CN106927808A - 一种钇铝石榴石连续纤维的制备方法 - Google Patents

一种钇铝石榴石连续纤维的制备方法 Download PDF

Info

Publication number
CN106927808A
CN106927808A CN201710228775.8A CN201710228775A CN106927808A CN 106927808 A CN106927808 A CN 106927808A CN 201710228775 A CN201710228775 A CN 201710228775A CN 106927808 A CN106927808 A CN 106927808A
Authority
CN
China
Prior art keywords
aluminium
yttrium
continuous fiber
preparation
garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710228775.8A
Other languages
English (en)
Other versions
CN106927808B (zh
Inventor
陈代荣
孟强
贾玉娜
焦秀玲
朱超
柴鲁宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201710228775.8A priority Critical patent/CN106927808B/zh
Publication of CN106927808A publication Critical patent/CN106927808A/zh
Priority to US16/499,807 priority patent/US11572314B2/en
Priority to PCT/CN2017/104314 priority patent/WO2018188280A1/zh
Application granted granted Critical
Publication of CN106927808B publication Critical patent/CN106927808B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/56Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种钇铝石榴石连续纤维的制备方法,该方法利用含Al13胶粒的氧化铝溶胶、γ‑AlOOH纳米分散液、氧化钇溶胶、冰醋酸和聚乙烯吡咯烷酮(PVP)制备可纺性前驱体溶胶,采用干法纺丝技术制备凝胶连续纤维,再经过热处理得到直径6‑12μm的钇铝石榴石连续纤维。本发明采用溶胶‑凝胶法制备的前驱体溶胶均匀稳定,可长时间存放。采用干法纺丝制备的凝胶连续纤维长度可达3000米,热处理后的纤维表面光滑,内部结构紧密,强度高,且有很好的柔韧性,在高温使用过程中,高温蠕变小,可广泛用于航空航天等工业的复合材料及热防护材料。本发明工艺简单,生产周期短,易于实现工业化。

Description

一种钇铝石榴石连续纤维的制备方法
技术领域
本发明涉及一种钇铝石榴石(YAG)连续纤维的制备方法,属于无机非金属材料领域。
背景技术
氧化铝纤维是高性能无机陶瓷纤维的一种,其主要成分为氧化铝,有的还添加有氧化硅、氧化硼、氧化锆等非金属氧化物和金属氧化物组分。按形态可分为短纤维、连续纤维、晶须等不同类型,其中连续纤维的直径一般在10μm左右,长度可达几千米。钇铝石榴石连续纤维属于氧化铝纤维中的一种,是Al2O3和Y2O3的复合氧化物,其熔点高达1970℃,化学性质稳定。钇铝石榴石纤维不仅具有高强度、高模量、耐高温等优良性能,还具有优异的抗高温蠕变性能,可广泛用作绝热耐火材料和结构增强材料。
目前制备钇铝石榴石纤维的方法有熔融法和化学法,熔融法一般采用铝和钇的氧化物为主要原料,通过高温加热获取熔融液,再将熔融液纺丝成纤(参见:硅酸盐通报2009,28,132);Mileiko等按化学计量比混合Al2O3和Y2O3熔融液,将熔融液浸润到具有连续圆柱状通道的钼基模具中,熔融液在通道内冷却结晶后形成纤维,将纤维和模具分离后即可获得钇铝石榴石纤维,该纤维的弯曲强度最高可达1GPa,在1100℃下抗蠕变强度为169MPa(参见:J.Eur.Ceram.Soc.2002,22,1831);Maston等按比例混合Al2O3和Y2O3后熔融,然后从特制的设备中直接拉制出Al2O3/YAG共晶纤维(参见:J.Eur.Ceram.Soc.1999,19,2487)。然而,由于YAG熔点较高,采用熔融法制备YAG纤维需要耐高温设备,且生产工艺难度大,成本高,这限制了YAG纤维的发展和应用。
化学法主要是采用溶胶-凝胶法,溶胶-凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。Towata等以异丙醇铝和异丙醇钇为前驱体原料,辅助加入水、盐酸、纳米氧化铝粉、粘度调节剂合成了YAG纺丝原液,凝胶纤维高温烧结获得钇铝石榴石晶体纤维和YAG/Al2O3共晶纤维(参见:Composites Part A 2001,32,1127),由于金属醇盐的价格比较昂贵,成本太高,限制了利用金属醇盐制备YAG材料的发展;Pullar等采用Al(NO3)3、YCl3或Y(NO3)3为主要原料,氨水为沉淀剂,硝酸为胶溶剂,通过溶胶-凝胶法制备出YAG纤维,该方法采用喷吹纺丝技术,得到的是短纤维(参见:Mater.Lett.1999,39,173);Shojaie-Bahaabad等采用铝粉、氯化铝、盐酸和氧化钇为原料,通过溶胶-凝胶法制备了YAG/Al2O3复合纤维,经1400℃热处理后纤维的晶粒尺寸在100-200nm,该方法只对前驱体凝胶的流变性能和纺丝性能进行了详细的分析,但没有探讨纤维的强度等其它性能(参见:Ceram.Int.2007,7,32);US005217933A公开了一种钇铝石榴石纤维的制备方法,采用氯化铝、铝粉、甲酸、乙酸、乳酸,硝酸等原料,按氧化钇和与氧化铝不同的摩尔比例制备出钇铝石榴石陶瓷纤维,该方法加入了大量有机酸,导致溶胶合成反应较为复杂。
李呈顺等以廉价的铝粉、工业盐酸和醋酸钇为主要原料,制备了高性能的多晶钇铝石榴石纤维,纤维经热处理到900℃时可获得纯相的钇铝石榴石晶体。经1550℃热处理后,所得到的多晶钇铝石榴石纤维的平均粒径约200nm,拉伸强度为485MPa(参见:硅酸盐学报2009,37,1165);CN105002601A公开了一种多晶Al2O3-YAG复相纤维或纯YAG纤维的制备方法,采用氯化铝、铝微粉、硝酸钇、醋酸钇、醋酸为原料制备前驱体溶胶,经离心纺丝后制得钇铝石榴石凝胶纤维,干燥、热处理后得到多晶Al2O3-YAG复相纤维或纯YAG纤维,但是,上述文献描述的纤维是采用离心甩丝技术制得的短纤维,不可进行2维或3维编织。CN102011215A公开了一种溶胶-凝胶法制备钇铝石榴石连续纤维的方法,采用无机铝盐、金属铝、氧化钇、醋酸为原料,加入一定量的纺丝助剂,浓缩纺丝后即可得到钇铝石榴石基纤维原丝,将凝胶纤维干燥、烧结后得到钇铝石榴石基连续纤维。但是,此方法没有对纤维长度进行探讨,且在纺丝原液制备过程中耗时太大,若进行工业化生产,则生产效率较低。
发明内容
针对现有技术的不足,本发明提供了一种操作工艺简单可控,生产周期短,成本低,易于实现工业化的钇铝石榴石连续纤维的制备方法。
本发明以含有Al13胶粒的氧化铝溶胶、γ-AlOOH(水合氧化铝)纳米分散液和氧化钇溶胶为原料,按比例加入冰醋酸和稀硝酸,并以聚乙烯吡咯烷酮(PVP)做纺丝助剂,通过溶胶-凝胶结合干法纺丝制得钇铝石榴石凝胶纤维,经煅烧后形成YAG连续纤维。
本发明的技术方案如下:
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将含有Al13胶粒的氧化铝溶胶和γ-AlOOH纳米分散液混合并加入氧化钇溶胶,30-40℃水浴搅拌,搅拌过程中加入冰醋酸,然后加入稀硝酸调节pH值至1-3,加入纺丝助剂PVP,搅拌混合均匀,设定老化温度为25-80℃,将纺丝液老化至黏度为400-600Pa·s,得到前驱体可纺性溶胶;
所述含有Al13胶粒的氧化铝溶胶中氧化铝含量为15-35wt%,氧化钇溶胶的固含量为10-30wt%,γ-AlOOH纳米分散液的固含量为8.5-15wt%,氧化钇与冰醋酸的摩尔比为1:(1-2),PVP加入量为总固含量的0.5-5wt%;含有Al13胶粒的氧化铝溶胶和γ-AlOOH纳米分散液的主要成分以氧化铝计,氧化钇和氧化铝的摩尔比为1:(1-2);
(2)干法纺丝制备YAG凝胶纤维
将步骤(1)制备的前驱体可纺性溶胶进行干法纺丝,得到YAG凝胶纤维,干法纺丝工艺条件:喷丝板孔数为15-800个,喷丝板孔径为0.06-0.15mm,收丝速度为60-180m/min,空气温度为18-40℃,空气湿度为20-70%;
(3)YAG凝胶纤维陶瓷化
将步骤(2)制得的YAG凝胶纤维陶瓷化,以0.5-3℃/min的速度升温至450-600℃,在此温度保温0.5-2h,再以3-10℃/min的速度升温至900-1400℃,在此温度保温0.5-2h,即得钇铝石榴石连续纤维。
根据本发明,优选的,步骤(1)中含有Al13胶粒的氧化铝溶胶中Al13胶粒的质量含量为20-25wt%,γ-AlOOH纳米分散液的固含量为10-15wt%,氧化钇溶胶固含量为15wt%,纺丝助剂PVP的加入量为总固含量的1wt%;
根据本发明,优选的,含有Al13胶粒的氧化铝溶胶和γ-AlOOH纳米分散液中氧化铝含量的质量比为(3-9):1。
根据本发明,优选的,步骤(1)中老化温度为35-50℃,老化至黏度为450-550Pa·s。
根据本发明,优选的,步骤(1)中老化过程在真空度为0.095MPa条件下进行。
根据本发明,优选的,步骤(1)中氧化钇与冰醋酸的摩尔比为1:(1.1-1.5)。
根据本发明,优选的,加入稀硝酸调节pH值至1.5-2.5。
根据本发明,优选的,步骤(1)中所述的含Al13胶粒的氧化铝溶胶按以下方法制备:
以铝粉和铝盐溶液为原料,铝盐和铝粉的摩尔比为1:(1-5),加热回流反应至铝粉完全反应,冷却、过滤,即得到含Al13胶粒的氧化铝溶胶,胶粒粒径≤5nm。优选的,所述的铝盐为氯化铝、硝酸铝或硫酸铝。
根据本发明,优选的,步骤(2)中喷丝板孔径为0.06-0.10mm,收丝速度为80-140m/min。
根据本发明,优选的,步骤(2)中空气温度为25-35℃,空气湿度为30-45%。
根据本发明,优选的,步骤(3)中YAG凝胶纤维以0.8-1℃/min的速度升温至450-600℃,在此温度保温1-2h;再以3-5℃/min的速度升温至900-1400℃,在此温度保温1-2h。
本发明方法制备的钇铝石榴石连续纤维属于立方晶系,具有石榴石晶体结构;纤维直径为6-12μm,无渣球,纤维长度可达数千米;纤维表面光滑且内部结构致密,有很好的柔韧性,强度高。
本发明的原理:
本发明可纺性前驱体溶胶制备过程是几种金属无机盐溶胶的混合,可以很好的控制前驱体溶胶的均匀性,且反应原料通过水解、缩聚容易得到线性粒子,从而有利于少支链高聚链状胶粒的产生;前驱体溶胶中加入冰醋酸,有利于提高溶胶的纺丝性能。这可能是由于:醋酸水解产生的醋酸根离子与金属离子结合,形成络合物,从而分子之间形成链状或网状结构,有利于溶胶的纺丝性能。
本发明采用干法纺丝技术制备YAG连续纤维,其中喷丝板孔数在15-800之间,孔径为0.06-0.15mm,由特种合金钢制成。纺丝原液从喷丝板孔眼中被压出进入纺丝甬道,与通入甬道中的热空气流进行换热,原液细流中的溶剂快速挥发并被热空气流带走。在逐步脱去溶剂的同时,原液细流发生固化,并在收丝机卷绕拉力的作用下伸长变细而形成初生纤维,缠绕于收丝辊上。纺丝速度主要取决于溶胶的性质和溶剂的挥发速度。与其它方法相比,此方法更易制得连续纤维。
本发明的技术特点及优良效果如下:
1)本发明制备的钇铝石榴石连续纤维直径均匀,无渣球,纤维长度可达数千米,纤维表面光滑且内部结构紧密,不易断裂,有很好的柔韧性。此外,纤维的热稳定性好,力学性质稳定,经1200热处理后的纤维单丝拉伸强度平均可达1GPa,具有良好的抗高温蠕变性。
2)本发明前驱体制备过程操作简单,可大大减少可纺性前驱体溶胶的制备时间,生产周期短,易于实现工业化。
3)本发明采用溶胶-凝胶方法制备YAG连续纤维,所制备的前驱体溶胶性质稳定,可长时间存放。
4)本发明老化过程在真空度0.095MPa条件下进行,大大减少了溶胶老化时间,可进行工业化生产。
5)本发明采用干法纺丝,纺丝速度较高且所得纤维的结构较致密,与其它方法比较更易制得连续纤维,本发明所制得的YAG连续纤维长度可达数千米,可利用收丝设备将纤维缠绕于收丝辊上。
附图说明:
图1是本发明实施例1不同温度烧结所得YAG连续纤维的XRD谱图。
图2是本发明实施例1所得的YAG连续凝胶纤维的光学照片。
图3是本发明实施例1所得YAG连续纤维的SEM照片。
图4是本发明实施例1所得YAG连续纤维高倍放大的SEM照片。
图5是本发明实施例1所得YAG连续纤维截面高倍放大的SEM照片。
具体实施方式:
下面结合实施例对本发明做进一步说明,但不限于此。
实施例中所述的含Al13胶粒的氧化铝溶胶按以下方法制备得到:
以铝粉和铝盐溶液为原料,铝盐和铝粉的摩尔比为1:(1-5),加热回流反应至铝粉完全反应,冷却、过滤,即得到含Al13胶粒的氧化铝溶胶,Al13胶粒的质量含量为20-25wt%,胶粒粒径≤5nm,所述的铝盐为氯化铝、硝酸铝、硫酸铝。
实施例1
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将925.2g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和419.6gγ-AlOOH纳米分散液(固含量为12.15wt%)混合,利用分散机搅拌至均匀,按n(Al2O3):n(Y2O3)=5:3的计量组成加入2258.1g氧化钇溶胶(固含量为15wt%),35℃水浴搅拌,搅拌过程中加入450g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:1.25,然后加入173g稀硝酸调节pH值至2.0,加入39.6g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,将混合溶胶老化至黏度为500Pa·s,得到前驱体可纺性溶胶。
(2)干法纺丝制备凝胶纤维
将步骤(1)制备的前驱体溶胶进行干法纺丝,得到YAG凝胶纤维,工艺条件:喷丝板孔径为0.06mm,收丝速度为100m/min,空气温度为25-30℃,空气湿度为30-40%,如图2所示,纤维长度可达数千米。
(3)YAG凝胶纤维陶瓷化
将步骤(2)制备的YAG凝胶纤维陶瓷化,工艺条件:以1℃/min的速度升温至500℃,在此温度保温1h,再以5℃/min的速度升温至1200℃,在此温度保温2h,得到YAG连续纤维。所得钇铝石榴石连续纤维直径为7.7-8.5μm,纤维收缩率约为30%,纤维表面光滑,内部结构致密,XRD测试纤维晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为932MPa。
本实施例步骤(3)YAG凝胶纤维陶瓷化过程中,选择最终的烧结温度分别为700℃、800℃、900℃、1000℃,得到的钇铝石榴石连续纤维的XRD谱图如图1所示,烧结温度为800℃时得到的YAG纤维开始石榴石化,当烧结温度为1000℃时,已全部转化为钇铝石榴石晶相。
本实施例制得的钇铝石榴石连续纤维的SEM照片如图3所示,高倍放大的SEM照片如图4所示,纤维截面高倍放大的SEM照片如图5所示。由图3、4、5可知,纤维直径均匀,无渣球且表面光滑;纤维内部结构紧密,晶粒间气孔数量少,有利于纤维机械强度的提高。
对比例1
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
按n(Al2O3):n(Y2O3)=5:3的计量比将1156.5g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和2258.1g氧化钇溶胶(固含量为15wt%)混合,35℃水浴搅拌,搅拌过程中加入450g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:1.25,然后加入138g稀硝酸调节pH值至2.0,加入98.9g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,将混合溶胶老化至黏度为513Pa·s,得到前驱体可纺性溶胶。
(2)干法纺丝制备凝胶纤维
将步骤(1)制备的前驱体溶胶进行干法纺丝,得到YAG凝胶纤维,工艺条件:喷丝板孔径为0.06mm,收丝速度为80m/min,空气温度为25-30℃,空气湿度为30-40%。
步骤(3)同实施例1。
所得钇铝石榴石连续纤维直径为9.5-10.2μm,纺丝过程中凝胶纤维易断且直径较粗,纤维收缩率约为33%;纤维表面有渣球且内部结构不致密,XRD测试纤维晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为494MPa。可见单独采用含有Al13胶粒的氧化铝溶胶作为氧化铝源,严重影响钇铝石榴石连续纤维的单丝拉伸强度。
实施例2
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将925.2g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和419.6gγ-AlOOH纳米分散液(固含量为12.15wt%)混合,利用分散机搅拌至均匀,按n(Al2O3):n(Y2O3)=5:3的计量组成加入2258.1g氧化钇溶胶(固含量为15wt%),35℃水浴搅拌,搅拌过程中加入450g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:1.25,此时pH值为3.8,加入98.9g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,老化过程在真空度为0.095MPa条件下进行,将混合溶胶老化至黏度为496Pa·s,得到前驱体可纺性溶胶。
步骤(2)同实施例1。
步骤(3)同实施例1。
所得钇铝石榴石连续纤维直径为7.8-9.0μm;纤维收缩率约为32%,纤维表面较光滑但晶粒间气孔数量较多,XRD测试纤维晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为583MPa。
实施例3
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将925.2g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和419.6gγ-AlOOH纳米分散液(固含量为12.15wt%)混合,利用分散机搅拌至均匀,按n(Al2O3):n(Y2O3)=5:3的计量组成加入2258.1g氧化钇溶胶(固含量为15wt%),35℃水浴搅拌,搅拌过程中加入486g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:1.35,然后加入195g稀硝酸调节pH值至1.8,加入98.9g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,将混合溶胶老化至黏度为520Pa·s,得到前驱体可纺性溶胶。
步骤(2)同实施例1。
步骤(3)同实施例1。
所得钇铝石榴石连续纤维直径为7.8-9.0μm;纤维收缩率约为32%,纤维表面光滑,内部结构致密,XRD测试纤维晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为913MPa。
实施例4
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将925.2g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和419.6gγ-AlOOH纳米分散液(固含量为12.15wt%)混合,利用分散机搅拌至均匀,按n(Al2O3):n(Y2O3)=5:3的计量组成加入2258.1g氧化钇溶胶(固含量为15wt%),35℃水浴搅拌,搅拌过程中加入720g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:2,然后加入159g稀硝酸调节pH值至1.8,加入98.9g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,将混合溶胶老化至黏度为515Pa·s,得到前驱体可纺性溶胶。
(2)干法纺丝制备凝胶纤维
将步骤(1)制备的前驱体溶胶进行干法纺丝,得到YAG凝胶纤维,工艺条件:喷丝板孔径为0.06mm,收丝速度为80m/min,空气温度为25-30℃,空气湿度为30-40%,如图2所示,纤维长度可达数千米。
步骤(3)同实施例1。
所得钇铝石榴石连续纤维直径为8.5-9.5μm,纺丝过程中凝胶纤维易断且直径较粗;纤维收缩率约为34%,纤维表面较光滑,晶粒间气孔数量较多,XRD测试纤维晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为700MPa。
实施例5
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
步骤(1)同实施例1。
(2)干法纺丝制备凝胶纤维
将步骤(1)制备的前驱体溶胶进行干法纺丝,得到YAG凝胶纤维,工艺条件:喷丝板孔径为0.1mm,收丝速度为120m/min,空气温度为30-35℃,空气湿度为30-40%。
(3)YAG凝胶纤维陶瓷化
将步骤(2)制备的YAG凝胶纤维陶瓷化,工艺条件:以0.8℃/min的速度升温至500℃,在此温度保温1h,再以4℃/min的速度升温至1200℃,在此温度保温2h,得到YAG连续纤维。
所得钇铝石榴石连续纤维直径为8.5-9.8μm,纤维收缩率约为30%,纤维表面光滑,内部结构致密,XRD测试纤维晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为826MPa。
实施例6
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将809.6g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和629.4gγ-AlOOH纳米分散液(固含量为12.15wt%)混合,利用分散机搅拌至均匀,按n(Al2O3):n(Y2O3)=5:3的计量组成加入2258.1g氧化钇溶胶(固含量为15wt%),35℃水浴搅拌,搅拌过程中加入450g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:1.25,然后加入173g稀硝酸调节pH值至2.0,加入39.6g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,将纺丝液老化至黏度为485Pa·s,得到前驱体可纺性溶胶。
步骤(2)同实施例1。
步骤(3)同实施例1。
所得钇铝石榴石连续纤维直径为7.1-8.5μm,纤维收缩率约30%,纤维表面光滑,内部结构致密,XRD测试纤维晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为809MPa。
实施例7
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将925.2g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和419.6gγ-AlOOH纳米分散液(固含量为12.15wt%)混合,利用分散机搅拌至均匀,按n(Al2O3):n(Y2O3)=5:3的计量组成加入2258.1g氧化钇溶胶(固含量为15wt%),然后加入固含量为22%的醋酸锆54.9g,35℃水浴搅拌,搅拌过程中加入450g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:1.25,最后加入173g稀硝酸调节pH值至2.0,加入40.4g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,将纺丝液老化至黏度为500Pa·s,得到前驱体可纺性溶胶。
步骤(2)同实施例1。
步骤(3)同实施例1。
所得钇铝石榴石连续纤维直径为6.7-8.5μm,纤维收缩率约为29%,纤维表面光滑,内部结构致密,XRD测试纤维主晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为950MPa。
实施例8
一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将1184.3g含有Al13胶粒的氧化铝溶胶(固含量为22.04wt%)和537.1gγ-AlOOH纳米分散液(固含量为12.15wt%)混合,利用分散机搅拌至均匀,按n(Al2O3):n(Y2O3)=2:1的计量组成加入2408.6g氧化钇溶胶(固含量为15wt%),35℃水浴搅拌,搅拌过程中加入450g冰醋酸,其中氧化钇与冰醋酸的摩尔比为1:1.25,然后加入206g稀硝酸调节pH值至2.0,加入45.8g PVP溶液,搅拌混合均匀。
设定老化温度为40℃,老化过程在真空度为0.095MPa条件下进行,将纺丝液老化至黏度为515Pa·s,得到前驱体可纺性溶胶。
(2)干法纺丝制备凝胶纤维
将步骤(1)制备的前驱体溶胶进行干法纺丝,得到YAG凝胶纤维,工艺条件:喷丝板孔径为0.06mm,收丝速度为100m/min,空气温度为25-30℃,空气湿度为25-35%。
(3)YAG凝胶纤维陶瓷化
将步骤(2)制备的YAG凝胶纤维陶瓷化,工艺条件:以1℃/min的速度升温至450℃,在此温度保温1h,再以5℃/min的速度升温至1200℃,在此温度保温2h,得到YAG连续纤维。
所得钇铝石榴石连续纤维直径约为7.5-8.4μm,纤维收缩率约为33%,纤维表面光滑,内部结构致密,XRD测试纤维主晶相为钇铝石榴石晶相,纤维单丝拉伸强度平均为1077MPa。

Claims (10)

1.一种钇铝石榴石连续纤维的制备方法,包括步骤如下:
(1)可纺性前驱体溶胶的制备
将含有Al13胶粒的氧化铝溶胶和γ-AlOOH纳米分散液混合并加入氧化钇溶胶,30-40℃水浴搅拌,搅拌过程中加入冰醋酸,然后加入稀硝酸调节pH值至1-3,加入纺丝助剂PVP,搅拌混合均匀,设定老化温度为25-80℃,将纺丝液老化至黏度为400-600Pa·s,得到前驱体可纺性溶胶;
所述含有Al13胶粒的氧化铝溶胶中氧化铝含量为15-35wt%,氧化钇溶胶的固含量为10-30wt%,γ-AlOOH纳米分散液的固含量为8.5-15wt%,氧化钇与冰醋酸的摩尔比为1:(1-2),PVP加入量为总固含量的0.5-5wt%;含有Al13胶粒的氧化铝溶胶和γ-AlOOH纳米分散液的主要成分以氧化铝计,氧化钇和氧化铝的摩尔比为1:(1-2);
(2)干法纺丝制备YAG凝胶纤维
将步骤(1)制备的前驱体可纺性溶胶进行干法纺丝,得到YAG凝胶纤维,干法纺丝工艺条件:喷丝板孔数为15-800个,喷丝板孔径为0.06-0.15mm,收丝速度为60-180m/min,空气温度为18-40℃,空气湿度为20-70%;
(3)YAG凝胶纤维陶瓷化
将步骤(2)制得的YAG凝胶纤维陶瓷化,以0.5-3℃/min的速度升温至450-600℃,在此温度保温0.5-2h,再以3-10℃/min的速度升温至900-1400℃,在此温度保温0.5-2h,即得钇铝石榴石连续纤维。
2.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,步骤(1)中含有Al13胶粒的氧化铝溶胶中Al13胶粒的质量含量为20-25wt%,γ-AlOOH纳米分散液的固含量为10-15wt%,氧化钇溶胶固含量为15wt%,纺丝助剂PVP的加入量为总固含量的1wt%。
3.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,含有Al13胶粒的氧化铝溶胶和γ-AlOOH纳米分散液中氧化铝含量的质量比为(3-9):1。
4.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,步骤(1)中老化温度为35-50℃,老化至黏度为450-550Pa·s。
5.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,步骤(1)中老化过程在真空度为0.095MPa条件下进行。
6.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,步骤(1)中氧化钇与冰醋酸的摩尔比为1:(1.1-1.5)。
7.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,加入稀硝酸调节pH值至1.5-2.5。
8.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,步骤(2)中喷丝板孔径为0.06-0.10mm,收丝速度为80-140m/min。
9.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,步骤(2)中空气温度为25-35℃,空气湿度为30-45%。
10.根据权利要求1所述的钇铝石榴石连续纤维的制备方法,其特征在于,步骤(3)中YAG凝胶纤维以0.8-1℃/min的速度升温至450-600℃,在此温度保温1-2h;再以3-5℃/min的速度升温至900-1400℃,在此温度保温1-2h。
CN201710228775.8A 2017-04-10 2017-04-10 一种钇铝石榴石连续纤维的制备方法 Active CN106927808B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710228775.8A CN106927808B (zh) 2017-04-10 2017-04-10 一种钇铝石榴石连续纤维的制备方法
US16/499,807 US11572314B2 (en) 2017-04-10 2017-09-29 Preparation method for yttrium aluminum garnet continuous fiber
PCT/CN2017/104314 WO2018188280A1 (zh) 2017-04-10 2017-09-29 一种钇铝石榴石连续纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710228775.8A CN106927808B (zh) 2017-04-10 2017-04-10 一种钇铝石榴石连续纤维的制备方法

Publications (2)

Publication Number Publication Date
CN106927808A true CN106927808A (zh) 2017-07-07
CN106927808B CN106927808B (zh) 2020-05-01

Family

ID=59426455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710228775.8A Active CN106927808B (zh) 2017-04-10 2017-04-10 一种钇铝石榴石连续纤维的制备方法

Country Status (3)

Country Link
US (1) US11572314B2 (zh)
CN (1) CN106927808B (zh)
WO (1) WO2018188280A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266081A (zh) * 2017-07-28 2017-10-20 山东大学 一种氧化铝‑氧化锆复合陶瓷连续纤维的制备方法
CN108558388A (zh) * 2018-01-29 2018-09-21 江苏师范大学 一种用于制备yag陶瓷粉体的喷雾干燥工艺
WO2018188280A1 (zh) * 2017-04-10 2018-10-18 山东大学 一种钇铝石榴石连续纤维的制备方法
CN109437862A (zh) * 2018-12-13 2019-03-08 山东大学 一种含1~5wt%B2O3的氧化铝基陶瓷连续纤维的制备方法
CN110629322A (zh) * 2019-10-09 2019-12-31 山东大学 一种高纯多晶钇铝石榴石连续纤维的制备方法
CN113151932A (zh) * 2021-04-28 2021-07-23 山东源瑞试验设备有限公司 一种硅酸钇纳米纤维的制备方法及其制备材料
CN115161781A (zh) * 2022-06-23 2022-10-11 东华大学 一种杂化凝胶长丝成型方法
CN115161784A (zh) * 2022-06-23 2022-10-11 东华大学 一种用于规模化生产连续陶瓷长丝的方法
CN115182074A (zh) * 2022-07-15 2022-10-14 中南大学 一种稀土氧化镧改性的氧化铝-莫来石纤维及其制备方法
CN115852528A (zh) * 2022-06-27 2023-03-28 东华大学 一种规模化生产连续钇铝石榴石长丝的方法
CN115852528B (zh) * 2022-06-27 2024-05-31 东华大学 一种规模化生产连续钇铝石榴石长丝的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213931B (zh) * 2021-05-08 2022-06-24 南通大学 一种基于Isobam凝胶与熔融纺丝技术的透明陶瓷光纤制备方法
CN114591091B (zh) * 2022-04-08 2023-01-06 南通恩普热能技术有限公司 一种耐高温多晶绝热纤维生产装置及工艺
CN116332648A (zh) * 2023-04-11 2023-06-27 江苏师范大学 一种稀土离子掺杂的超长透明陶瓷光纤的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348918A (en) * 1991-06-03 1994-09-20 Minnesota Mining And Manufacturing Company Yttria-alumina fibers
US5352642A (en) * 1992-11-10 1994-10-04 The Babcock & Wilcox Company Fabrication of Y3 Al5 O12 fibers from water soluble polymers
CN101586270A (zh) * 2009-06-25 2009-11-25 山东大学 多晶钇铝石榴石纤维的制备方法
CN104005115A (zh) * 2014-06-17 2014-08-27 山东大学 一种氧化铝陶瓷纤维的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641819A (ja) * 1992-07-17 1994-02-15 Mitsui Mining Co Ltd アルミナ質繊維及びその製造方法
US5378665A (en) * 1992-10-30 1995-01-03 General Atomics Crystalline yttrium aluminate and process for making
CN101264964A (zh) * 2007-04-26 2008-09-17 北京科技大学 一种高a113含量高浓度的聚合铝水溶液的制备方法及装置
CN102011215B (zh) * 2010-10-15 2011-12-28 陕西理工学院 溶胶-凝胶法制备钇铝石榴石基连续纤维的工艺
CN106927808B (zh) * 2017-04-10 2020-05-01 山东大学 一种钇铝石榴石连续纤维的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348918A (en) * 1991-06-03 1994-09-20 Minnesota Mining And Manufacturing Company Yttria-alumina fibers
US5352642A (en) * 1992-11-10 1994-10-04 The Babcock & Wilcox Company Fabrication of Y3 Al5 O12 fibers from water soluble polymers
CN101586270A (zh) * 2009-06-25 2009-11-25 山东大学 多晶钇铝石榴石纤维的制备方法
CN104005115A (zh) * 2014-06-17 2014-08-27 山东大学 一种氧化铝陶瓷纤维的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRUCE H. KING: "Polycrystalline Yttrium Aluminum Garnet Fibers from Colloidal Sols", 《JOURNAL OF THE AMERICAN CERAMIC SOCIEG》 *
R. C. PULLAR: "The Manufacture of Yttrium Aluminium Garnet (YAG) Fibres by Blow Spinning from a Sol-Gel Precursor", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018188280A1 (zh) * 2017-04-10 2018-10-18 山东大学 一种钇铝石榴石连续纤维的制备方法
CN107266081B (zh) * 2017-07-28 2020-11-24 山东大学 一种氧化铝-氧化锆复合陶瓷连续纤维的制备方法
WO2019019365A1 (zh) * 2017-07-28 2019-01-31 山东大学 一种氧化铝-氧化锆复合陶瓷连续纤维的制备方法
CN107266081A (zh) * 2017-07-28 2017-10-20 山东大学 一种氧化铝‑氧化锆复合陶瓷连续纤维的制备方法
CN108558388A (zh) * 2018-01-29 2018-09-21 江苏师范大学 一种用于制备yag陶瓷粉体的喷雾干燥工艺
CN108558388B (zh) * 2018-01-29 2021-03-12 江苏师范大学 一种用于制备yag陶瓷粉体的喷雾干燥工艺
CN109437862A (zh) * 2018-12-13 2019-03-08 山东大学 一种含1~5wt%B2O3的氧化铝基陶瓷连续纤维的制备方法
CN109437862B (zh) * 2018-12-13 2020-06-23 山东大学 一种含1~5wt%B2O3的氧化铝基陶瓷连续纤维的制备方法
CN110629322A (zh) * 2019-10-09 2019-12-31 山东大学 一种高纯多晶钇铝石榴石连续纤维的制备方法
CN110629322B (zh) * 2019-10-09 2021-09-17 山东大学 一种高纯多晶钇铝石榴石连续纤维的制备方法
CN113151932A (zh) * 2021-04-28 2021-07-23 山东源瑞试验设备有限公司 一种硅酸钇纳米纤维的制备方法及其制备材料
CN115161781A (zh) * 2022-06-23 2022-10-11 东华大学 一种杂化凝胶长丝成型方法
CN115161784A (zh) * 2022-06-23 2022-10-11 东华大学 一种用于规模化生产连续陶瓷长丝的方法
CN115852528A (zh) * 2022-06-27 2023-03-28 东华大学 一种规模化生产连续钇铝石榴石长丝的方法
CN115852528B (zh) * 2022-06-27 2024-05-31 东华大学 一种规模化生产连续钇铝石榴石长丝的方法
CN115182074A (zh) * 2022-07-15 2022-10-14 中南大学 一种稀土氧化镧改性的氧化铝-莫来石纤维及其制备方法
CN115182074B (zh) * 2022-07-15 2024-01-30 中南大学 一种稀土氧化镧改性的氧化铝-莫来石纤维及其制备方法

Also Published As

Publication number Publication date
US11572314B2 (en) 2023-02-07
WO2018188280A1 (zh) 2018-10-18
CN106927808B (zh) 2020-05-01
US20200071231A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
CN106927808A (zh) 一种钇铝石榴石连续纤维的制备方法
CN107266081B (zh) 一种氧化铝-氧化锆复合陶瓷连续纤维的制备方法
CN101982581B (zh) 一种静电纺丝制备氧化铝纳米纤维的方法
CN109437862A (zh) 一种含1~5wt%B2O3的氧化铝基陶瓷连续纤维的制备方法
CN104005115A (zh) 一种氧化铝陶瓷纤维的制备方法
CN110078482A (zh) 一种α-Al2O3/莫来石复相陶瓷纤维的制备方法
Tan et al. Preparation of long alumina fibers by sol-gel method using malic acid
CN107460545B (zh) 一种棒状氧化锆晶须的制备方法
CN110041055A (zh) 一种氧化铝陶瓷长丝及其溶胶-凝胶纺丝制备方法
CN101516803B (zh) 多晶刚玉纤维及其制备方法
CN103469366B (zh) 拟薄水铝石胶溶静电纺丝制备超细氧化铝纤维的方法
CN110282963A (zh) 一种高韧性含铁莫来石柔性纤维及其制备方法
CN111333410B (zh) 可纺性铝溶胶、其制备方法及氧化铝连续纤维
CN102817094A (zh) 一种制备掺铕焦硅酸钇红色发光纳米纤维的方法
CN111074426B (zh) 一种氧化铝-氧化锆复合纤维毯及其制备方法
CN108395216A (zh) 一种具有莫来石结构的陶瓷及其制备方法和应用
TW200912060A (en) Spinning dope for production of alumina and mullite fibers
CN110629322B (zh) 一种高纯多晶钇铝石榴石连续纤维的制备方法
CN102351516B (zh) 用SiO2纳米粉原料制备氧化铝基连续纤维的方法
CN102605469A (zh) 一种制备掺铕Y4Al2O9红色发光纳米纤维的方法
CN115182074B (zh) 一种稀土氧化镧改性的氧化铝-莫来石纤维及其制备方法
Tan et al. PREPARATION OF YTTRIUM ALUMINUM GARNET FIBRES BY THE SOL-GEL METHOD
CN103757751A (zh) 一种超高温氧化锆陶瓷纤维的制备方法
CN115852528B (zh) 一种规模化生产连续钇铝石榴石长丝的方法
CN110983487B (zh) 一种超长氮化硅/二氧化硅核壳结构纳米纤维及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant