CN106928086B - 一种长链化合物的制备方法 - Google Patents

一种长链化合物的制备方法 Download PDF

Info

Publication number
CN106928086B
CN106928086B CN201511020134.0A CN201511020134A CN106928086B CN 106928086 B CN106928086 B CN 106928086B CN 201511020134 A CN201511020134 A CN 201511020134A CN 106928086 B CN106928086 B CN 106928086B
Authority
CN
China
Prior art keywords
compound shown
formulas
preparation
protecting group
aeea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511020134.0A
Other languages
English (en)
Other versions
CN106928086A (zh
Inventor
陈友金
宓鹏程
陶安进
袁建成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hybio Pharmaceutical Wuhan Co ltd
Original Assignee
Hybio Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybio Pharmaceutical Co Ltd filed Critical Hybio Pharmaceutical Co Ltd
Priority to CN201511020134.0A priority Critical patent/CN106928086B/zh
Priority to JP2018530620A priority patent/JP7278775B2/ja
Priority to PCT/CN2016/074876 priority patent/WO2017113502A1/zh
Priority to EP16880311.2A priority patent/EP3398933B1/en
Priority to US15/779,852 priority patent/US10399927B2/en
Publication of CN106928086A publication Critical patent/CN106928086A/zh
Application granted granted Critical
Publication of CN106928086B publication Critical patent/CN106928086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0247Imides, amides or imidates (R-C=NR(OR))
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/12Formation or introduction of functional groups containing oxygen of carboxylic acid ester groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B43/00Formation or introduction of functional groups containing nitrogen
    • C07B43/06Formation or introduction of functional groups containing nitrogen of amide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/08Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

本发明涉及一种长链化合物的制备方法,包括以下步骤:1)将H‑R2与R5N‑Glu(OR4)‑OR3进行缩合反应,其中,R3为羧基保护基,R4为羧基活化基,R5为氨基保护基;获得式II化合物;2)将式II所示化合物的R3羧基保护基和R5氨基保护基脱除,获得式III化合物;3)将式III所示化合物与

Description

一种长链化合物的制备方法
技术领域
本发明涉及化合物合成领域,具体涉及一种长链化合物的制备方法。
背景技术
经典肽结构对体内的蛋白酶非常敏感,进入有机体后很快就被降解。采用长链化合物对活性肽进行改造,能降低活性肽对蛋白酶的敏感性,从而有效的延长其在有机体的半衰期,提高了活性肽成为临床药物的可能性。
虽然有不少使用长链化合物修饰活性肽的成功案例,但长链化合物的制备很少有文献报导。传统的制备方法是采用正交保护的策略,在完成主链的合成后再脱除支链上的保护基。该方法会导致中间体的溶解度降低,需要采用高沸点的溶剂进行反应,后处理比较麻烦,不利于规模化生产。
发明内容
为了解决上述问题,本发明采用了一种不同于常规合成方法的简单合成方法,具体地,本发明一个方面提供了一种式I所示化合物的制备方法,
其中,R1为COOH;X为(CH2)m,m为10-20,优选为10、11、12、13、14、15、16、17或18;
R2n为1或2;
其特征在于,包括以下步骤:
1)将H-R2与R5N-Glu(OR4)-OR3进行缩合反应,其中,R3为羧基保护基,R4为羧基活化基,R5为氨基保护基;
获得式II所示化合物
2)将式II所示化合物的R3羧基保护基和R5氨基保护基脱除,获得式III所示化合物
3)将式III所示化合物与进行缩合反应,获得式I所示化合物。
进一步地,其中,当步骤1)中H-R2的n=2时,其是通过将Boc-AEEA-OH和H-AEEA-OH进行缩合反应,得到式IV所示化合物
再将式IV所示化合物的氨基保护基Boc脱除,得到式V所示化合物
优选地,Boc-AEEA-OH和H-AEEA-OH的缩合反应是将Boc-AEEA-OH中的羧基进行活化,形成活泼酯,然后再与H-AEEA-OH进行反应。
进一步地,步骤1)中的R5N-Glu(OR4)-OR3保护剂是通过对R5N-Glu(OH)-OR3中的羧基进行活化,形成活泼酯而获得的。
进一步地,步骤3)为先将羧基进行活化,形成活泼酯,然后再与式III所示化合物进行反应。
进一步地,对羧基进行活化,并形成活泼酯的过程是指将带有羧基的化合物与缩合催化剂进行反应,并形成活泼酯,优选地,所述缩合催化剂选自DCC、DIC、EDC.HCl、DAMP、HOBt、HOSu、HONb、HOAt、DCC-HOBt、DCC-HOSu、DCC-DAMP-HOBt、DCC-DAMP-HOSu及其组合;所述活泼酯为-OBt、OSu、-ONb、-OAt;形成活泼酯所用溶剂为THF或DCM;更优选地,Boc-AEEA-OH的活泼酯与H-AEEA-OH进行反应以及活泼酯与式III所示化合物进行反应,所使用的溶剂为水。
进一步地,R3为tBu、Me或Et,R5为Boc;优选R3为tBu。
进一步地,脱除Boc保护基的试剂为TFA或HCl/EA,优选TFA。
进一步地,脱除步骤2)中的氨基保护基和羧基保护基的试剂选自TFA、H2O、LiOH、MeOH、EtOH及其组合,优选为TFA和H2O的组合(体积比为19-24:1)、LiOH和MeOH的组合,或LiOH和EtOH的组合。
进一步地,在步骤3)之后还包含重结晶的步骤,所述重结晶所用的溶剂为EA和EtOH,或EA和MeOH。
本发明的另一个方面提供了一种如前所述制备方法制备得到得式I所示化合物。
本发明采用最小保护策略进行合成,完成中间体的合成后,先将支链和主链中所有的保护基同时脱除,之后再进行后续的合成。该方法减少了脱保护次数,且所有反应能在低沸点溶剂中进行,后处理只需要简单的洗涤和重结晶即可以得到纯度较高的产品,适合规模化生产。
具体实施方式
实施例1
结构a
将Boc-AEEA-OH(26.4g,100mmol)和HOSu(12.6g,110mmol)溶解在200ml四氢呋喃中,冰浴条件下滴加DIC(13.9g,110mmol),滴加完毕后恢复室温反应2h,TLC显示原料反应完全。真空浓缩,残留物用EA重结晶,得到Boc-AEEA-OSu 33.0g,收率:91%,纯度:96.7%,MS:361.4(M+1)。
将H-AEEA-OH(9.8g,60mmol)和NaHCO3(8.4g,100mmol)溶解在100ml去离子水中,边搅拌边加入Boc-AEEA-OSu(18.0g,50mmol)的THF(100ml)溶液,滴加完毕后继续反应4h,TLC显示Boc-AEEA-OSu基本反应完全。真空浓缩掉有机溶剂,水相用EA洗涤(100ml*3),用1NHCl调水相pH至3,EA萃取(100ml*2),合并有机相,饱和食盐水洗涤(100ml*3),无水硫酸钠干燥,真空浓缩后得到17.6g Boc-AEEA-AEEA-OH,收率:86%,纯度:95.8%,MS:409.4(M+1)。
实施例2
结构b
将Boc-AEEA-AEEA-OH(17.6g,43mmol)溶解在TFA(200ml)中,室温搅拌反应1h,TLC显示原料反应完全,真空浓缩,得到18.0g H-AEEA-AEEA-OH.TFA,收率:99%,纯度:96.4%,MS:309.3(M+1)。
实施例3
结构c
将Boc-Glu-OtBu(12g,40mmol)和HONb(7.9g,44mmol)溶解在THF(100ml)中,边搅拌边加入DCC(8.3g,40mmol)的THF(50ml)溶液,滴加完毕后继续室温反应2h,TLC显示原料基本反应完全,过滤,滤液真空浓缩,残留物用无水乙醚结晶,得到17.2g Boc-Glu(ONb)-OtBu,收率:89%,纯度:97.8%,MS:483.6(M+1)。
将H-AEEA-AEEA-OH.TFA(14.8g,35mmol)和Na2CO3(7.4g,70mmol)溶解在80ml去离子水中,边搅拌边加入Boc-Glu(ONb)-OtBu(17.2g,35mmol)的THF(60ml)溶液,滴加完毕后继续反应8h,TLC显示原料基本反应完全。真空浓缩掉有机溶剂,水相用EA洗涤(100ml*3),用1N HCl调水相pH至3,EA萃取(100ml*2),合并有机相,饱和食盐水洗涤(100ml*3),无水硫酸钠干燥,真空浓缩,残留物用EA-正己烷结晶得到16.2g Boc-Glu(AEEA-AEEA)-OtBu,收率:78%,纯度:98.7%,MS:594.7(M+1)。
实施例4
结构d
将Boc-Glu-(AEEA-AEEA)-OtBu(16.2g,27mmol)溶解在TFA(95ml)和水(5ml)的混合溶液中,室温搅拌反应2h,TLC显示原料反应完全,真空浓缩得到14.7g H-Glu(AEEA-AEEA)-OH.TFA收率:98.6%,纯度:98.9%,MS:438.4(M+1)。
实施例5
结构e
将十八烷二酸(1.57g,5mmol)、HOSu(0.58g,5mmol)和DMAP(3.1mg,0.025mmol)溶解在50ml THF中,搅拌30min后缓慢滴加DCC(1.03g,5mmol)的THF(20ml),滴加完毕后室温搅拌过夜。过滤,滤液真空浓缩,残留物用甲醇重结晶,得到0.82g十八烷二酸单N-羟基琥珀酰亚胺酯,收率:40%,纯度96.8%,MS:412(M+1)。
将H-Glu(AEEA-AEEA)-OH.TFA(1.10g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十八烷二酸单N-羟基琥珀酰亚胺酯(0.82g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用MeOH-H2O结晶,得到1.17g结构e所示化合物,收率:80%,纯度:98.7%,MS:734.9(M+1)。
实施例6
结构f
将十七烷二酸(1.50g,5mmol)、HOSu(0.58g,5mmol)和DMAP(3.1mg,0.025mmol)溶解在50ml THF中,搅拌30min后缓慢滴加DCC(1.03g,5mmol)的THF(20ml),滴加完毕后室温搅拌过夜。过滤,滤液真空浓缩,残留物用甲醇重结晶,得到0.83g十七烷二酸单N-羟基琥珀酰亚胺酯,收率:43%,纯度96.2%,MS:398.5(M+1)。
将H-Glu(AEEA-AEEA)-OH.TFA(1.10g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十七烷二酸单N-羟基琥珀酰亚胺酯(0.80g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用MeOH-H2O结晶,得到1.08g结构f所示化合物,收率:75%,纯度:98.9%,MS:720.9(M+1)。
实施例7
结构g
将十六烷二酸(1.43g,5mmol)、HOSu(0.58g,5mmol)和DMAP(3.1mg,0.025mmol)溶解在50ml THF中,搅拌30min后缓慢滴加DCC(1.03g,5mmol)的THF(20ml),滴加完毕后室温搅拌过夜。过滤,滤液真空浓缩,残留物用甲醇重结晶,得到0.79g十六烷二酸单N-羟基琥珀酰亚胺酯,收率:41%,纯度96.2%,MS:384.5(M+1)。
将H-Glu(AEEA-AEEA)-OH.TFA(1.10g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十六烷二酸单N-羟基琥珀酰亚胺酯(0.77g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用MeOH-H2O结晶,得到1.12g结构g所示化合物,收率:79%,纯度:98.6%,MS:706.9(M+1)。
实施例8
结构h
将十九烷二酸(1.43g,5mmol)、HOSu(0.58g,5mmol)和DMAP(3.1mg,0.025mmol)溶解在50ml THF中,搅拌30min后缓慢滴加DCC(1.03g,5mmol)的THF(20ml),滴加完毕后室温搅拌过夜。过滤,滤液真空浓缩,残留物用甲醇重结晶,得到0.94g十九烷二酸单N-羟基琥珀酰亚胺酯,收率:44%,纯度96.9%,MS:426.6(M+1)。
将H-Glu(AEEA-AEEA)-OH.TFA(1.10g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十九烷二酸单N-羟基琥珀酰亚胺酯(0.85g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用MeOH-H2O结晶,得到1.08g结构h所示化合物,收率:72%,纯度:98.5%,MS:748.9(M+1)。
实施例9
结构i
将二十烷二酸(1.71g,5mmol)、HOSu(0.58g,5mmol)和DMAP(3.1mg,0.025mmol)溶解在50ml THF中,搅拌30min后缓慢滴加DCC(1.03g,5mmol)的THF(20ml),滴加完毕后室温搅拌过夜。过滤,滤液真空浓缩,残留物用甲醇重结晶,得到0.90g二十烷二酸单N-羟基琥珀酰亚胺酯,收率:41%,纯度95.8%,MS:440.6(M+1)。
将H-Glu(AEEA-AEEA)-OH.TFA(1.10g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加二十烷二酸单N-羟基琥珀酰亚胺酯(0.88g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用MeOH-H2O结晶,得到1.17g结构i所示化合物,收率:77%,纯度:99.0%,MS:762.9(M+1)。
实施例10
结构j
将Boc-Glu-OtBu(6.0g,20mmol)和HOBt(2.97g,22mmol)溶解在THF(50ml)中,边搅拌边加入DCC(4.13g,20mmol)的THF(25ml)溶液,滴加完毕后继续室温反应4h,TLC显示原料基本反应完全,过滤,滤液真空浓缩,残留物用DCM-Et2O结晶,得到7.98g Boc-Glu(OBt)-OtBu,收率:91%,纯度:97.6%,MS:439.5(M+1)。
将H-AEEA-OH(1.96g,12mmol)和NaHCO3(1.68g,20mmol)溶解在100ml去离子水中,边搅拌边加入Boc-Glu(OBt)-OtBu(4.39g,10mmol)的THF(20ml)溶液,滴加完毕后继续反应4h,TLC显示原料基本反应完全。真空浓缩掉有机溶剂,水相用EA洗涤(20ml*3),用1N HCl调水相pH至3,EA萃取(20ml*2),合并有机相,饱和食盐水洗涤(20ml*3),无水硫酸钠干燥,真空浓缩,残留物用EtOH结晶后得到3.41g Boc-Glu(AEEA)-OtBu,收率:87%,纯度:97.8%,MS:393.4(M+1)。
将Boc-Glu(AEEA)-OtBu(3.41g,8.7mmol)溶解在TFA(48ml)和H2O(2ml)的混合溶液中,室温搅拌反应2h,真空浓缩,残留物用正己烷洗涤2次,干燥后得到3.32结构j所示化合物H-Glu(AEEA)-OH.TFA,收率:94%,纯度:98.2%,MS:293.3(M+1)。
实施例11
结构k
将H-Glu(AEEA)-OH.TFA(0.81g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十八烷二酸单N-羟基琥珀酰亚胺酯(0.82g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用MeOH结晶,得到0.91g结构k所示化合物,收率:77%,纯度:98.5%,MS:589.7(M+1)。
实施例12
结构l
将H-Glu(AEEA)-OH.TFA(0.81g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十七烷二酸单N-羟基琥珀酰亚胺酯(0.79g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用EtOH结晶,得到0.93g结构l所示化合物,收率:81%,纯度:98.9%,MS:575.7(M+1)。
实施例13
结构m
将H-Glu(AEEA)-OH.TFA(0.81g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十六烷二酸单N-羟基琥珀酰亚胺酯(0.77g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用EtOH结晶,得到0.99g结构m所示
化合物,收率:88%,纯度:98.8%,MS:561.7(M+1)。
实施例14
结构n
将H-Glu(AEEA)-OH.TFA(0.81g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十九烷二酸单N-羟基琥珀酰亚胺酯(0.85g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用EtOH结晶,得到0.95g结构n所示化合物,收率:79%,纯度:98.6%,MS:603.8(M+1)。
实施例15
结构o
将H-Glu(AEEA)-OH.TFA(0.81g,2mmol)和NaHCO3(0.67g,8mmol)溶解在THF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加二十烷二酸单N-羟基琥珀酰亚胺酯(0.88g,2mmol)的THF(5ml)溶液,滴加完毕后继续搅拌反应4h,真空浓缩掉有机溶剂,加10ml水稀释,EA洗涤(2*20ml),1N HCl调pH至3,EA萃取(2*20ml),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用EtOH结晶,得到1.01g结构o所示化合物,收率:82%,纯度:98.9%,MS:617.8(M+1)。
实施例16
结构p
将Boc-Glu-OMe(10.5g,40mmol)和HONb(7.9g,44mmol)溶解在THF(100ml)中,边搅拌边加入DCC(8.3g,40mmol)的THF(50ml)溶液,滴加完毕后继续室温反应2h,TLC显示原料基本反应完全,过滤,滤液真空浓缩,残留物用乙酸乙酯结晶,得到15.4g Boc-Glu(ONb)-OMe,收率:91%,纯度:96.9%,MS:423.5(M+1)。
将H-AEEA-AEEA-OH.TFA(14.8g,35mmol)和Na2CO3(7.4g,70mmol)溶解在80ml去离子水中,边搅拌边加入Boc-Glu(ONb)-OMe(14.8g,35mmol)的THF(60ml)溶液,滴加完毕后继续反应16h,TLC显示原料基本反应完全。真空浓缩掉有机溶剂,水相用EA洗涤(100ml*3),用1N HCl调水相pH至3,EA萃取(100ml*2),合并有机相,饱和食盐水洗涤(100ml*3),无水硫酸钠干燥,真空浓缩,残留物用柱层析分离(MeOH:DCM=1:10),得到12.5g Boc-Glu(AEEA-AEEA)-OMe,收率:65%,纯度:98.5%,MS:552.6(M+1)。
实施例17
结构q
将Boc-Glu-(AEEA-AEEA)-OtM(12.5g,22.8mmol)溶解在TFA(95ml)和水(5ml)的混合溶液中,室温搅拌反应2h,TLC显示原料反应完全,真空浓缩得到12.4g H-Glu(AEEA-AEEA)-OMe.TFA收率:99.1%,纯度:98.1%,MS:452.5(M+1)。
实施例18
结构r
将H-Glu(AEEA-AEEA)-OMe.TFA(0.90g,2mmol)和NaHCO3(0.67g,8mmol)溶解在DMF(10ml)和水(10ml)的混合溶液中,边搅拌边滴加十八烷二酸单N-羟基琥珀酰亚胺酯(0.82g,2mmol,纯度96.8%,实施例5所述方法制备)的DMF(5ml)溶液,滴加完毕后继续搅拌反应4h,60℃真空浓缩掉溶剂,残留物用DCM(20ml)溶解,1N HCl洗涤(3*20ml),饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,残留物用MeOH-H2O结晶,得到1.22g结构r所示化合物,收率:82%,纯度:95.1%,MS:747.9(M+1)。
将化合物r(1.22g,1.64mmol)溶解在甲醇(20ml)和水(20ml)的混合溶液中,冰浴体系温度至10℃以下,加入LiOH(0.16g,6.56mmol),继续冰浴反应4h,真空浓缩掉有机溶剂,水相用1N HCl调pH至3,EA萃取(20ml*2),合并有机相,饱和食盐水洗涤(2*20ml),无水硫酸钠干燥,真空浓缩,得到1.06g结构e所示化合物,总收率:72%,纯度:94.8%,MS:734.9(M+1)。

Claims (17)

1.一种式I所示化合物的制备方法,
其中,R1为COOH;X为(CH2)m,m为10-20;
R2n为1或2;
其特征在于,包括以下步骤:
1)将H-R2与R5N-Glu(OR4)-OR3进行缩合反应,其中,R3为羧基保护基,R4为羧基活化基,R5为氨基保护基;
获得式II所示化合物
2)将式II所示化合物的R3羧基保护基和R5氨基保护基脱除,获得式III所示化合物
3)将式III所示化合物与进行缩合反应,获得式I所示化合物。
2.根据权利要求1所述的式I所示化合物的制备方法,m为10、11、12、13、14、15、16、17或18。
3.根据权利要求1所述的式I所示化合物的制备方法,其中,当步骤1)中H-R2的n=2时,其是通过将Boc-AEEA-OH和H-AEEA-OH进行缩合反应,得到式IV所示化合物
再将式IV所示化合物的氨基保护基Boc脱除,得到式V所示化合物
4.根据权利要求3所述的式I所示化合物的制备方法,Boc-AEEA-OH和H-AEEA-OH的缩合反应是将Boc-AEEA-OH中的羧基进行活化,形成活泼酯,然后再与H-AEEA-OH进行反应。
5.根据权利要求1-3任一项所述的式I所示化合物的制备方法,其中,步骤1)中的R5N-Glu(OR4)-OR3保护基是通过对R5N-Glu(OH)-OR3中的羧基进行活化,形成活泼酯而获得的。
6.根据权利要求1-3任一项所述的式I所示化合物的制备方法,其中,步骤3)为先将羧基进行活化,形成活泼酯,然后再与式III所示化合物进行反应。
7.根据权利要求1-4任一项所述的式I所示化合物的制备方法,其中,对羧基进行活化,并形成活泼酯的过程是指将带有羧基的化合物与缩合催化剂进行反应,并形成活泼酯。
8.根据权利要求7所述的式I所示化合物的制备方法,所述缩合催化剂选自DCC、DIC、EDC.HCl、DCC-HOBt、DCC-HOSu、及其组合;所述活泼酯为-OBt、OSu、-ONb、-Oat;形成活泼酯所用溶剂为THF或DCM。
9.根据权利要求8所述的式I所示化合物的制备方法,Boc-AEEA-OH的活泼酯与H-AEEA-OH进行反应以及活泼酯与式III所示化合物进行反应,所使用的溶剂为水。
10.根据权利要求1-4任一项所述的式I所示化合物的制备方法,其中,R3为tBu、Me或Et,R5为Boc。
11.根据权利要求10所述的式I所示化合物的制备方法,R3为tBu。
12.根据权利要求3-4任一项所述的式I所示化合物的制备方法,其中,脱除Boc保护基的试剂为TFA或HCl/EA;
13.据权利要求12所述的式I所示化合物的制备方法,脱除Boc保护基的试剂为TFA。
14.根据权利要求1-4任一项所述的式I所示化合物的制备方法,其中,脱除步骤2)中的氨基保护基和羧基保护基的试剂选自TFA、H2O、LiOH、MeOH、EtOH及其组合。
15.根据权利要求14所述的式I所示化合物的制备方法,脱除步骤2)中的氨基保护基和羧基保护基的试剂选自为TFA和H2O的组合、LiOH和MeOH的组合,或LiOH和EtOH的组合。
16.根据权利要求15所述的式I所示化合物的制备方法,脱除步骤2)中的氨基保护基和羧基保护基的试剂选自为TFA和H2O的组合,二者体积比为19-24:1。
17.根据权利要求1-4任一项所述的式I所示化合物的制备方法,其中,在步骤3)之后还包含重结晶的步骤,所述重结晶所用的溶剂为EA和EtOH,或EA和MeOH。
CN201511020134.0A 2015-12-31 2015-12-31 一种长链化合物的制备方法 Active CN106928086B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201511020134.0A CN106928086B (zh) 2015-12-31 2015-12-31 一种长链化合物的制备方法
JP2018530620A JP7278775B2 (ja) 2015-12-31 2016-02-29 長鎖化合物の製造方法
PCT/CN2016/074876 WO2017113502A1 (zh) 2015-12-31 2016-02-29 一种长链化合物的制备方法
EP16880311.2A EP3398933B1 (en) 2015-12-31 2016-02-29 Method for preparing long-chain compound
US15/779,852 US10399927B2 (en) 2015-12-31 2016-02-29 Method for preparing long-chain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511020134.0A CN106928086B (zh) 2015-12-31 2015-12-31 一种长链化合物的制备方法

Publications (2)

Publication Number Publication Date
CN106928086A CN106928086A (zh) 2017-07-07
CN106928086B true CN106928086B (zh) 2019-05-31

Family

ID=59224169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511020134.0A Active CN106928086B (zh) 2015-12-31 2015-12-31 一种长链化合物的制备方法

Country Status (5)

Country Link
US (1) US10399927B2 (zh)
EP (1) EP3398933B1 (zh)
JP (1) JP7278775B2 (zh)
CN (1) CN106928086B (zh)
WO (1) WO2017113502A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041219B (zh) * 2019-05-09 2020-09-25 南京工业大学 一种索马鲁肽侧链的液相合成方法
CN112010961B (zh) * 2019-05-31 2023-05-16 深圳市健元医药科技有限公司 一种索玛鲁肽的固液合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186881A (zh) * 2010-04-27 2011-09-14 浙江贝达药业有限公司 胰高血糖素样肽-1衍生物及其应用
US20130059781A1 (en) * 2010-04-20 2013-03-07 Novo Nordisk A/S Long-Acting Gastrin Derivatives
CN103596972A (zh) * 2011-06-10 2014-02-19 诺沃—诺迪斯克有限公司 多肽
WO2015055801A1 (en) * 2013-10-17 2015-04-23 Zealand Pharma A/S Acylated glucagon analogues
WO2015067715A2 (en) * 2013-11-06 2015-05-14 Zealand Pharma A/S Gip-glp-1 dual agonist compounds and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918664B1 (fr) 2007-07-11 2009-10-02 Commissariat Energie Atomique Reactif pseudo peptidique trifonctionnel, ses utilisations et applications.
CN102149411A (zh) * 2008-09-12 2011-08-10 诺沃—诺迪斯克有限公司 酰化肽或蛋白的方法
AU2011247824B2 (en) * 2010-04-27 2014-02-13 Betta Pharmaceuticals Co., Ltd Glucagon-like peptide-1 analogue and use thereof
JP5871905B2 (ja) * 2011-03-30 2016-03-01 ベータ ファーマシューティカルズ カンパニー リミテッド グルカゴン様ペプチド−1類似体およびその使用
PL2838914T3 (pl) 2012-04-19 2017-11-30 Novo Nordisk A/S Analogi ludzkiej amyliny
IL307918A (en) 2021-05-07 2023-12-01 Chugai Pharmaceutical Co Ltd Methods for the production of cyclic compounds consisting of N-substituted amino acid residues

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059781A1 (en) * 2010-04-20 2013-03-07 Novo Nordisk A/S Long-Acting Gastrin Derivatives
CN102186881A (zh) * 2010-04-27 2011-09-14 浙江贝达药业有限公司 胰高血糖素样肽-1衍生物及其应用
CN103596972A (zh) * 2011-06-10 2014-02-19 诺沃—诺迪斯克有限公司 多肽
WO2015055801A1 (en) * 2013-10-17 2015-04-23 Zealand Pharma A/S Acylated glucagon analogues
WO2015067715A2 (en) * 2013-11-06 2015-05-14 Zealand Pharma A/S Gip-glp-1 dual agonist compounds and methods

Also Published As

Publication number Publication date
EP3398933A1 (en) 2018-11-07
JP2019505487A (ja) 2019-02-28
CN106928086A (zh) 2017-07-07
US20180370904A1 (en) 2018-12-27
EP3398933B1 (en) 2020-12-16
US10399927B2 (en) 2019-09-03
JP7278775B2 (ja) 2023-05-22
WO2017113502A1 (zh) 2017-07-06
EP3398933A4 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
CN106966947B (zh) 一种维格列汀的制备方法
JPH0363556B2 (zh)
CN106928086B (zh) 一种长链化合物的制备方法
CN106008271B (zh) 一种谷氨酸-1-叔丁酯衍生物的制备方法
CN104379558B (zh) 利用谷氨酸衍生物和羟基苯胺或羟基被保护的羟基苯胺合成拉马琳以及拉马琳前体的方法
US5166394A (en) Coupling reagent for peptide synthesis
CN107674063B (zh) Gs5816中间体及制备方法和应用
CN106674038A (zh) 一种合成和纯化玛咖酰胺的方法
CN103864889B (zh) 环氧酮化合物、其制备方法及卡非佐米的制备方法
TW200902483A (en) Process for making galantamine
CN106866657A (zh) 一种麦角新碱的制备方法
CN106045883B (zh) 一种天冬氨酸-1-叔丁酯衍生物的制备方法
CN105418737A (zh) 一种短瓣花环肽a的固相合成方法和应用
US20240059678A1 (en) Synthesis Method for Aminopyrimidine FAK Inhibitor Compound
Khattab et al. Cyanoacetamide-based oxime carbonates: an efficient, simple alternative for the introduction of Fmoc with minimal dipeptide formation
CN112939814A (zh) 一种氘代达卡他韦中间体的制备方法
CN101654426B (zh) 制备伊洛马司他的方法
CN104557793A (zh) 一种卡非佐米中间体的合成方法及其中间体
CN113024637B (zh) 一种以水溶性炔酰胺作为缩合剂制备卡非佐米的方法
CN109970620A (zh) 一种制备沙格列汀中间体的方法
CN111247127B (zh) 用于合成药物的中间体化合物的生产方法
KR101163864B1 (ko) 발사르탄의 제조방법 및 이에 사용되는 신규 중간체
JPH04312570A (ja) アミノ基が保護された4−ヒドロキシプロリン又は4−ヒドロキシプロリン誘導体の製造法
SU1728224A1 (ru) Способ получени пентафторфениловых эфиров N-замещенных @ -аминокислот
WO2013135870A1 (en) Process for the synthesis of telaprevir, or pharmaceutically acceptable salts or solvates as well as intermediate products thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230329

Address after: No.9, Lingkong West Street, Hengdian street, Huangpi District, Wuhan City, Hubei Province

Patentee after: HYBIO PHARMACEUTICAL (WUHAN) Co.,Ltd.

Address before: 518057 4th floor, Hanyu biomedical park office building, high tech Industrial Park, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: HYBIO PHARMACEUTICAL Co.,Ltd.

TR01 Transfer of patent right