929830B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389726A (zh) * 2018-02-11 2018-08-10 国家纳米科学中心 一种碳膜包覆的α-氧化铁纳米棒阵列及其制备方法和应用
CN111285409A (zh) * 2020-02-20 2020-06-16 复旦大学 基于单层有序氧化锡纳米碗支化氧化铁纳米棒结构的气敏纳米材料、制备工艺及其应用
CN112093792A (zh) * 2020-08-27 2020-12-18 中山大学 一种二维水热碳纳米片材料的制备方法及其应用
CN114314674A (zh) * 2021-12-24 2022-04-12 盐城工学院 一种应用于废水脱氯的Fe氧化物纳米材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148090A (zh) * 2014-07-30 2014-11-19 苏州铉动三维空间科技有限公司 一种羟基氧化铁纳米棒-金纳米颗粒杂化结构光催化降解有机污染物的方法
CN104209534A (zh) * 2014-07-30 2014-12-17 苏州铉动三维空间科技有限公司 一种羟基氧化铁纳米棒-金纳米颗粒杂化结构的制备方法
CN104628042A (zh) * 2013-11-06 2015-05-20 中国科学院大连化学物理研究所 一种多孔氧化铁纳米棒阵列的制备方法
CN104986759A (zh) * 2015-07-03 2015-10-21 苏州大学 石墨烯/多孔氧化铁纳米棒复合物及其制备方法
CN106229153A (zh) * 2016-08-18 2016-12-14 天津大学 一种碳布负载氧化镍包覆氧化铁纳米棒复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104628042A (zh) * 2013-11-06 2015-05-20 中国科学院大连化学物理研究所 一种多孔氧化铁纳米棒阵列的制备方法
CN104148090A (zh) * 2014-07-30 2014-11-19 苏州铉动三维空间科技有限公司 一种羟基氧化铁纳米棒-金纳米颗粒杂化结构光催化降解有机污染物的方法
CN104209534A (zh) * 2014-07-30 2014-12-17 苏州铉动三维空间科技有限公司 一种羟基氧化铁纳米棒-金纳米颗粒杂化结构的制备方法
CN104986759A (zh) * 2015-07-03 2015-10-21 苏州大学 石墨烯/多孔氧化铁纳米棒复合物及其制备方法
CN106229153A (zh) * 2016-08-18 2016-12-14 天津大学 一种碳布负载氧化镍包覆氧化铁纳米棒复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGLEI WU等: "Synthesis and characterization of -Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material", 《JOURNAL OF ALLOY AND COMPOSITE》 *
LI-LI XING等: "Template-free assembly of -Fe2O3-SnO2 core-shell nanorod arrays on titanium foil and their excellent lithium storage performance", 《RSC ADVANCES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389726A (zh) * 2018-02-11 2018-08-10 国家纳米科学中心 一种碳膜包覆的α-氧化铁纳米棒阵列及其制备方法和应用
CN111285409A (zh) * 2020-02-20 2020-06-16 复旦大学 基于单层有序氧化锡纳米碗支化氧化铁纳米棒结构的气敏纳米材料、制备工艺及其应用
CN112093792A (zh) * 2020-08-27 2020-12-18 中山大学 一种二维水热碳纳米片材料的制备方法及其应用
CN114314674A (zh) * 2021-12-24 2022-04-12 盐城工学院 一种应用于废水脱氯的Fe氧化物纳米材料的制备方法
CN114314674B (zh) * 2021-12-24 2022-07-01 盐城工学院 一种应用于废水脱氯的Fe氧化物纳米材料的制备方法

Also Published As

Publication number Publication date
CN106929830B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
Xu et al. MOF-derived Co3O4 thin film decorated BiVO4 for enhancement of photoelectrochemical water splitting
CN106929830B (zh) 一种高温下纳米结构可控的金属氧化物半导体薄膜电极材料的制备方法
CN110201697A (zh) 一种三维氮掺杂过渡金属氧化物/硫化镍复合催化剂及制备方法和应用
CN101575713B (zh) 用于光电化学分解水制氢的光阳极及其制备方法
CN108546970B (zh) 一种Bi2Se3/TiO2纳米复合膜及其制备和应用
Kang et al. Borate and iron hydroxide co-modified BiVO4 photoanodes for high-performance photoelectrochemical water oxidation
CN108597886B (zh) 一种用于改性氧化铁光阳极的有机溶液及其应用
CN108579765B (zh) 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
CN110424022A (zh) 纳米棒α-氧化铁复合MIL-101异质结光阳极及其制备方法
CN105498773A (zh) 一种掺杂氧化铁纳米棒催化剂的制备方法
CN111569896A (zh) BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水
CN105601124A (zh) 一种制备多孔α-Fe2O3光阳极的方法
CN109706478A (zh) 氢气还原的薄层碳化钛负载光电解水用氧化亚铜光阴极材料及其制备方法
CN106582721A (zh) 取代贵金属Pt片析氢的MoS2/TiO2NTs异质结光电催化剂及其制备方法
Bashiri et al. Enhancing photoelectrochemical hydrogen production over Cu and Ni doped titania thin film: Effect of calcination duration
Maitra et al. Solvothermal phase change induced morphology transformation in CdS/CoFe 2 O 4@ Fe 2 O 3 hierarchical nanosphere arrays as ternary heterojunction photoanodes for solar water splitting
Peng et al. Recent progress on post-synthetic treatments of photoelectrodes for photoelectrochemical water splitting
CN108866563A (zh) 一种硼化钴修饰的钒酸铋膜光电阳极、其制备方法与用途
CN108511198A (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
Li et al. The effect of annealing regime and electrodeposition time on morphology and photoelecrochemical performance of hematite converted from nanosheet γ-FeOOH
CN111962090B (zh) 一种Ti3C2-MXene修饰的α-氧化铁光电极及其制备方法
CN116641066B (zh) 一种光电催化材料及其制备方法
CN109133259A (zh) 一种利用光阳极活化硫酸盐处理废水并副产氢气的方法
CN108179455A (zh) 一种Cu2O纳米颗粒/TiO2纳米管阵列复合异质结薄膜的制备方法
CN108251849B (zh) 一种用于提高不锈钢耐腐蚀性能的光电材料及其修复方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190125