CN106920932B - 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法 - Google Patents

一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法 Download PDF

Info

Publication number
CN106920932B
CN106920932B CN201710142733.2A CN201710142733A CN106920932B CN 106920932 B CN106920932 B CN 106920932B CN 201710142733 A CN201710142733 A CN 201710142733A CN 106920932 B CN106920932 B CN 106920932B
Authority
CN
China
Prior art keywords
graphene
leaf
electrode material
preparation
combination electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710142733.2A
Other languages
English (en)
Other versions
CN106920932A (zh
Inventor
蔺华林
陈达明
王爱民
常兴
韩生
韩治亚
陈红艳
刘平
赵志成
周嘉伟
薛原
许广文
陈海军
韦焕明
何忠义
熊丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201710142733.2A priority Critical patent/CN106920932B/zh
Publication of CN106920932A publication Critical patent/CN106920932A/zh
Application granted granted Critical
Publication of CN106920932B publication Critical patent/CN106920932B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法。本发明的方法具体步骤如下:(1)将钴源、氧化石墨烯GO和去离子水混合超声得到混合溶液,再向其中加入乙醇和二甲基甲酰胺DMF;(2)将步骤(1)得到的溶液移入水热反应釜中进行水热反应,反应结束后,自然冷却至室温,抽滤洗涤、冷冻干燥,即得到竹叶状Co(OH)2/石墨烯复合电极材料。本发明采用超声和水热处理法得到的竹叶状的Co(OH)2/石墨烯复合电极材料,不仅热稳定性好、结晶程度高,而且形貌可控性强,是理想的能源材料之一。

Description

一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法
技术领域
本发明属于材料化学技术领域,涉及一种二维阶层结构复合电极材料,具体来说,涉及一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法。
背景技术
逐年递增的能源需求量、日趋严峻的环境现状、对于高效可再生清洁能源的迫切需求是目前人类社会面临的三大问题。因此,急需一种解决上述问题的有效途径,从而缓解人类对于能源的大量需求,同时能够最大程度地减少人类生产和生活对环境所造成的污染和破坏。因此新能源材料逐步成为未来社会主流能源的内在动因和推动力量。新型环保节能设备,如锂离子电池、太阳能电池、燃料电池、超级电容器等,在这一时代背景下应运而生,并在当今社会逐渐地占有一席之地。
目前商业化中以碳材料为主的电极材料大多充放电比较差和比容量低,同时由于孔径过小导致导电性能差。石墨烯的比表面积高,容纳的离子量大,超强的导电性能和功率密度大,同时热力学和化学稳定性好。而过渡金属氢氧化物和碳材料不同,具有高的能量密度。但是其缺点就是循环稳定性差,导电性不强,工作电压低,同时比表面积差,不利于电子的快速运输。如果将金属氢氧化物与石墨烯碳材料复合,一方面作为氢氧化钴的生长提供高的比表面积,另一方面作为材料整体的导电剂;最后,利用所制备以石墨烯作为载体,复合生长氢氧化钴活性材料,同时保证所制备的活性材料是在该载体上直接生长的,可以很好地实现复合材料的制备和两种材料优异性能的有效发挥将克服上述两者的缺点,将大大提高性能,可能在能源器件上的应用发挥巨大的作用。
发明内容
针对上述技术问题,本发明的目的在于提供一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法。该方法环境友好,得到的Co(OH)2/石墨烯二维阶层结构电极材料形貌特别,同时能解决现有技术中的金属氢氧化物导电性不好、循环稳定性差等的缺点,从而提高电极材料的整体性能。
本发明具体技术方案介绍如下:
本发明提供一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法,具体步骤如下:
(1)将钴源、氧化石墨烯GO和去离子水混合超声得到混合溶液,再向其中加入乙醇和二甲基甲酰胺DMF;
(2)将步骤(1)得到的溶液移入水热反应釜中进行水热反应,反应结束后,自然冷却至室温,抽滤洗涤、冷冻干燥,即得到竹叶状Co(OH)2/石墨烯复合电极材料。
上述步骤(1)中,钴源为可溶性钴盐。
上述步骤(1)中,钴源为硝酸钴。
上述步骤(1)中,混合溶液中,氧化石墨烯GO的质量浓度为1-2mg/mL;钴源和去离子水的质量体积比为1:1~1:6mg/ml。
上述步骤(1)中,钴源和乙醇的质量比为6:1-15:1,钴源和二甲基甲酰胺DMF的质量比为10:1-20:1。
上述步骤(2)中,水热反应温度为160-180℃,反应时间为18-24h。
上述步骤(2)中,冷冻干燥的时间为1-3天。
本发明还提供一种上述制备方法得到的竹叶状Co(OH)2/石墨烯二维阶层结构电极材料。
和现有技术相比,本发明的有益效果在于:
通过本发明的方法获得的竹叶状Co(OH)2/石墨烯二维阶层结构电极材料充分利用了过渡金属氢氧化物、氧化石墨烯的协同作用,克服了单纯金属氧化物和石墨烯易团聚和循环性能差、单独碳材料能量密度低的缺点,不仅循环稳定性好,而且形貌可控性强,具有较高的比电容,是理想的能源材料之一。
附图说明
图1是实施例1所得的Co(OH)2/石墨烯粉末的扫描电镜图。
图2是实施例2所得的Co(OH)2/石墨烯粉末的扫描电镜图。
图3是实施例2所得的Co(OH)2/石墨烯粉末的扫描电镜图。
图4是实施例2所得的Co(OH)2/石墨烯电化学性能测试图。
图5是实施例3所得的Co(OH)2/石墨烯粉末的扫描电镜图。
图6是实施例4所得的Co(OH)2/石墨烯粉末的扫描电镜图。
图7是实施例4所得的Co(OH)2/石墨烯粉末的XRD图。
具体实施方式
下面通过具体实施例并结合附图对本发明进一步阐述。
实施例1
一种竹叶状Co(OH)2/石墨烯复合电极材料的制备方法,包括如下步骤:
(1)氧化石墨烯的制备
a.向1L烧杯中加入5g石墨片,3.75gNaNO3晶体,并加入100ml浓硫酸,用机械搅拌器搅拌一个小时直至石墨与NaNO3混合均匀;
b.称取20g高锰酸钾,在一小时内缓慢加入上述混合物中,让其反应5天;
c.等到反应结束后,向体系中加入500ml去离子水,搅拌2h后缓缓加入30ml30%双氧水,反应2h;
d.对上述产物在10000rpm下离心3到5次,去除上层杂质,得到底层沉积物;
e.将沉积物在7000rpm下进行离心,去掉上层杂质,将中间金黄色半透明蜂蜜状液体收集起来,当不出现蜂蜜状液体时降低转速至最低4000rpm;
f.将收集到一起的蜂蜜状液体在8000rpm在进行离心浓缩,将上层清夜去掉,下层浑浊粘稠物去掉,只保留中间部分,即氧化石墨烯;
g.将所得氧化石墨烯装在透析袋中,在去离子水中进行透析,持续两天。
(2)制备Co(OH)2/石墨烯复合电极材料
a.将10mg硝酸钴和1mg/mL氧化石墨烯(GO)分散液加入到30ml去离子水中,超声60min,随后将1.67mg无水乙醇和1mg DMF加入到上述混合溶液中;
b.将步骤(a)得到的溶液移入水热反应釜中,在160℃下进行反应18h,反应结束后,自然冷却至室温,得到反应液;
c.将步骤(b)所得到反应液用去离子水和无水乙醇洗涤,最后冷冻干燥1天,即得到二维竹叶状Co(OH)2/石墨烯复合材料。
采用场发射扫描电子显微镜(德国Zeiss ultra 55)仪器,对竹叶状Co(OH)2/石墨烯粉末进行扫描,所得的扫描电镜图如图1所示,从图1中可以看出复合材料的竹叶状结构,由此表明了成功制备出二维竹叶状Co(OH)2/石墨烯复合电极材料。
电化学性能测试:
在1mol/L KOH电解液条件下,标准电极是惰性Pt电极,参比电极是Ag/AgCl电极,工作电极是负载活性物质的Pt网,用三电极体系在电化学工作站和蓝电系统测试材料的电化学性能。本发明材料的电化学性能测试结果表示,在不同电流密度下的充放电曲线中,在大电流下充放电曲线基本没有发生变化,(在大电流下进行充放电测试其曲线没有明显变化就是能证明其材料的循环稳定性较好)突出其具有良好的循环稳定性,并且在1Ag-1恒流充放电时具有523.2F g-1的比容量,在循环10000次后依然保持有将近95%的比容量。
实施例2
一种竹叶状Co(OH)2/石墨烯复合电极材料的制备方法,包括如下步骤:
(1)氧化石墨烯的制备
(2)制备Co(OH)2/石墨烯复合电极材料
a.将20mg硝酸钴和1.5mg/mL氧化石墨烯(GO)分散液加入到40ml去离子水中,超声70min,随后将2mg无水乙醇和1.3mg DMF加入到上述混合溶液中;
b.将步骤(a)得到的溶液移入水热反应釜中,在170℃下进行反应20h,反应结束后,自然冷却至室温,得到反应液;
c.将步骤(b)所得到反应液进行抽滤,用去离子水和无水乙醇洗涤,最后冷冻干燥2 天,即得到二维竹叶状Co(OH)2/石墨烯复合电极材料。
图2、3是所得的二维竹叶状Co(OH)2/石墨烯材料扫描电镜图。由图2、3中可以看出复合材料的竹叶状结构,且分布均匀,可以看到成功的制备出竹叶状Co(OH)2/石墨烯复合材料。图4是竹叶状Co(OH)2/石墨烯复合材料电化学性能测试图,从图4充放电曲线中可以看出,本发明的二维阶层复合电极材料在不同的电流密度下曲线没有发生明显的变化,从而验证了改材料具有高的循环稳定性。
电化学性能测试方法同实施例1,结果显示,在不同电流密度曲线中,复合材料在20A/g 高电流扫速下,充放电曲线基本没有发生变化,突出其具有很好的循环稳定性,并且在1A g-1恒流充放电时具有560.3F g-1的比容量,在循环10000次后保持有将近98%的比容量。
实施例3
一种竹叶状Co(OH)2/石墨烯复合电极材料的制备方法,包括如下步骤:
(1)氧化石墨烯的制备
(2)制备Co(OH)2/石墨烯复合电极材料
a.将20mg硝酸钴和1.5mg/mL氧化石墨烯(GO)分散液加入到50ml去离子水中,超声80min,随后将2.5mg无水乙醇和1.5mg DMF加入到上述混合溶液中;
b.将步骤(a)得到的溶液移入水热反应釜中,在170℃下进行反应22h,反应结束后,自然冷却至室温,得到反应液;
c.将步骤(b)所得到反应液进行抽滤,用去离子水和无水乙醇洗涤,最后冷冻干燥2 天,即得到二维竹叶状Co(OH)2/石墨烯复合电极材料。
采用场发射扫描电子显微镜(德国Zeiss ultra 55)仪器,对二维竹叶状Co(OH)2/石墨烯复合材料进行扫描,所得的扫描电镜图如图5所示。从图5中可以看出复合材料的竹叶状结构,由此表明了成功制备出竹叶状Co(OH)2/石墨烯复合材料。
电化学性能测试方法同实施例1,结果显示,本发明材料在不同电流密度下的充放电曲线中,曲线略发生变化,但是仍能突出其具有良好的循环稳定性,并且在1Ag-1恒流充放电时具有490.8F g-1的比容量,在循环10000次后依然保持有将近90%的比容量。
实施例4
一种竹叶状Co(OH)2/石墨烯复合电极材料的制备方法,包括如下步骤:
(1)氧化石墨烯的制备
(2)制备Co(OH)2/石墨烯复合电极材料
a.将30mg硝酸钴和2mg/mL氧化石墨烯(GO)分散液加入到60ml去离子水中,超声90min,随后将2mg无水乙醇和1.5mg DMF加入到上述混合溶液中;
b.将步骤(a)得到的溶液移入水热反应釜中,在180℃下进行反应24h,反应结束后,自然冷却至室温,得到反应液;
c.将步骤(b)所得到反应液进行抽滤,用去离子水和无水乙醇洗涤,最后冷冻干燥3 天,即得到二维竹叶状Co(OH)2/石墨烯复合电极材料。
采用场发射扫描电子显微镜(德国Zeiss ultra 55)仪器,对二维竹叶状Co(OH)2/石墨烯复合材料进行扫描,所得的扫描电镜图如图6所示。从图6中可以看出,形貌在不同程度上有所损坏,但是仍然能表明成功制备出竹叶状Co(OH)2/石墨烯复合材料。
图7是从二维竹叶状Co(OH)2/石墨烯复合材料粉末的XRD图谱。从图7中可以看出该复合材料的成功制备,并且有着很好的结晶度;在电化学测试中,循环10000次后依然保持有将近92%的比容量。
综上所述,本发明的实施例2所制备的电化学性能最好,Co(OH)2电极在1Ag-1恒流充放电时具有560.3F g-1的比容量,在循环10000次后,仍然保持有将近98%的比容量,同时不同电流密度扫速下的充放电曲线中,Co(OH)2复合材料在20A/g高电流密度下,充放电曲线基本没有发生变化,突出其具有很好的循环稳定性;在同等条件下测试实施例1、 3和4材料的电化学性能,在1Ag-1恒流充放电下循环10000次后,实施例1、2和4材料的比容量分别保持在95%、90%和92%。
本发明复合材料充分利用石墨烯稳定性强、导电性好和过渡金属氢氧化物比容量高的特点,充分地利用两者的协同作用,很好地克服单一材料的不足。
上述内容仅为本发明的实施方式的具体列举,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。

Claims (5)

1.一种竹叶状Co(OH)2/石墨烯复合电极材料的制备方法,其特征在于,具体步骤如下:
(1)将钴源、氧化石墨烯GO和去离子水混合超声得到混合溶液,再向其中加入乙醇和二甲基甲酰胺DMF;
(2)将步骤(1)得到的溶液移入水热反应釜中进行水热反应,反应结束后,自然冷却至室温,抽滤洗涤、冷冻干燥,即得到竹叶状Co(OH)2/石墨烯复合电极材料;
步骤(1)中,混合溶液中,氧化石墨烯GO的质量浓度为1-2mg/mL;钴源和去离子水的质量体积比为1:1~1:6mg/ml;钴源和乙醇的质量比为6:1-15:1,钴源和二甲基甲酰胺DMF的质量比为10:1-20:1;
步骤(2)中,水热反应温度为160-180℃,反应时间为18-24h。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,钴源为可溶性钴盐。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,钴源为硝酸钴。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,冷冻干燥的时间为1-3天。
5.一种根据权利要求1~4中任意一项所述的制备方法得到的竹叶状Co(OH)2/石墨烯复合电极材料。
CN201710142733.2A 2017-03-10 2017-03-10 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法 Active CN106920932B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710142733.2A CN106920932B (zh) 2017-03-10 2017-03-10 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710142733.2A CN106920932B (zh) 2017-03-10 2017-03-10 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106920932A CN106920932A (zh) 2017-07-04
CN106920932B true CN106920932B (zh) 2019-12-03

Family

ID=59460879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710142733.2A Active CN106920932B (zh) 2017-03-10 2017-03-10 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106920932B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107481865B (zh) * 2017-08-09 2019-08-16 华南师范大学 一种基于gqd/氢氧化钴复合材料的全固态柔性微型超级电容器
CN110075847A (zh) * 2019-03-15 2019-08-02 浙江师范大学 一种石墨烯带/氢氧化钴复合纳米材料及其制备方法
CN114023959B (zh) * 2021-11-09 2023-03-31 西安亚弘泰新能源科技有限公司 一种含镁石墨烯锂离子电池负极材料的制备方法
CN116100646B (zh) * 2023-02-22 2024-03-19 中南林业科技大学 负载仿叶片状石墨烯层的改性木材及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400967A (zh) * 2013-07-18 2013-11-20 上海交通大学 三维多孔的钴基/石墨烯复合材料及其制备方法
EP2687483A1 (en) * 2012-07-16 2014-01-22 Basf Se Graphene containing nitrogen and optionally iron and/or cobalt
WO2015008615A1 (ja) * 2013-07-17 2015-01-22 独立行政法人物質・材料研究機構 金属水酸化物配向電極材料、金属水酸化物含有電極とそれらの製造方法及び金属水酸化物含有キャパシター
CN104860357A (zh) * 2015-06-01 2015-08-26 浙江师范大学 单分散的纳米片和/或纳米环及其制备和应用
CN105719849A (zh) * 2016-03-04 2016-06-29 上海应用技术学院 一种形貌可控的石墨烯/Co(OH)2复合材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118150A1 (en) * 2012-02-08 2013-08-15 Council Of Scientific & Industrial Research "electronically conducting carbon and carbon-based material by pyrolysis of dead leaves and other similar natural waste"
CN105060284B (zh) * 2015-08-14 2017-05-03 扬州大学 一种制备微纳结构石墨烯粉体的方法
CN105374574B (zh) * 2015-12-25 2018-07-03 哈尔滨工业大学 一种氢氧化钴/石墨烯柔性电极材料的制备方法及其应用
CN105513835B (zh) * 2015-12-25 2018-07-03 哈尔滨工业大学 一种氢氧化镍/石墨烯柔性电极材料的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687483A1 (en) * 2012-07-16 2014-01-22 Basf Se Graphene containing nitrogen and optionally iron and/or cobalt
WO2015008615A1 (ja) * 2013-07-17 2015-01-22 独立行政法人物質・材料研究機構 金属水酸化物配向電極材料、金属水酸化物含有電極とそれらの製造方法及び金属水酸化物含有キャパシター
CN103400967A (zh) * 2013-07-18 2013-11-20 上海交通大学 三维多孔的钴基/石墨烯复合材料及其制备方法
CN104860357A (zh) * 2015-06-01 2015-08-26 浙江师范大学 单分散的纳米片和/或纳米环及其制备和应用
CN105719849A (zh) * 2016-03-04 2016-06-29 上海应用技术学院 一种形貌可控的石墨烯/Co(OH)2复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Graphene-constructed flower-like porous Co(OH)2 with tunable hierarchical morphologies for supercapacitors";Qi Huang et al.;《RSC Advances》;20160203;全文 *

Also Published As

Publication number Publication date
CN106920932A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
CN106920932B (zh) 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法
CN106571465B (zh) 水滑石前驱体法氮硫共掺杂碳负载过渡金属硫化物固溶体及其制备方法和应用
CN106252628B (zh) 一种氧化锰/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN110299516A (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
CN102509628B (zh) 超级电容器用纳米Ni(OH)2与Co(OH)2复合材料及制备方法
CN106876682B (zh) 一种具有多孔结构的氧化锰/镍微米球及其制备和应用
CN106219510A (zh) 一种强碱活化柚子皮制备三维碳纳米材料的方法
CN106450249B (zh) 一种铋/氢氧化镍二次碱性电池及其制备方法
CN106229503B (zh) 一种氧化镍/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池
CN107140608B (zh) 一种超声波辅助水热制备钠离子电池负极用超分散硒化锑纳米线的方法
CN110336021A (zh) 石墨烯和/或乙炔黑复合的Na2Fe(SO4)2/C电极材料、制备方法及制备的电池
CN105923652A (zh) 一种多级结构vs4纳米粉体及其制备方法和应用
CN109879320B (zh) α-MoO3-x纳米带及其制备方法、电极材料和储能装置
CN108630444A (zh) 多孔Ni-Mo-Co三元氢氧化物纳米片超级电容器材料的制备方法
WO2022032745A1 (zh) 一种VO2/MXene复合材料及其制备方法与应用
CN106952737A (zh) 一种二硫化钨片状纳米材料的制备方法
CN105514363A (zh) 用作锂离子电池负极的Mn3O4/RGO纳米复合材料的制备方法
CN109637825A (zh) 一种硫化镍纳米片/碳量子点复合材料及其制备方法和应用
CN103247787A (zh) 一种锂离子电池复合负极材料及其制备方法
CN109473666A (zh) 一种石墨烯支撑的SbVO4纳米颗粒复合材料及其制备方法
CN108831755A (zh) 一种电容器电极多元复合材料的制备方法
CN109390162A (zh) 一种具有优异电化学性能的锰钴硫化物/还原氧化石墨烯复合材料及制备方法
CN104852029A (zh) 一种无粘结剂和导电剂的锂离子电池负极材料及制备方法
CN110002500A (zh) 一种聚丙烯酸钠协助制备二硫化钼花球的方法及应用
CN110491684A (zh) 针状花钴镍双金属氢氧化物复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170704

Assignee: Jintuo Technology Co.,Ltd.

Assignor: SHANGHAI INSTITUTE OF TECHNOLOGY

Contract record no.: X2024980004981

Denomination of invention: A bamboo leaf shaped Co (OH)2/graphene composite electrode material and its preparation method

Granted publication date: 20191203

License type: Common License

Record date: 20240428