CN105060284B - 一种制备微纳结构石墨烯粉体的方法 - Google Patents
一种制备微纳结构石墨烯粉体的方法 Download PDFInfo
- Publication number
- CN105060284B CN105060284B CN201510501600.0A CN201510501600A CN105060284B CN 105060284 B CN105060284 B CN 105060284B CN 201510501600 A CN201510501600 A CN 201510501600A CN 105060284 B CN105060284 B CN 105060284B
- Authority
- CN
- China
- Prior art keywords
- powder
- micro
- nano structure
- cobalt hydroxide
- graphene powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims abstract description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 26
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 18
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 claims abstract description 21
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 claims abstract description 19
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 9
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000000137 annealing Methods 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 5
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 4
- 241000257465 Echinoidea Species 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 239000012467 final product Substances 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims 2
- 239000013078 crystal Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002389 environmental scanning electron microscopy Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000005577 local transmission Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- -1 graphite alkene Chemical class 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种制备微纳结构石墨烯粉体的方法。将水热法合成的氢氧化钴粉体浸入质量浓度为0.5~2%的聚甲基丙烯酸甲酯的二甲基甲酰胺溶液中,不少于20分钟后取出烘干;将修饰聚甲基丙烯酸甲酯的氢氧化钴粉体在700~1100℃下于氢气气氛中退火2分钟以上,得到黑色粉末;将黑色粉体置于浓度为稀盐酸溶液中浸泡24h以上,干燥后即得所述微纳结构石墨烯粉体。本发明制备的微纳结构的石墨烯能继承氢氧化钴模板的形貌,其结晶质量较高,且制备方法简单、绿色、成本低、可控、易于大量合成。
Description
技术领域
本发明涉及一种低成本宏量制备微纳结构石墨烯粉体的方法,属于三维石墨烯制备领域。
背景技术
三维石墨烯具有诸多优异的性能,在锂电池、超级电容器,电磁屏蔽,环境污染物治理等各种领域具有潜在的巨大应用价值,目前已成为学术界和工业界备受瞩目的前沿研究方向。已报道的三维石墨烯主流制备工艺分为两类:一是化学合成,以分散的氧化石墨烯片为结构构筑单元,使用结合剂或通过热处理将石墨烯片交联在一起得到石墨烯泡沫状宏观体;二是使用模板法,包括金属微结构(镍泡沫、镍线、镍颗粒;铜颗粒等)、线形(纺丝、金属或氧化物线、碳管等)、片形(多层蛭石)、球形(聚苯乙烯球和氧化硅球)、孔形(多孔氧化铝、介孔氧化硅、多孔碳等)等。然而,这些工艺制备的三维石墨烯的结构有限且可控构筑能力较弱,不能合成具有微纳米结构的石墨烯以及三维石墨烯内含纳米级空洞的结构。
发明内容
本发明的目的是提供一种低成本宏量制备微纳结构石墨烯粉体的方法。
实现本发明目的的技术解决方案是:一种制备微纳结构石墨烯粉体的方法,其制备步骤如下:
(1)采用水热法合成海胆状氢氧化钴粉体;
(2)将氢氧化钴粉体浸入质量浓度为0.5~2%的聚甲基丙烯酸甲酯的二甲基甲酰胺溶液中,不少于20分钟后取出烘干;
(3)将修饰聚甲基丙烯酸甲酯的氢氧化钴粉体于700~1100℃在氢气中退火2分钟以上,得到黑色粉末;
(4)将黑色粉体于浓度为6mol/L的盐酸溶液中浸泡24h以上,干燥后即得所述微纳结构石墨烯粉体。
步骤(1)中,采用水热法合成海胆状氢氧化钴粉体中,水热反应温度为120℃,水热时间为5h。
步骤(2)中,聚甲基丙烯酸甲酯的二甲基甲酰胺溶液的质量浓度优选1%。
与现有技术相比,本发明的优点是:以微纳结构的粉体作为模板合成了微纳结构的石墨烯,且工艺简单,能量产,绿色环保,可推广应用于工业领域。
附图说明
图1为本发明制得的海胆状氢氧化钴粉体的扫描电镜照片(a为5μm,b为500nm)。
图2为本发明以海胆状氢氧化钴为模板经石墨烯生长与盐酸处理两步后所得最终产物的扫描电镜照片(a)及局部透射电镜高分辨像(b)。
图3为本发明最终石墨烯产物的拉曼光谱图。
具体实施方式
首先根据现有技术中的水热法方法合成海胆状氢氧化钴棕色粉体,接着将氢氧化钴粉体浸入质量浓度为1%的聚甲基丙烯酸甲酯的二甲基甲酰胺溶液中,浸泡20分钟后取出干燥。然后将样品在氢气中于900℃(通常CVD制备石墨烯800℃以下随温度升高石结晶质量越好,达到900℃即可达到最佳值)退火2分钟(退火时间过短,不利于聚甲基丙烯酸甲酯完全分解),得到黑色粉末。最后,把2g黑色粉体于20ml浓度为6mol/L的盐酸溶液中浸泡24h以上(除去钴单质及其化合物),干燥后即得所述微纳结构石墨烯粉体。
采用日本日立公司的S-4800场发射扫描显微镜和荷兰philips-FEI公司的TecnaiF30场发射透射电镜(HRTEM,Tecnai F30,FEI)对样品的形貌和结构进行表征。采用德国Bruker-AXS公司的D8ADVANCE多晶X射线衍射仪进行物相鉴定。采用英国Renishwa公司的InVia激光共焦拉曼光谱仪分析样品的光学性质。
图1为本发明所用海胆状氢氧化钴粉体的扫描电镜照片。图1a是低倍扫描电镜照片,图1b是高倍扫描电镜照片(观察棒状结构)。由图可见,可看出水热合成的氢氧化钴粉体呈海胆状微纳结构,尺寸分布较均匀,约几微米。单个氢氧化钴颗粒表面为致密分布的纳米棒,棒直径约几十纳米,在范德华力作用下纳米棒出现团聚现象。
图2为本发明以海胆状氢氧化钴为模板经石墨烯生长与盐酸处理两步后所得最终产物的扫描电镜照片及局部透射电镜高分辨像。图2a是低倍扫描电镜照片,图2b是高倍扫描电镜照片(观察棒状结构),图2b插图是棒状某一位置的透射电镜高分辨像。可看出所得石墨烯继承了氢氧化钴粉体的形貌,仍为海胆状,尺寸无明显变化,在扫描电镜下石墨烯呈透明状。不同的是,与烧蚀之前相比,棒状是由一个个石墨烯球串联组成。石墨烯的层数较少,约6层左右。生长机制是:氢氧化钴高温分解为钴的氧化物,然后经氢气还原成单质钴,生成的单质钴作为催化剂分解聚甲基丙烯酸甲酯,碳原子高温下渗入钴内部和冷却时析出在钴表面。
图3为本发明最终石墨烯产物的拉曼光谱图。从图可以看出石墨材料的两个峰:D峰和G峰。G峰比较尖锐且峰强比D峰较强,说明所得样品石墨化程度高。D峰也有一定强度,这跟样品本身形貌有关,由于样品属于微纳结构,不是标准的平坦状的石墨烯,所以D峰是不可避免的。
Claims (4)
1.一种制备微纳结构石墨烯粉体的方法,其特征在于,制备步骤如下:
采用水热法合成海胆状氢氧化钴粉体;
将氢氧化钴粉体浸入质量浓度为0.5~2%的聚甲基丙烯酸甲酯的二甲基甲酰胺溶液中,不少于20分钟后取出烘干;
将修饰聚甲基丙烯酸甲酯的氢氧化钴粉体在700~1100°C下于氢气气氛中退火2分钟以上,得到黑色粉末;
将黑色粉体置于浓度为6mol/L的稀盐酸溶液中浸泡24h以上,干燥后即得所述微纳结构石墨烯粉体。
2.如权利要求1所述的制备微纳结构石墨烯粉体的方法,其特征在于,步骤(1)中,采用水热法合成海胆状氢氧化钴粉体中,水热反应温度为120℃,水热时间为5h。
3.如权利要求1所述的制备微纳结构石墨烯粉体的方法,其特征在于,步骤(2)中,聚甲基丙烯酸甲酯的二甲基甲酰胺溶液的质量浓度为1%。
4.如权利要求1所述的制备微纳结构石墨烯粉体的方法,其特征在于,步骤(3)中,退火温度为900℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510501600.0A CN105060284B (zh) | 2015-08-14 | 2015-08-14 | 一种制备微纳结构石墨烯粉体的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510501600.0A CN105060284B (zh) | 2015-08-14 | 2015-08-14 | 一种制备微纳结构石墨烯粉体的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105060284A CN105060284A (zh) | 2015-11-18 |
CN105060284B true CN105060284B (zh) | 2017-05-03 |
Family
ID=54489877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510501600.0A Active CN105060284B (zh) | 2015-08-14 | 2015-08-14 | 一种制备微纳结构石墨烯粉体的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105060284B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106082176A (zh) * | 2016-05-25 | 2016-11-09 | 江苏科技大学 | 一种三维石墨烯的制备方法 |
CN106920932B (zh) * | 2017-03-10 | 2019-12-03 | 上海应用技术大学 | 一种竹叶状Co(OH)2/石墨烯复合电极材料及其制备方法 |
CN109650381B (zh) * | 2019-02-15 | 2022-04-05 | 湖南医家智烯新材料科技有限公司 | 一种海胆状石墨烯及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102887548A (zh) * | 2012-09-21 | 2013-01-23 | 中国科学院过程工程研究所 | 一种海胆状分级结构四氧化三钴纳米球及其制备方法 |
CN104226292A (zh) * | 2014-09-18 | 2014-12-24 | 中国科学院合肥物质科学研究院 | 石墨化碳包覆纳米金属颗粒的多级结构材料及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9237658B2 (en) * | 2011-02-18 | 2016-01-12 | The Board Of Trustees Of The Leland Stanford Junior University | Strongly coupled inorganic-graphene hybrid materials, apparatuses, systems and methods |
CN103342396B (zh) * | 2013-06-21 | 2015-07-01 | 北京理工大学 | 一种微波液相合成类石墨烯二维氢氧化镍纳米材料的方法 |
CN103390509B (zh) * | 2013-07-31 | 2015-12-23 | 西南石油大学 | 一种超级电容器电极材料及其制备方法 |
-
2015
- 2015-08-14 CN CN201510501600.0A patent/CN105060284B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102887548A (zh) * | 2012-09-21 | 2013-01-23 | 中国科学院过程工程研究所 | 一种海胆状分级结构四氧化三钴纳米球及其制备方法 |
CN104226292A (zh) * | 2014-09-18 | 2014-12-24 | 中国科学院合肥物质科学研究院 | 石墨化碳包覆纳米金属颗粒的多级结构材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Fabrication and pseudocapacity behavior of elm flower branch-like nickel@graphene fibers;Borong Yu et al.;《RSC Advances》;20150319;第5卷(第39期);第31081-31085页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105060284A (zh) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105215353B (zh) | 一种金属/石墨烯复合材料及其制备方法 | |
Li et al. | Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres | |
Du et al. | Selective synthesis of Fe 2 O 3 and Fe 3 O 4 nanowires via a single precursor: a general method for metal oxide nanowires | |
Mohandes et al. | In vitro comparative study of pure hydroxyapatite nanorods and novel polyethylene glycol/graphene oxide/hydroxyapatite nanocomposite | |
Habiba et al. | Fabrication of nanomaterials by pulsed laser synthesis | |
Ghosh et al. | Enhanced supercapacitor performance and electromagnetic interference shielding effectiveness of CuS quantum dots grown on reduced graphene oxide sheets | |
CN100436008C (zh) | 一种金属镍纳米线的化学制备方法 | |
CN104694989B (zh) | 一种石墨烯基金属复合材料的制备方法 | |
CN104163414B (zh) | 一种高度有序介孔碳材料的制备方法 | |
CN105060284B (zh) | 一种制备微纳结构石墨烯粉体的方法 | |
CN108698849A (zh) | 通过在悬浮的非负载型石墨烯纳米片上生长氧化锌纳米棒或微米棒获得的石墨烯基复合纳米结构的生产 | |
Allaf et al. | Synthesis of ZnO‐CuO Nanocomposite Aerogels by the Sol‐Gel Route | |
Haider et al. | Preparation and characterization of multi walled carbon nanotubes/Ag nanoparticles hybrid materials | |
Ridha et al. | Effect of Al thickness on the structural and ethanol vapor sensing performance of ZnO porous nanostructures prepared by microwave-assisted hydrothermal method | |
Nie et al. | NiO hollow nanospheres with different surface by a bubble-template approach and its gas sensing | |
Guo et al. | Polyvinylpyrrolidone-modified Bi2O3 and Bi2S3 nanocomposites for improved supercapacitive performance | |
Zhang et al. | Facile synthesis of leaf-like Cu (OH) 2 and its conversion into CuO with nanopores | |
Mokhena et al. | Nanomaterials: Types, synthesis and characterization | |
US10858257B2 (en) | Methods for producing small particles having super pore surface via nano engraving process | |
Poyraz et al. | Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires | |
Rathimeena et al. | Simple and efficient synthesis of graphite nanocomposites with hydrophobic cobalt ferrite nanoparticles | |
CN104275493A (zh) | 一种以氨基酸为还原剂制备金纳米盘的方法 | |
JP2006327886A (ja) | アルミナコンポジット前駆体、アルミナコンポジットおよびアルミナコンポジット焼結体 | |
Ko et al. | Solvothermal synthesis of shape-controlled manganese oxide materials and their electrochemical capacitive performances | |
Gai et al. | Facile electrospinning fabrication of nickel oxide nanotubes and their photocatalytic properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231114 Address after: Room F208-1, 2nd Floor, Building 2, No. 217 Kaifa West Road, High tech Industrial Development Zone, Yangzhou City, Jiangsu Province, 225000 Patentee after: Yangzhou Xinci Electronic Technology Co.,Ltd. Address before: 225009 No. 88, South University Road, Jiangsu, Yangzhou Patentee before: YANGZHOU University |