CN106904978B - 一种基于硬微乳液法制备球形陶瓷粉体的方法及其制得的产品 - Google Patents
一种基于硬微乳液法制备球形陶瓷粉体的方法及其制得的产品 Download PDFInfo
- Publication number
- CN106904978B CN106904978B CN201710115133.7A CN201710115133A CN106904978B CN 106904978 B CN106904978 B CN 106904978B CN 201710115133 A CN201710115133 A CN 201710115133A CN 106904978 B CN106904978 B CN 106904978B
- Authority
- CN
- China
- Prior art keywords
- phase
- microemulsion
- hard
- ceramic powder
- spherical ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/62635—Mixing details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62665—Flame, plasma or melting treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Plasma & Fusion (AREA)
- Composite Materials (AREA)
- Dispersion Chemistry (AREA)
- Colloid Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种基于硬微乳液法制备球形陶瓷粉体的方法,以不溶于水的可熔性油性物质的液态为油相、目标粉体的前驱体混合溶液为水相所形成的微乳体系,经分散乳化均匀后得到乳化液;将所述乳化液进行冷却凝固,然后在低于所述油性物质熔点的温度下水相进行反应析出固相;反应完毕,升高温度使所述油性物质熔融,通过静置分层得到上层油相液体和下层固相;所述下层固相进行煅烧处理即得到目标球形粉体。此外,还公开了利用上述方法制得的产品。本发明通过温度调节、利用可熔性油相物质的固‑液相转变,显著提高了基于微乳液体系制备球形陶瓷粉体的稳定性、适用性和经济性,同时避免了环境污染,从而能够有效促进球形分散粉体技术的发展与应用。
Description
技术领域
本发明涉及粉体制备技术领域,尤其涉及一种球形分散粉体的制备方法。
背景技术
相对于普通粉体,球形粉体颗粒粒径小且分布均匀,表面形貌规则,粉体的堆积密度显著增大,可以在很大程度上改善粉体的流动性和分散性,最大限度地消除团聚的影响,同时粉体内部的缺陷得到改善,因此在新科技、新技术、新产品中得到广泛的应用。球形粉体的制备方法包括物理法,例如等离子法,其制备原理为:惰性气体在外加电流产生的磁场的作用下电离产生稳定的等离子体流,粉体原料经送粉系统进入反应器内,以等离子体流的高温为热源,在反应器内对原始粉体进行熔化和气化,然后再经过快速的冷凝过程实现对不规则粉体原料的球化;或者化学法,主要是液相法,其制备原理为:选择可溶性无机盐为原料,按所需比例配置成溶液,再选择合适的沉淀剂使金属离子均匀沉淀或结晶出来(也可采用蒸发、升华、水解等操作),最后将沉淀或结晶经脱水、加热分解等步骤制得所需的超细球形粉体。典型的液相法有沉淀法、乳液法、溶胶-凝胶法、水热合成法、喷雾法等。液相法制得的球形粉体表面光洁度好,粒径易控制,颗粒纯度更高,所需设备操作性高。在这几种方法中,沉淀法的优势是所需设备简单,过程易操作,工业化应用前景好,但沉淀法制得的球形粉体粒径大,球化率低,粒径分布不规律;溶胶-凝胶法操作性强,过程可控,但是所需成本费用较高,并且对环境不利,工业应用可行性低;水热合成法对原料质量要求较高,对工作环境要求苛刻,所需设备要求较高,安全性能差;喷雾法制备的粉体粒径分布均匀,颗粒大部分呈球形,但粉体粒径大小的可控性差。
乳液法是采用两种互不相溶的溶剂在表面活性剂的辅助下形成均匀分布的乳液、从乳液中析出固相的方法,其成核、生长、聚结等过程都在一个微小的球形液滴内进行,最后经过凝聚、冷却过程即可制得球形粉体。微乳液分为“水包油(O/W)”和“油包水(W/O)”(也称反相微乳液)两种类型,可以制得粒径均匀分布的球形粉体,粉体球化率高,所需设备简单易操作,通过控制试剂用量、体系pH、反应温度等因素可得到不同粒径的球形粉体。但是,传统的微乳液法仍然存在着以下技术问题:(1)微乳液滴受环境影响较大(如温度),形成稳定微乳液的条件较为严苛;(2)鉴于传统的微乳液或者反相微乳液均为液相体系,为维持微乳液滴不会团聚长大,需要添加大量的表面活性剂和助表面活性剂;(3)对于不同粉体的制备,需要调节不同的油相/表面活性剂/助表面活性剂/水的比例,才能获得一定粒径、稳定的微乳体系,这需要大量的基础研究工作,从而限制了该方法的适用性;(4)受微乳液体系的热力学和动力学的限制,作为反应空间的微乳液滴的体积占微乳体系体积的比例较小(通常为5~10%),这意味着传统微乳液法合成球形粉体的效率较低;(5)传统微乳液法合成过程的后期,需要添加破乳剂,以将粉体从微乳体系中分离出来,才能获得所制备的粉体,这导致油相物质无法重复使用,不仅大大增加了油相物质的用量成本,并且会产生严重的环境污染。
发明内容
本发明的目的在于克服现有技术的不足,提供一种通过温度调节实现固-液相转变、基于硬微乳液法制备球形陶瓷粉体的方法,旨在显著提高基于微乳液体系制备球形陶瓷粉体的稳定性、适用性和经济性,同时避免环境污染,从而有效促进球形分散粉体技术的发展与应用。本发明的另一目的在于提供利用上述制备方法制得的产品。
本发明的目的通过以下技术方案予以实现:
本发明提供的一种基于硬微乳液法制备球形陶瓷粉体的方法为:以不溶于水的可熔性油性物质的液态为油相、目标粉体的前驱体混合溶液为水相所形成的微乳体系,其中按质量比水相∶油相=1∶1~10,经分散乳化均匀后得到乳化液;将所述乳化液进行冷却凝固,使得水相球形液滴固定在呈固态的油相物质中,然后在低于所述油性物质熔点的温度下水相进行反应析出固相;反应完毕,升高温度使所述油性物质熔融,通过静置分层得到上层油相液体和下层固相;所述下层固相进行煅烧处理即得到目标球形粉体,所述上层油相液体回收重复使用。
本发明液态的油性物质与水相溶液经分散乳化均匀后形成油包水(W/O)微乳液体系,其中为水相的前驱体混合溶液可以是根据目标粉体的金属离子组成所配制的前驱体溶胶、或未开始反应的金属盐与沉淀剂的混合溶液等。所述前驱体溶液以金属离子计算其浓度为0.1~2.5mol/L,可以是但不限于氧化硅溶胶、氧化铝溶胶、氧化锆溶胶、氧化铁溶胶、硅酸锆溶胶、钴酸铝溶胶、铬钇铝溶胶、金属盐与尿素的混合溶液等。
将上述微乳液体系的温度降低至油性物质熔点以下,油性物质转变为固态,并固定其中的水相球形液滴,使水相溶液进行反应限定于该液滴,并至析出固相;至反应完成后,再次将体系温度提高至超过油性物质熔点,实现固相/油性物质的分层,固相经煅烧成相即得到所需制备的球形粉体。
为获得较小粒径的水相球形液滴以利于控制粉体粒径,本发明所述微乳体系中含有按质量比表面活性剂∶助表面活性剂=1∶0~2的分散剂;按质量比所述分散剂∶水相=1∶2~4。具体还可采取如下进一步措施:所述分散剂首先加入油相中搅拌均匀形成混合体系,然后在转速5000~10000rpm的搅拌条件下将所述前驱体混合溶液加入所述混合体系中,持续搅拌2~10min,得到乳化液。
上述方案中,本发明将所述乳化液平铺倒入至底部有冰水的托盘容器中使其快速冷却凝固。
上述方案中,本发明所述反应温度比所述油性物质熔点低5~20℃,反应时间为4~120h;所述煅烧温度为800~1400℃。
上述方案中,本发明所述油性物质的熔点为0~100℃,为月桂酸、肉豆蔻酸、软脂酸、硬脂酸、二十烷酸、石蜡中的一种或其组合。
进一步地,本发明所述表面活性剂为Tween-80、Span-80、AOT、曲拉通X-100、十六烷基三甲基溴化铵、月桂醇硫酸钠中的一种或其组合;所述助表面活性剂为正戊醇、正己醇、正丁醇、正辛醇、异丁醇等低碳醇中的一种或其组合。
利用上述基于硬微乳液法制备球形陶瓷粉体的方法制得的产品。
本发明具有以下有益效果:
(1)本发明通过温度调节,利用可熔性油相物质从液相转变为固相,使微乳液滴被固化在油相物质中,利用油相物质的固化而获得了最好的微乳液稳定性,而不是依赖表面活性剂,因此,不必对每一种粉体的制备都寻求合适的微乳液表面活性剂进行配比,极大地提高了制备不同粉体的适应性;同时,微乳液滴的体积占微乳体系体积的比例达到了20~25%,从而使制备效率提高了一倍。
(2)本发明利用熔融的油相物质、通过快速搅拌就可以使油相和水相混合形成微乳体系,冷却固化后,为所合成的粉体提供了反应的微小球形空间,其稳定性不依赖于表面活性剂,而是油相物质的固化;之后再通过升温,利用油相物质与所制备粉体的密度差,实现自动分层,无需添加破乳剂即可获得所制备的粉体,因此,油相物质可多次重复利用,既节省了油相物质的使用量,又省却了后续处理费用,同时避免了环境污染,具有显著的经济效益和社会效益。
附图说明
下面将结合实施例和附图对本发明作进一步的详细描述:
图1是本发明实施例一所得球形氧化硅超细粉体的的扫描电镜照片;
图2是本发明实施例二所得球形氧化锆超细粉体的扫描电镜照片;
图3是本发明实施例三所得球形钴蓝色料粉体的透射电镜照片;
图4是本发明实施例三所得球形铬钇铝红色料粉体的扫描电镜照片。
具体实施方式
实施例一:
本实施例一种基于硬微乳液法制备球形氧化硅超细粉体的方法如下:
(1)取200g硬脂酸放入100℃烘箱内加热熔融而得到液态作为油相,加入20g AOT,搅拌均匀得到混合体系;
(2)将40g含氧化硅15wt%的硅溶胶在乳化机转速为5000r/min的搅拌条件下,缓慢加入至上述混合体系中,并继续搅拌5min,得到乳化液;
(3)将上述乳化液缓慢倒入底部有冰水的不锈钢托盘容器中,使其快速冷却至完全凝固,放入50℃烘箱内静置反应48h后取出,然后再次放入150℃烘箱内使硬脂酸熔融,通过静置分层得到上层油相液体和下层凝胶;
(4)倒出上层油相液体,可重复使用;将下层凝胶在800℃温度下煅烧,即得到球形氧化硅超细粉体。
如图1所示,本实施例所得氧化硅超细粉体的颗粒呈规则的球形,直径为3~5μm,最大粒径为7μm。
实施例二:
本实施例一种基于硬微乳液法制备球形氧化锆超细粉体的方法如下:
(1)取200g硬脂酸放入100℃烘箱内加热熔融而得到液态作为油相,加入10gTween-80和Span-80的混合物(按质量比Tween-80∶Span-80=1∶9)和20g正戊醇,放在加热搅拌器上加热搅拌均匀得到混合体系;
(2)将40g浓度为0.6mol/L的氧化锆溶胶在乳化机转速为6000r/min的搅拌条件下,缓慢加入至上述混合体系中,并继续搅拌5min,得到乳化液;
(3)将上述乳化液缓慢倒入底部有冰水的不锈钢托盘容器中,使其快速冷却至完全凝固,放入50℃烘箱内静置反应96h后取出,然后再次放入150℃烘箱内使硬脂酸熔融,通过静置分层得到上层油相液体和下层凝胶;
(4)倒出上层油相液体,可重复使用;将下层凝胶在900℃温度下煅烧,即得到球形氧化锆超细粉体。
如图2所示,本实施例氧化锆超细粉体的颗粒呈规则的球形,直径为5μm。
实施例三:
本实施例一种基于硬微乳液法制备球形钴蓝色料粉体的方法如下:
(1)取200g石蜡放入100℃烘箱内加热熔融而得到液态作为油相,加入15g十六烷基三甲基溴化铵和25g正丁醇,放在加热搅拌器上加热搅拌均匀得到混合体系;
(2)将40g浓度为0.2mol/L的钴酸铝溶胶在乳化机转速为5000r/min的搅拌条件下,缓慢加入至上述混合体系中,并继续搅拌5min,得到乳化液;
(3)将上述乳化液缓慢倒入底部有冰水的不锈钢托盘容器中,使其快速冷却至完全凝固,放入50℃烘箱内静置反应120h后取出,然后再次放入150℃烘箱内使石蜡熔融,通过静置分层得到上层油相液体和下层凝胶;
(4)倒出上层油相液体,可重复使用;将下层凝胶在900℃温度下煅烧,即得到球形钴蓝色料粉体。
如图3所示,本实施例所得钴蓝色料粉体的颗粒为20~40μm,颗粒呈近球形,表面有孔洞结构,这主要是由于铝溶胶在凝胶化过程将大量的水容纳于凝胶体系,随着水分的挥发,产生了孔洞,并导致颗粒偏离球形。
实施例四:
本实施例一种基于硬微乳液法制备球形铬钇铝红色料粉体的方法如下:
(1)取200g硬脂酸放入100℃烘箱内加热熔融而得到液态作为油相,加入20g曲拉通X-100和30g正己醇,放在加热搅拌器上加热搅拌均匀得到混合体系;
(2)将50g浓度为0.4mol/L的铬钇铝溶胶在乳化机转速为5000r/min的搅拌条件下,缓慢加入至上述混合体系中,并继续搅拌5min,得到乳化液;
(3)将上述乳化液缓慢倒入底部有冰水的不锈钢托盘容器中,使其快速冷却至完全凝固,放入50℃烘箱内静置反应120h后取出,然后再次放入150℃烘箱内使硬脂酸熔融,通过静置分层得到上层油相液体和下层凝胶;
(4)倒出上层油相液体,可重复使用;将下层凝胶在900℃温度下煅烧,即得到球形铬钇铝红色料超细粉体。
如图4所示,本实施例所得铬钇铝红色料超细粉体的颗粒呈规则的球形,球体表面具有凸起结构,粉体颗粒的直径为5μm。
Claims (9)
1.一种基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:以不溶于水的可熔性油性物质的液态为油相、目标粉体的前驱体混合溶液为水相所形成的微乳体系,其中所述可熔性油性物质为硬脂酸、石蜡,按质量比水相∶油相=1∶1~10,经分散乳化均匀后得到乳化液;将所述乳化液进行冷却凝固,使得水相球形液滴固定在呈固态的油相物质中,然后在低于所述油性物质熔点的温度下水相进行反应析出固相;反应完毕,升高温度使所述油性物质熔融,通过静置分层得到上层油相液体和下层固相;所述下层固相进行煅烧处理即得到目标球形粉体,所述上层油相液体回收重复使用。
2.根据权利要求1所述的基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:所述目标粉体的前驱体混合溶液为根据目标粉体的金属离子组成所配制的前驱体溶胶、或未开始反应的金属盐与沉淀剂的混合溶液。
3.根据权利要求1或2所述的基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:所述微乳体系中含有按质量比表面活性剂∶助表面活性剂=1∶0~2的分散剂;按质量比所述分散剂∶水相=1∶2~4。
4.根据权利要求3所述的基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:所述分散剂首先加入油相中搅拌均匀形成混合体系,然后在转速5000~10000 rpm的搅拌条件下将所述前驱体混合溶液加入所述混合体系中,持续搅拌2~10min,得到乳化液。
5.根据权利要求1所述的基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:将所述乳化液平铺倒入至底部有冰水的托盘容器中使其快速冷却凝固。
6.根据权利要求2所述的基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:所述前驱体溶液以金属离子计算其浓度为0.1~2.5mol/L。
7.根据权利要求1或2或6所述的基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:所述反应温度比所述油性物质熔点低5~20℃,反应时间为4~120h;所述煅烧温度为800~1400℃。
8.根据权利要求3所述的基于硬微乳液法制备球形陶瓷粉体的方法,其特征在于:所述表面活性剂为Tween-80、Span-80、AOT、曲拉通X-100、十六烷基三甲基溴化铵、月桂醇硫酸钠中的一种或其组合;所述助表面活性剂为正戊醇、正己醇、正丁醇、正辛醇、异丁醇中的一种或其组合。
9.利用权利要求1-8之一所述基于硬微乳液法制备球形陶瓷粉体的方法制得的产品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710115133.7A CN106904978B (zh) | 2017-02-28 | 2017-02-28 | 一种基于硬微乳液法制备球形陶瓷粉体的方法及其制得的产品 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710115133.7A CN106904978B (zh) | 2017-02-28 | 2017-02-28 | 一种基于硬微乳液法制备球形陶瓷粉体的方法及其制得的产品 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106904978A CN106904978A (zh) | 2017-06-30 |
CN106904978B true CN106904978B (zh) | 2019-04-30 |
Family
ID=59209067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710115133.7A Active CN106904978B (zh) | 2017-02-28 | 2017-02-28 | 一种基于硬微乳液法制备球形陶瓷粉体的方法及其制得的产品 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106904978B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109111761B (zh) * | 2018-07-26 | 2020-09-08 | 湖北工业大学 | 一种固体颗粒作稳定剂的油包水型乳液制备超细蓝色陶瓷颜料及其制备方法 |
CN114853498A (zh) * | 2022-04-22 | 2022-08-05 | 胜利油田新海兴达实业集团有限责任公司 | 一种微米陶瓷球材料及其制备方法和应用 |
CN115028447B (zh) * | 2022-05-27 | 2023-03-24 | 北京科技大学 | 一种基于相分离的亚微米级氧化锆陶瓷微球及其制备方法和应用 |
CN115521070B (zh) * | 2022-11-29 | 2023-03-28 | 广东大角鹿新材料有限公司 | 一种纳米超白面釉、瓷砖及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101077974A (zh) * | 2007-07-05 | 2007-11-28 | 清华大学 | 纳米级球形铈激活钇铝石榴石荧光粉的制备方法 |
CN101157474A (zh) * | 2007-09-20 | 2008-04-09 | 重庆工学院 | 纳米铝酸镧粉体的制备方法 |
CN101654280A (zh) * | 2009-08-25 | 2010-02-24 | 苏州大学 | 一种二氧化钛纳米粉体的制备方法 |
CN101792164A (zh) * | 2009-11-19 | 2010-08-04 | 国家纳米科学中心 | 一种真空冷冻干燥制备纳米氧化铝的方法 |
CN102583481A (zh) * | 2012-01-18 | 2012-07-18 | 兰州交通大学 | 反相微乳法制备不同粒径球形纳米碳酸钙粒子的方法 |
CN102659124A (zh) * | 2012-04-12 | 2012-09-12 | 南昌大学 | 一种溶胶-微乳-水热体系制备纳米硅微粉的方法 |
-
2017
- 2017-02-28 CN CN201710115133.7A patent/CN106904978B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101077974A (zh) * | 2007-07-05 | 2007-11-28 | 清华大学 | 纳米级球形铈激活钇铝石榴石荧光粉的制备方法 |
CN101157474A (zh) * | 2007-09-20 | 2008-04-09 | 重庆工学院 | 纳米铝酸镧粉体的制备方法 |
CN101654280A (zh) * | 2009-08-25 | 2010-02-24 | 苏州大学 | 一种二氧化钛纳米粉体的制备方法 |
CN101792164A (zh) * | 2009-11-19 | 2010-08-04 | 国家纳米科学中心 | 一种真空冷冻干燥制备纳米氧化铝的方法 |
CN102583481A (zh) * | 2012-01-18 | 2012-07-18 | 兰州交通大学 | 反相微乳法制备不同粒径球形纳米碳酸钙粒子的方法 |
CN102659124A (zh) * | 2012-04-12 | 2012-09-12 | 南昌大学 | 一种溶胶-微乳-水热体系制备纳米硅微粉的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106904978A (zh) | 2017-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106904978B (zh) | 一种基于硬微乳液法制备球形陶瓷粉体的方法及其制得的产品 | |
US8975301B2 (en) | Ultrastable particle-stabilized foams and emulsions | |
CN103803934B (zh) | 一种纳米氧化硅隔热保温材料及其常温干燥湿法工艺制备方法 | |
CN109536137A (zh) | 一种同时具有磁性和光热转换特性的相变微胶囊及其制备方法 | |
Wu et al. | Preparation of porous Al2O3 ceramics with enhanced properties by SLS using Al2O3 poly-hollow microspheres (PHMs) coated with CaSiO3 sintering additive | |
CN104069783B (zh) | 一种碳纳米管改性的复合微胶囊的制备方法 | |
CN105541369A (zh) | 一种基于冰模板法制备多孔陶瓷的定向凝固装置及方法 | |
CN105347401B (zh) | 一种可控制备单分散介孔二硫化钼纳米球的方法 | |
CN107008916A (zh) | 一种球形镍铼合金粉末及其制备方法、应用 | |
CN106041112A (zh) | 一种弥散强化钨粉的冷冻干燥制备方法 | |
CN103667762B (zh) | 一种低密度多孔金属材料的制备方法 | |
CN105129809A (zh) | 一种海胆状纳米硅酸镍空心球及其制备方法 | |
CN102285815A (zh) | 一种双孔型多孔陶瓷的制备方法 | |
CN102295917A (zh) | 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法 | |
CN109368611A (zh) | 一种通过反相微乳液制备纳米磷酸盐的方法 | |
CN109468122A (zh) | 一种“核-壳”型介孔二氧化硅/有机相变材料复合纳米胶囊及其制备方法 | |
CN108610060A (zh) | 一种光敏性颗粒稳定乳液及薄壁空心球的制备方法 | |
Ju et al. | Preparation of size-controllable monodispersed carbon@ silica core-shell microspheres and hollow silica microspheres | |
CN108298965A (zh) | 一种采用直写成型技术制备多级孔材料的方法 | |
CN109554167A (zh) | 一种相变材料纳米胶囊及其制备方法 | |
Inada et al. | Microwave-assisted sol–gel process for production of spherical mesoporous silica materials | |
Gong et al. | Design and fabrication of monodisperse hollow titania microspheres from a microfluidic droplet-template | |
CN102502818A (zh) | 热喷涂用纳米氧化锆球形团聚颗粒的一步合成法 | |
Towata et al. | Ultrasound induced formation of paraffin emulsion droplets as template for the preparation of porous zirconia | |
Sun et al. | Synthesis and characterization of hydrophobic Fe3O4 magnetic nanoparticles with high saturation magnetization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |