CN106882840B - 一种有着可见光响应的TiO2分级结构及其制备方法 - Google Patents

一种有着可见光响应的TiO2分级结构及其制备方法 Download PDF

Info

Publication number
CN106882840B
CN106882840B CN201710055593.5A CN201710055593A CN106882840B CN 106882840 B CN106882840 B CN 106882840B CN 201710055593 A CN201710055593 A CN 201710055593A CN 106882840 B CN106882840 B CN 106882840B
Authority
CN
China
Prior art keywords
tio
visible light
responded
preparation
hierarchical structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710055593.5A
Other languages
English (en)
Other versions
CN106882840A (zh
Inventor
顾修全
何容
赵宇龙
强颖怀
隋美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201710055593.5A priority Critical patent/CN106882840B/zh
Publication of CN106882840A publication Critical patent/CN106882840A/zh
Application granted granted Critical
Publication of CN106882840B publication Critical patent/CN106882840B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种有着可见光响应的TiO2分级结构的制备方法,属于半导体光催化、光电化学材料的制备方法。首先将氟盐溶解于水中,往氟盐水溶液中滴加入乙酸,持续搅拌;再将钛酸四正丁酯逐滴加入到混合溶液中,并持续搅拌;将混合溶液置于水热反应釜中,升温至140~180℃,使其反应8~16h;将反应釜自然冷却后,取出沉淀物,离心或过滤、洗涤、干燥;在空气气氛下升温至300~550℃,保温烧结0.5~3h。制备出的TiO2分级纳米结构具有比表面积大、可见光响应、单晶结构等优点,适合应用于光催化降解污染物、光电催化分解水制氢等领域。具有方法简单、无毒,且易于操作的优点。且成本低,适合进行工业化生产。

Description

一种有着可见光响应的TiO2分级结构及其制备方法
技术领域
本发明涉及一种半导体光电催化材料的制备方法,特别是一种有着可见光响应的TiO2分级纳米材料的制备方法。
背景技术
作为一种绿色、清洁、丰富的可再生能源,太阳能的应用前景十分看好,对太阳能的高效利用也也已成为全世界颇为关注的问题。传统的太阳能利用方式主要包括光热、光伏两种,其中光伏的利用效率更好,商业化前景也最好。目前,低成本光伏技术颇为值得关注,典型的有染料敏化太阳电池、钙钛矿太阳电池等。这些低成本光伏技术都需要用到TiO2这种半导体光催化材料,该材料有着性能稳定、成本低廉、比表面积大、活性高等优点。除光伏电池以外,这种材料还经常用在光解水制氢、光降解污染物等领域。然而过宽的带隙(宽达 3.0~3.2eV)使其仅能利用太阳光中极少的一部分紫外光(仅占整个太阳光谱能量的4%)。
TiO2有着丰富的微纳结构与形貌,例如纳米颗粒、纳米棒、纳米管、纳米中空微球、纳米立方体等,其中最典型的形貌莫过于P25(粒径仅约为25nm的TiO2纳米粒子),它已经商业化规模生产,被广泛应用于制备TiO2基染料敏化太阳电池。对TiO2的形貌调控以同时增强其比表面积、电荷迁移率已经成为了研究热点。由于具有多层次、多维度、多组分的耦合和协同效应,分级结构纳米材料的设计合成近年来吸引了广泛的关注。例如我们此次报道的TiO2分级材料就是由若干个单晶纳米薄片有序组装而成,它能够较好地暴露出(001)高能活性晶面,表现出较好的、潜在的光催化(或光电催化)应用价值。
此外,当前主要有几种方法增强TiO2的可见光响应,如:(1)负载上窄带隙半导体(如 CdS、CdSe等)或染料分子;(2)掺杂Fe、Zn、N、C等元素以裁剪带隙;3)对TiO2进行氢钝化(将细小的TiO2纳米颗粒置于氢气氛中热处理一段时间使其颜色呈黑色)。然而,这些方法要么稳定性差(容易发生“光腐蚀”),要么成本相当高昂,要么对可见光响应的提高力度有限。总之,当前尚无一种足够有效的方法增强TiO2的可见光响应,乃至该材料的可见光催化、光电催化活性。因此,本发明提出利用含F盐作为原料合成出F掺杂TiO2(即TiO2:F),再经退火处理使F元素掺入到晶格里面。这是一种绿色环保、低成本的制备方法,所制备出的产品不仅有着较好的可见光响应,而且产物为单晶结构、比表面积较大,适用于光催化、光解水(作为光阳极使用)等领域。
发明内容
技术问题:本发明的目的是要克服现有技术中的不足之处,提供一种有着可见光响应TiO2分级纳米结构的制备方法,以解决目前常规TiO2材料低可见光响应、低光电能量转换效率等问题。
技术方案:本发明目的有着可见光响应的TiO2分级结构的制备方法,包括如下步骤:
(a)将乙酸、氟盐作为反应原料溶解于水中形成澄清的水溶液;
(b)将钛酸四正丁酯逐滴加入澄清的水溶液中,并持续搅拌均匀;
(c)将滴加有钛酸四正丁酯的水溶液转入水热反应釜中,放入烘箱,升温至140~180℃,并保温一段时间;
(d)从反应釜中取出沉淀物质,经过离心或过滤、洗涤、干燥;
(e)将干燥后得到的白色粉末置于马弗炉中,在空气气氛下升温至300~550℃,保温烧结0.5~3h,得到由若干个单晶纳米薄片组成的可见光响应的黄色粉末TiO2纳米分级结构。
所述乙酸、氟盐作为反应原料的质量比为12:0.22~12:0.26。
所述的乙酸质量百分比浓度为57%-59%。
所述的氟盐质量百分比浓度为1.0%-1.2%;
所述的氟盐为氟化氨、氟化钠、或氟化钾。
所述在空气气氛下升温的最佳温度为400~500℃。
所述的保温一段时间在8h以上。
所述的钛酸四正丁酯质量百分比浓度为1.6%-2.0%。
有益效果:由于采用了上述技术方案,本发明制备出的TiO2分级纳米结构具有比表面积大、可见光响应、单晶结构等优点,有着可见光响应的TiO2分级结构,适合应用于光催化降解污染物、光电催化分解水制氢等领域。与现有技术相比具有如下优点:
1.本发明方法简单、无毒,且易于操作;
2.本发明方法不需要使用惰性气氛保护,成本低,适合进行工业化生产;
3.得到的纳米材料有着较大的比表面积、单晶结构和可见光响应,且形貌均一。
附图说明
图1为本发明TiO2分级结构在烧结前(呈白色,a)和400℃烧结后(呈黄色,b)的外观形貌图像;
图2为本发明一个典型的TiO2分级结构颗粒的扫描电镜图像;
图3为本发明构建TiO2分级结构其中一个纳米薄片的高分辨TEM图像及其选区电子衍射斑点图像;
图4为本发明TiO2分级结构在400℃烧结前后的XRD图谱;
图5为本发明TiO2分级结构在400℃烧结前后的XPS图谱;
图6(a)为本发明TiO2分级结构在400℃烧结前后的紫外-可见光吸收谱。
图6(b)为根据紫外-可见光吸收谱估算的本发明TiO2分级结构在400℃烧结前后的禁带宽度。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
本发明的有着可见光响应的TiO2分级结构的制备方法,具体步骤如下:
(a)将质量比为12:0.22~12:0.26的乙酸、氟盐作为反应原料溶解于水中形成澄清的水溶液;所述的乙酸质量百分比浓度为57%-59%;述的氟盐质量百分比浓度为1.0%-1.2%;所述的氟盐为氟化氨、氟化钠、或氟化钾;
(b)将质量百分比浓度为1.6%-2.0%的钛酸四正丁酯逐滴加入澄清的水溶液中,并持续搅拌均匀;
(c)将滴加有钛酸四正丁酯的水溶液转入水热反应釜中,放入烘箱,升温至140~180℃,并保温一段时间,保温一段时间在8h以上;
(d)从反应釜中取出沉淀物质,经过离心或过滤、洗涤、干燥;
(e)将干燥后得到的白色粉末置于马弗炉中,在空气气氛下升温至300~550℃,保温烧结0.5~3h,得到由若干个单晶纳米薄片有序组成的可见光响应的黄色粉末TiO2纳米分级结构,呈“玫瑰花”状;所述在空气气氛下升温的最佳温度为400~500℃。
实施例1、
将0.24g氟化铵溶解于8mL水中,然后加入12mL乙酸,搅拌5min使其均匀,再缓慢滴入0.5mL钛酸四正丁酯并持续搅拌5min,然后将得到的溶液倒入由聚四氟乙烯内胆和不锈钢外壳组成的容积为35mL的反应釜中,放入烘箱中160℃反应9h;到自然冷却后,将沉淀物取出,离心、洗涤、干燥;最后再将得到的白色粉末置于马弗炉中,在400℃下烧结1.5h,得到有着可见光响应的黄色TiO2纳米材料;该材料的宏观、微观形貌特征如图1所示;纳米结构是由一系列单晶薄片组成,呈“玫瑰花”状,图2、图3所示;在晶格里面含有少量F 元素,F元素是由于热处理过程中前驱体杂相中的F扩散而成的,如图4、5所示,是导致样品发黄(表明该材料在可见光区域吸收增强)的一个重要原因;如图6(a、b)所示,退火以后该材料的可见光区出现较强吸收,对应着其带隙由3.2eV窄化为2.55eV。
实施例2、
将0.71g氟化铵溶解于24mL水中,然后加入36mL乙酸,搅拌5min使其均匀,再缓慢滴入1.5mL钛酸四正丁酯并持续搅拌10min,然后将得到的溶液倒入由聚四氟乙烯内胆和不锈钢外壳组成的容积为100mL的反应釜中,放入烘箱中140℃反应12h;待到自然冷却后,将沉淀物取出,离心、洗涤、干燥;后再将得到的白色粉末置于马弗炉中,在450℃下烧结 2h,得到有着可见光响应的黄色TiO2纳米材料。
实施例3、
将0.93g氟化铵溶解于32mL水中,然后加入48mL乙酸,搅拌5min使其均匀,再缓慢滴入2.0mL钛酸四正丁酯并持续搅拌15min,然后将得到的溶液倒入由聚四氟乙烯内胆和不锈钢外壳组成的容积为150mL的反应釜中,放入烘箱中170℃反应15h;待到自然冷却后,将沉淀物取出,离心、洗涤、干燥;最后再将得到的白色粉末置于马弗炉中,在400℃下烧结3h,得到有着可见光响应的黄色TiO2纳米材料。

Claims (2)

1.一种有着可见光响应的TiO2分级结构的制备方法,其特征在于:利用含F盐作为原料合成出F掺杂TiO2(即TiO2:F),再经退火处理使F元素掺入到晶格里面,其制备方法如下:
(a)将质量比为12: 0.22~12:0.26的乙酸、氟盐作为反应原料溶解于水中形成澄清的水溶液;所述的乙酸质量百分比浓度为57 % - 59 %;述的氟盐质量百分比浓度为1.0 % -1.2 %;
(b)将质量百分比浓度为1.6 % - 2.0 %的钛酸四正丁酯逐滴加入澄清的水溶液中,并持续搅拌均匀;
(c)将滴加有钛酸四正丁酯的水溶液转入水热反应釜中,放入烘箱,升温至140~180℃,并保温一段时间,保温一段时间在8h以上;
(d)从反应釜中取出沉淀物质,经过离心或过滤、洗涤、干燥;
(e)将干燥后得到的白色粉末置于马弗炉中,在空气气氛下升温至400~500°C,在退火过程中样品颜色由白色转变为黄色,保温烧结1.5~3 h,得到黄色粉末,即TiO2:F分级结构晶体,TiO2:F分级结构晶体由若干个单晶纳米薄片组成,并有着可见光响应。
2.根据权利要求1所述的一种有着可见光响应的TiO2分级结构的制备方法,其特征在于:所述的氟盐为氟化氨、氟化钠、或氟化钾。
CN201710055593.5A 2017-01-25 2017-01-25 一种有着可见光响应的TiO2分级结构及其制备方法 Expired - Fee Related CN106882840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710055593.5A CN106882840B (zh) 2017-01-25 2017-01-25 一种有着可见光响应的TiO2分级结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710055593.5A CN106882840B (zh) 2017-01-25 2017-01-25 一种有着可见光响应的TiO2分级结构及其制备方法

Publications (2)

Publication Number Publication Date
CN106882840A CN106882840A (zh) 2017-06-23
CN106882840B true CN106882840B (zh) 2019-03-22

Family

ID=59176494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710055593.5A Expired - Fee Related CN106882840B (zh) 2017-01-25 2017-01-25 一种有着可见光响应的TiO2分级结构及其制备方法

Country Status (1)

Country Link
CN (1) CN106882840B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107814410B (zh) * 2017-11-03 2019-06-07 福州大学 一种三氟氧钛酸铵及其制备和应用
CN111468095A (zh) * 2020-04-09 2020-07-31 重庆市畜牧科学院 常温常压下二氧化钛的改性方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462769A (zh) * 2009-01-09 2009-06-24 厦门大学 二氧化钛纳米片及其合成方法
CN101514032A (zh) * 2009-04-03 2009-08-26 华东理工大学 一维板钛矿型纳米二氧化钛的制备方法
CN102010002A (zh) * 2009-09-04 2011-04-13 华东理工大学 超薄二氧化钛纳米片的制备方法
CN102515271A (zh) * 2011-12-22 2012-06-27 东北大学秦皇岛分校 一种具有可见光催化活性的TiO2粉体及其制备方法
CN103626226A (zh) * 2013-11-07 2014-03-12 江苏大学 一种无模板制备中空纳米二氧化钛的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101462769A (zh) * 2009-01-09 2009-06-24 厦门大学 二氧化钛纳米片及其合成方法
CN101514032A (zh) * 2009-04-03 2009-08-26 华东理工大学 一维板钛矿型纳米二氧化钛的制备方法
CN102010002A (zh) * 2009-09-04 2011-04-13 华东理工大学 超薄二氧化钛纳米片的制备方法
CN102515271A (zh) * 2011-12-22 2012-06-27 东北大学秦皇岛分校 一种具有可见光催化活性的TiO2粉体及其制备方法
CN103626226A (zh) * 2013-11-07 2014-03-12 江苏大学 一种无模板制备中空纳米二氧化钛的方法

Also Published As

Publication number Publication date
CN106882840A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
El-Maghrabi et al. Synthesis of mesoporous core-shell CdS@ TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production
CN107511154B (zh) 一种海胆状CeO2/Bi2S3复合可见光催化剂及其制备方法
CN108745378A (zh) 一种LaFeO3/ZnIn2S4复合光催化剂的制备方法
Guo et al. Hierarchical TiO 2–CuInS 2 core–shell nanoarrays for photoelectrochemical water splitting
CN109847766A (zh) 一种共面ZnIn2S4/WO3 Z体系结构催化剂材料
Guo et al. Higher-efficiency photoelectrochemical electrodes of titanium dioxide-based nanoarrays sensitized simultaneously with plasmonic silver nanoparticles and multiple metal sulfides photosensitizers
Huang et al. Enhancement of the optical absorption of carbon group elements doped ZnS in the visible light range
CN103000381A (zh) 一种制备ZnO/CuInS2核壳结构纳米棒薄膜的方法
Zhang et al. UV-Vis-NIR-light-driven Ag2O/Ag2S/CuBi2O4 double Z-scheme configuration for enhanced photocatalytic applications
CN106882840B (zh) 一种有着可见光响应的TiO2分级结构及其制备方法
CN103646989A (zh) 一种p-n型Cu2O/TiO2纳米线阵列复合薄膜的制备方法
CN110449155A (zh) 铜离子改性纳米二氧化钛制备及表征方法
CN105261483B (zh) Cu2ZnSnS4敏化TiO2光阳极及其原位制备方法和应用
CN108889289B (zh) 一种纳微米硅颗粒复合的二氧化钛光催化剂制备及其应用
Asjad et al. An intriguing case of morphology control and phase transitions in TiO2 nanostructures with enhanced photocatalytic activity
CN106848064A (zh) 基于二氧化钛‑铜铟硫量子点核壳结构的高稳定性钙钛矿太阳能电池及制备方法
Han et al. Ni-doped CdSe/ZnSnO3 double-shell nanocubes heterojunction for efficient photocatalytic hydrogen evolution
Song et al. Bi 3 TaO 7 film: a promising photoelectrode for photoelectrochemical water splitting
Geng et al. Efficient photocatalytic inactivation of E. coli by Mn-CdS/ZnCuInSe/CuInS2 quantum dots-sensitized TiO2 nanowires
CN108993490B (zh) 一种纳米银/硅颗粒复合的二氧化钛光催化剂制备
Shrivastava et al. Materials for solar cell applications: an overview of TiO 2, ZnO, upconverting organic and polymer-based solar cells
CN109289887B (zh) 一种氮、钒共掺杂二氧化钛/钽酸铋z型异质结光催化剂的制备方法及应用
CN114653382B (zh) 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用
Li et al. Facile synthesis, optical properties regulation and boosted photocatalytic degradation performance for organic pollutants of Mn: CuInS2/CdS nanocrystals
CN102553626A (zh) 一种碳氮共掺杂TiO2纳米催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190322

Termination date: 20200125