CN106898790A - 一种质子交换膜燃料电池膜电极回收方法 - Google Patents

一种质子交换膜燃料电池膜电极回收方法 Download PDF

Info

Publication number
CN106898790A
CN106898790A CN201510953480.8A CN201510953480A CN106898790A CN 106898790 A CN106898790 A CN 106898790A CN 201510953480 A CN201510953480 A CN 201510953480A CN 106898790 A CN106898790 A CN 106898790A
Authority
CN
China
Prior art keywords
membrane electrode
alcohol
film
catalyst
recovery method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510953480.8A
Other languages
English (en)
Inventor
孙公权
景粉宁
王素力
夏章讯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510953480.8A priority Critical patent/CN106898790A/zh
Publication of CN106898790A publication Critical patent/CN106898790A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/008Disposal or recycling of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

一种质子交换膜燃料电池膜电极回收方法,包括阴极催化层、阳极催化层和质子交换膜,将待回收膜电极置于醇水混合液中,采用超生处理或湿法球磨的方法至阴极催化层和阳极催化层于质子交换膜完全脱离;取出处理后的膜电极并对其进行清洗得回收待用的电解质膜;对所得黑色浆液依次进行固液分离、固体物质再经高温处理得含有贵金属的催化剂。与现有技术相比,本发明降低了质子交换膜燃料电池的成本。本发明的突出特点在于采用温和的方法分离质子交换膜燃料电池MEA中的催化层和膜,然后分别回收。回收得到的催化剂可重复使用或者进一步提纯获得贵金属,回收得到的电解质膜也可重复使用或者进一步溶解制备电解质膜乳液或再铸膜。

Description

一种质子交换膜燃料电池膜电极回收方法
技术领域
本发明属于燃料电池技术领域;具体的说为质子交换膜燃料电池膜电极中电解质膜和贵金属催化剂同时回收的方法。
背景技术
质子交换膜燃料电池(PEMFC)主要包括氢氧燃料电池和直接甲醇燃料电池,这两种燃料电池都具有广泛的发展潜力和应用前景。这两种燃料电池的核心部件MEA通常由阴阳极扩散层、阴阳极催化层和质子交换膜组成。其中扩散层主要材料为碳纸或者碳布,催化层主要材料为贵金属催化剂,质子交换膜为Nafion。在直接甲醇燃料电池MEA中催化剂和膜的成本占MEA总成本的75%左右,氢氧燃料电池中虽然催化剂载量低但催化剂和膜的成本也占MEA总成本的65%左右。因此同时回收贵金属催化剂和Nafion膜对于降低质子交换膜燃料电池成本,实现其商品化、产业化具有重要战略意义。
目前,传统的燃料电池MEA回收工艺主要用于回收MEA中的贵金属催化剂,采用的方法主要有焚烧法和王水浸渍法。焚烧法主要是在不同温度下将MEA中的质子交换膜、碳纸和碳除去,最终只剩余催化剂中的贵金属,最后对贵金属提纯或者溶解获得贵金属溶液。王水浸渍法师是通过王水溶解MEA中的贵金属获得贵金属溶液,这个方法贵金属催化剂回收率较低。这两种方法前者牺牲膜获得催化剂,后者催化剂收受率太低,膜也基本放弃了。从燃料电池发展趋势来看这两种方法不利于降低成本,因此同时回收催化剂和膜是燃料电池产业化发展的附加问题。
发明内容
一种质子交换膜燃料电池膜电极回收方法,包括阴极催化层、阳极催化层和质子交换膜,将待回收膜电极(MEA)除去扩散层后得到的CCM(Catalyst coatedmembrane)置于醇水混合液中,采用超生处理或湿法球磨的方法至阴极催化层和阳极催化层于质子交换膜完全脱离;取出处理后的膜并对其进行清洗得回收待用的电解质膜;对所得黑色浆液依次进行固液分离、固体物质再经高温处理得含有贵金属的催化剂或者将黑色浆液直接用于制备燃料电池催化层。
所述醇水混合液为乙醇、丙醇、异丙醇、丁醇、正丁醇中一种或两种以上与水的混合水溶液;所述醇水混合液中醇与水的摩尔比为1:9-9:1;所述醇水混合液中醇与水的摩尔比为1:5-5:1。
所述超声处理时,膜电极应全部浸润于醇水混合液中,超声处理时间为30-200min;
所述湿法球磨时,膜电极应全部浸润于醇水混合液中,转速为50-200转/min,时间为30-180min。
所述回收待用的电解质膜为Nafion系列膜。
所述对处理后的膜电极进行清洗为采用去离子水清洗或依次采用3-6wt%双氧水、0.4-0.6mol/L的硫酸水溶液和去离子于80-100℃处理清洗。
所述回收得到的黑色浆液为催化剂浆液,可直接用于制备燃料电池催化层。
所述进行固液分离为离心分离或旋转蒸发分离中的一种;所述离心分离转速为5000-8000转/min,时间为15-60min;所述旋转蒸发分离的转速30-80转/分钟,温度80-100℃,得到催化剂粉末。
所述催化剂粉末高温处理为于300-400℃条件下高温处理0.5-2h后,除去催化剂中的Nafion树脂得贵金属催化剂;再进一步800-900℃条件下高温处理0.5-2h除去催化剂中的碳,得贵金属。
所述清洗后的膜无破损时,回收所得电解质膜的电导率为70-93mS/cm,断裂伸长率为240-420%,抗拉伸强度为9-15MPa,杨氏模量为90-140mPa,可直接再利用。商品同系列Nafion膜的电导率为90mS/cm,断裂伸长率为510%,抗拉伸强度为12.9MPa,杨氏模量为128mPa。
若所清洗后的膜有破损,或回收所得电解质膜无破损,但电导率或断裂伸长率或抗拉强度或杨氏模量不满足上述条件时;进行如下处理过程之一,采用甲醇、乙醇、异丙醇、正丙醇、正丁醇的水溶液,与密闭反应釜中于150-250℃条件下溶解可获得电解质膜乳液,所述电解质膜乳液Nafion乳液。
所述对处理后得到的Nafion乳液可再进一步提炼成Nafion树脂进行再铸制备Nafion膜,再铸膜为采用DMSO、DMAc、DMF、MNP中的一种或两种以上为溶剂于120-300℃条件下回流处理Nafion树脂得铸膜液后再铸成膜,所述再铸膜为可用于燃料电池Nafion膜.
所述含有贵金属的催化剂,贵金属为Pt、Ru、Au、Pd中的一种或两种以上;所述待回收膜电极中贵金属催化剂的回收率高于95%。
所述湿法球磨采用玛瑙罐和大小不一的玛瑙球进行。
与现有技术相比,本发明提供了一种质子交换膜燃料电池膜电极(MEA)中贵金属催化剂和电解质膜同时回收的方法,从而降低了质子交换膜燃料电池的成本。本发明的突出特点在于采用温和的方法分离质子交换膜燃料电池MEA中的催化层和膜,然后分别回收。回收得到的催化剂可重复使用或者进一步提纯获得贵金属,回收得到的电解质膜也可重复使用或者进一步溶解制备电解质膜乳液或再铸膜。
附图说明
图1待回收的膜电极的照片;
图2回收得到的Nafion膜的照片;
图3超声处理后的得到的催化剂黑色浆液;
图4回收的催化剂浆液喷涂制备阳极催化层组装单电池的性能曲线;
图5实施例1回收得到的催化剂的透射电镜照片。
表1:回收得到膜的物理参数
表1回收得到的Nafion膜的物理参数
具体实施方式
对比例1
取商品Nafion115膜,6wt%双氧水、0.5mol/L硫酸以及去离子水中,80℃处理各处理60分钟,然后烘干,将膜裁出1cm宽3cm长用于测机械强度,即对比例1,再裁出3cm×3cm用于制备MEA。采用喷涂法与膜表面喷涂60wt%Pt/C催化剂制备阴极催化层,同样采用喷涂法与阳极扩散层表面喷涂PtRu黑催化剂制备阳极催化层,最后将阴极扩散层,阴极催化层,阳极一起热压得MEA。最后将MEA组装成单电池测试其性能,测试结果见图4。
实施例1
将50cm2的直接甲醇燃料电池CCM(图1阴阳极催化剂总量为9mg cm-2),放置于250mL烧杯中,加入配制好异丙醇和水比例为1:1的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡30分钟,取出残余片状物用异丙醇和水比例为1:1的醇水溶液冲洗一下,然后于6wt%双氧水、0.5mol/L硫酸和去离子水中80℃处理各处理60分钟得完整的Nafion膜(图2)。测试得到的Nafion膜的电导率为89mS/cm,机械性能相关参数中断裂伸长率为388%、抗拉伸强度为12.4MPa、杨氏模量为132MPa。将烧杯中的黑色浆液(图3)在超声分散30分钟后用于喷涂法制备直接甲醇燃料电池阳极催化层,喷涂后阳极催化层载量为贵金属3mg cm-2,与Pt载量为1.5mg cm-2的阴极催化层组装单电池,并对其进行性能测试,测试结果见图4.
实施例2
将50cm2的直接甲醇燃料电池CCM(阴阳极催化剂总量为9mg cm-2)除去扩散层后得到CCM,放置于250mL烧杯中,加入配制好异丙醇和水比例为1:2的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡30分钟,取出残余片状物用醇水溶液冲洗一下,然后于0.45mol/L硫酸、5wt%双氧水和去离子水中100℃处理各处理60分钟。测试得到的Nafion膜的电导率为84mS/cm,机械性能相关参数中断裂伸长率为394%、抗拉伸强度为13.2MPa、杨氏模量为127MPa。将烧杯中的黑色浆液在80℃条件下旋转蒸发,转速30转/分钟,除去溶剂得催化剂440mg,计算得催化剂回收率98%。
实施例3
将25cm2的直接甲醇燃料电池CCM(阴阳极催化剂总量为9mg cm-2)放置于250mL烧杯中,加入配制好正丁醇和水比例为1:1的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡30分钟,取出残余片状物用醇水溶液冲洗一下,然后于0.5mol/L硫酸、5wt%双氧水和去离子水中90℃处理各处理60分钟。测试得到的Nafion膜的电导率为92mS/cm,机械性能相关参数中断裂伸长率为406%、抗拉伸强度为12.8MPa、杨氏模量为135MPa。将烧杯中的黑色浆液黑色浆液在离心极重转速为6500转/分钟分离30分钟,出去清液将剩余固体烘干再真空干燥,催化剂213mg,计算得催化剂回收率95%。
实施例4
将25cm2的直接甲醇燃料电池CCM(阴阳极催化剂总量为9mg cm-2)剪裁成细条放置于250mL的玛瑙球磨罐中,加入直径为8mm、5mm、3mm的玛瑙球,玛瑙球占玛瑙罐总体积的1/3,最后加入配制好异丙醇和水比例为5:1的醇水溶液,液面到玛瑙罐罐体的2/3。将玛瑙罐密封好放入球磨机中,转速50转/分钟球磨200分钟,取出玛瑙罐将罐中的条状物取出用醇水溶液冲洗一下,然后于0.5mol/L硫酸、4wt%双氧水和去离子水中80℃处理各处理60分钟。处理后的Nafion膜通过高压反应釜于220℃条件下溶解于醇水体系得电解质膜乳液(Nafion乳液)。
将玛瑙罐中的玛瑙球过滤出来黑色浆液在离心极重转速为5000转/分钟分离60分钟,出去清液将剩余固体烘干再真空干燥,催化剂215mg,计算得催化剂回收率96%。
实施例5
将25cm2的直接甲醇燃料电池CCM(阴阳极催化剂总量为9mg cm-2)剪裁成细条放置于250mL的玛瑙球磨罐中,加入直径为8mm、5mm、3mm的玛瑙球,玛瑙球占玛瑙罐总体积的1/3,最后加入配制好乙醇和水比例为1:1的醇水溶液,液面到玛瑙罐罐体的2/3。将玛瑙罐密封好放入球磨机中,转速200转/分钟球磨30分钟,取出玛瑙罐将罐中的条状物取出用醇水溶液冲洗一下,然后于0.4mol/L硫酸、3wt%双氧水和去离子水中80℃处理各处理60分钟。处理后的Nafion膜通过高压反应釜于150℃条件下溶解于醇水体系得电解质膜乳液(Nafion乳液);所述对处理后得到Nafion乳液烘干后得干态Nafion树脂,然后用DMSO将其溶解得到铸膜液,最后再铸成膜。
将玛瑙罐中的玛瑙球过滤出来黑色浆液在离心极重转速为8000转/分钟分离15分钟,出去清液将剩余固体烘干再真空干燥,催化剂215mg,计算得催化剂回收率96%。
实施例6
将270cm2的氢氧燃料电池CCM(阴阳极催化剂总量为0.8mg cm-2)剪裁成小条后放置于500mL烧杯中,加入配制好异丙醇和水比例为5:1的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡60分钟,取出残余片状物用异丙醇和水比例为5:1的醇水溶液冲洗一下,然后于0.5mol/L硫酸、5wt%双氧水和去离子水中90℃处理各处理60分钟。处理后的Nafion膜放入高压反应釜于150℃条件下溶解于正丁醇、异丙醇和水的醇水体系得电解质膜乳液(Nafion乳液),将Nafion乳液烘干后用DMSO溶解,的铸膜液后再铸形成Nafion膜。将烧杯中的黑色浆液黑色浆液通过旋转蒸发仪蒸发去掉溶剂,温度80℃、转速为50转/分钟,除去溶剂得催化剂粉末。再将催化剂粉末于400℃焙烧除去Nafion树脂获得催化剂,最后将催化剂于900℃焙烧除去碳载体可获得贵金属铂。
实施例7
将200cm2的氢氧燃料电池CCM(阴阳极催化剂总量为1mg cm-2)剪裁成小条后放置于500mL烧杯中,加入配制好异丙醇和水比例为1:5的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡30分钟,取出残余片状物用异丙醇和水比例为1:5的醇水溶液冲洗一下,然后于0.5mol/L硫酸、5wt%双氧水和去离子水中90℃处理各处理60分钟。处理后的Nafion膜放入高压反应釜于150℃条件下溶解于异丙醇和水比例为1:2的醇水体系得电解质膜乳液(Nafion乳液)。将烧杯中的黑色浆液黑色浆液在离心极重转速为6500转/分钟分离30分钟,出去清液将剩余固体烘干再真空干燥,催化剂98mg,计算得催化剂回收率98%。
实施例8
将270cm2的氢氧燃料电池CCM(阴阳极催化剂总量为0.8mg cm-2)剪裁成小条后放置于500mL烧杯中,加入配制好乙醇和水比例为1:2的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡60分钟,取出残余片状物用异丙醇和水比例为1:5的醇水溶液冲洗一下,然后于0.6mol/L硫酸、4wt%双氧水和去离子水中80℃处理各处理60分钟。处理后的Nafion膜放入高压反应釜于250℃条件下溶解于异丙醇和水比例为2:1的醇水体系得电解质膜乳液(Nafion乳液)。将烧杯中的黑色浆液黑色浆液采用喷涂法喷涂于Nafion115膜表面制备直接甲醇燃料电池阴极催化层。
实施例9
将270cm2的氢氧燃料电池CCM(阴阳极催化剂总量为0.8mg cm-2)剪裁成4cm×4cm左右的小片后放置于500mL烧杯中,加入配制好异丙醇和水比例为1:1的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡30分钟,取出残余片状物用异丙醇和水比例为1:1的醇水溶液冲洗一下,然后于0.6mol/L硫酸、4wt%双氧水和去离子水中80℃处理各处理60分钟,得干净的Nafion212膜,放置于去离子水中备用。将烧杯中的黑色浆液黑色浆液采用喷涂法喷涂于Nafion212膜表面制备氢氧燃料电池催化层。
实施例10
将100cm2的直接甲醇燃料电池CCM(阴阳极催化剂总量为10mg cm-2)剪裁成4cm×4cm左右的小片后放置于250mL烧杯中,加入配制好正丙醇和水比例为1:1的醇水溶液,溶液覆盖过CCM。将烧杯放于超声波中超声震荡45分钟,取出残余片状物用正丙醇和水比例为1:1的醇水溶液冲洗一下,然后于0.5mol/L硫酸、5wt%双氧水和去离子水中80℃处理各处理60分钟,得干净的Nafion115膜,放置于去离子水中备用。将烧杯中的黑色浆液黑色浆液采用旋转蒸发仪蒸发去掉溶剂,温度100℃、转速为80转/分钟,除去溶剂得催化剂粉末。称重得983g,催化剂回收率98%。

Claims (10)

1.一种质子交换膜燃料电池膜电极回收方法,包括阴极催化层、阳极催化层和质子交换膜,其特征在于:将待回收膜电极置于醇水混合液中,采用超生处理或湿法球磨的方法至阴极催化层和阳极催化层与质子交换膜完全脱离;取出处理后的膜并对其进行清洗得回收待用的电解质膜;所得黑色浆液一方面可直接用于制备燃料电池催化层,或,另一方面对其进行固液分离、固体物质再经高温处理得含有贵金属的催化剂或者贵金属。
2.如权利要求1所述膜电极回收方法,其特征在于:所述醇水混合液为乙醇、丙醇、异丙醇、丁醇、正丁醇中一种或两种以上与水的混合水溶液;所述醇水混合液中醇与水的摩尔比为1:9-9:1;所述醇水混合液中醇与水的摩尔比为1:5-5:1。
3.如权利要求1所述膜电极回收方法,其特征在于:
所述超声处理时,膜电极应全部浸润于醇水混合液中,超声处理时间为30-200min;
所述湿法球磨时,膜电极应全部浸润于醇水混合液中,转速为50-200转/min,时间为30-180min。
4.如权利要求1所述膜电极回收方法,其特征在于:所述回收待用的电解质膜为Nafion系列膜。
5.如权利要求1所述膜电极回收方法,其特征在于:所述对处理后的膜进行清洗为采用去离子水清洗或依次采用3-6wt%双氧水、0.4-0.6mol/L的硫酸水溶液和去离子于80-100℃处理。
6.如权利要求1所述膜电极回收方法,其特征在于:所述对黑色浆液可直接用于制备燃料电池催化层,或者对其进行固液分离,分离为离心分离或旋转蒸发分离中的一种;所述离心分离转速为5000-8000转/min,时间为15-60min;所述旋转蒸发分离的转速30-80转/分钟,温度80-100℃。
7.如权利要求1所述膜电极中催化剂回收方法,其特征在于:所述高温处理为于300-400℃条件下高温处理0.5-2h后,再800-900℃条件下高温处理0.5-2h。
8.如权利要求5所述膜电极回收方法,其特征在于:
所述清洗后的膜无破损时,回收所得电解质膜的电导率为70-93mS/cm,断裂伸长率为240-420%,抗拉伸强度为9-15MPa,杨氏模量为90-140mPa,可直接再利用;
若所清洗后的膜有破损,或回收所得电解质膜无破损,但电导率或断裂伸长率或抗拉强度或杨氏模量不满足上述条件时;进行如下处理过程之一,采用甲醇、乙醇、异丙醇、正丙醇、正丁醇的水溶液,于密闭反应釜中于150-250℃条件下溶解可获得电解质膜乳液,所述电解质膜乳液Nafion乳液;
所述处理后得到的Nafion乳液可再进一步提炼成Nafion树脂进行再铸制备Nafion膜,再铸膜为采用DMSO、DMAc、DMF、MNP中的一种或两种以上为溶剂于120-300℃条件下回流处理Nafion树脂得铸膜液后再铸成膜,所述再铸膜为可用于燃料电池Nafion膜。
9.如权利要求1所述膜电极回收方法,其特征在于:所述含有贵金属的催化剂,贵金属为Pt、Ru、Au、Pd中的一种或两种以上;所述待回收膜电极中贵金属催化剂的回收率高于95%。
10.如权利要求1所述膜电极回收方法,其特征在于:所述湿法球磨采用玛瑙罐和玛瑙球进行。
CN201510953480.8A 2015-12-17 2015-12-17 一种质子交换膜燃料电池膜电极回收方法 Pending CN106898790A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510953480.8A CN106898790A (zh) 2015-12-17 2015-12-17 一种质子交换膜燃料电池膜电极回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510953480.8A CN106898790A (zh) 2015-12-17 2015-12-17 一种质子交换膜燃料电池膜电极回收方法

Publications (1)

Publication Number Publication Date
CN106898790A true CN106898790A (zh) 2017-06-27

Family

ID=59188665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510953480.8A Pending CN106898790A (zh) 2015-12-17 2015-12-17 一种质子交换膜燃料电池膜电极回收方法

Country Status (1)

Country Link
CN (1) CN106898790A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910613A (zh) * 2017-12-12 2018-04-13 深圳先进储能材料国家工程研究中心有限公司 废旧燃料电池的回收利用方法
CN110172580A (zh) * 2019-04-01 2019-08-27 武汉理工大学 质子交换膜燃料电池中催化剂钯的回收方法
CN112421067A (zh) * 2020-10-20 2021-02-26 江苏耀扬新能源科技有限公司 一种燃料电池电堆材料的回收处理方法
CN114678553A (zh) * 2022-03-25 2022-06-28 中国船舶重工集团公司第七一八研究所 一种废弃质子交换膜电解水膜电极的回收再利用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237034A1 (en) * 2005-04-20 2006-10-26 Lawrence Shore Process for recycling components of a PEM fuel cell membrane electrode assembly
CN101130192A (zh) * 2006-08-24 2008-02-27 比亚迪股份有限公司 一种从膜电极中回收催化剂的方法
CN101280362A (zh) * 2008-05-15 2008-10-08 大连交通大学 废旧质子交换膜燃料电池膜电极中的铂催化剂的回收方法
CN101347788A (zh) * 2008-08-28 2009-01-21 新源动力股份有限公司 一种从废弃的膜电极组件中回收炭纸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060237034A1 (en) * 2005-04-20 2006-10-26 Lawrence Shore Process for recycling components of a PEM fuel cell membrane electrode assembly
CN101130192A (zh) * 2006-08-24 2008-02-27 比亚迪股份有限公司 一种从膜电极中回收催化剂的方法
CN101280362A (zh) * 2008-05-15 2008-10-08 大连交通大学 废旧质子交换膜燃料电池膜电极中的铂催化剂的回收方法
CN101347788A (zh) * 2008-08-28 2009-01-21 新源动力股份有限公司 一种从废弃的膜电极组件中回收炭纸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李辰楠等: ""Nafion膜的回收及再铸膜在直接甲醇燃料电池中的应用"", 《功能材料》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910613A (zh) * 2017-12-12 2018-04-13 深圳先进储能材料国家工程研究中心有限公司 废旧燃料电池的回收利用方法
CN110172580A (zh) * 2019-04-01 2019-08-27 武汉理工大学 质子交换膜燃料电池中催化剂钯的回收方法
CN112421067A (zh) * 2020-10-20 2021-02-26 江苏耀扬新能源科技有限公司 一种燃料电池电堆材料的回收处理方法
CN112421067B (zh) * 2020-10-20 2022-05-27 江苏耀扬新能源科技有限公司 一种燃料电池电堆材料的回收处理方法
CN114678553A (zh) * 2022-03-25 2022-06-28 中国船舶重工集团公司第七一八研究所 一种废弃质子交换膜电解水膜电极的回收再利用方法
CN114678553B (zh) * 2022-03-25 2023-08-11 中国船舶重工集团公司第七一八研究所 一种废弃质子交换膜电解水膜电极的回收再利用方法

Similar Documents

Publication Publication Date Title
CN106898790A (zh) 一种质子交换膜燃料电池膜电极回收方法
CN104415669B (zh) 石墨烯衍生物复合薄膜及其制造方法和异丙醇分离薄膜
CN104103794B (zh) 一种复合质子交换膜的制备方法
JP2008511752A (ja) 貴金属を含有する燃料電池コンポーネントをリサイクルする方法
CN103490079B (zh) 一种絮状表面聚苯并咪唑膜电极的制备方法
CN106532075A (zh) 一种高Pt载量的燃料电池用Pt/C催化剂的制备方法
CN109088080A (zh) 一种质子交换膜燃料电池的回收方法
CN105085913A (zh) 一种含支化结构的磺化聚酰亚胺质子导电膜的制备方法
CN104151821B (zh) 一种应用于燃料电池催化的花状多孔碳材料复合物的制备
CN102838777B (zh) 一种speek/pani/pma复合质子交换膜的回收方法
CN101459245A (zh) 一种燃料电池膜电极关键材料的回收方法
JP6007389B2 (ja) 触媒の製造方法及び触媒
CN101777657B (zh) 用功能性氟树脂制备的燃料电池用含氟质子交换膜
CN113462015A (zh) 一种基于废旧Nafion膜制备全氟磺酸树脂溶液的方法
CN102623734B (zh) 一种燃料电池用高性能复合质子交换膜的制备方法
CN115000435B (zh) 一种质子交换膜燃料电池ccm材料全回收工艺
CN108878937A (zh) 一种Nafion/FCB复合隔膜的制备方法
CN112421067B (zh) 一种燃料电池电堆材料的回收处理方法
CN115895014A (zh) 一种高亲水性的无机掺杂复合型多孔聚合物隔膜、制备方法及应用
CN102460791B (zh) 从燃料电池膜电极配件回收催化元素的方法
CN101745390B (zh) 一种用于食盐电解的负载型银碳催化剂及其制备方法
JP5839176B2 (ja) 触媒の製造方法
CN109921076A (zh) 一种具有介孔结构的中高温质子传导材料及其制备方法
CN110010940A (zh) 一种磺化聚醚醚酮负载单一催化剂直接制备质子交换膜的方法
KR102672210B1 (ko) 초임계 분산법을 이용한 전극 소재의 분리 및 회수 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170627

RJ01 Rejection of invention patent application after publication