CN106830055A - 一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法 - Google Patents

一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法 Download PDF

Info

Publication number
CN106830055A
CN106830055A CN201710104059.9A CN201710104059A CN106830055A CN 106830055 A CN106830055 A CN 106830055A CN 201710104059 A CN201710104059 A CN 201710104059A CN 106830055 A CN106830055 A CN 106830055A
Authority
CN
China
Prior art keywords
nanocrystalline
cuins
buergerite
solution
twin structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710104059.9A
Other languages
English (en)
Other versions
CN106830055B (zh
Inventor
李宏
刘立旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710104059.9A priority Critical patent/CN106830055B/zh
Publication of CN106830055A publication Critical patent/CN106830055A/zh
Application granted granted Critical
Publication of CN106830055B publication Critical patent/CN106830055B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种含纤锌矿孪晶结构的CuInS2纳米晶及其制备方法,所述CuInS2纳米晶为纤锌矿结构和黄铜矿结构的混合晶相,并且在纤锌矿CuInS2纳米晶中存在孪晶结构。其制备方法步骤为:1)制备Cu和S的前驱体溶液;2)制备含纤锌矿孪晶结构的CuInS2纳米晶。本发明采用热注入法以较简单的工艺制备出含纤锌矿孪晶结构的CuInS2纳米晶,所得含纤锌矿孪晶结构的CuInS2纳米晶是一种准零维材料,其相对于没有孪晶结构的量子点而言,吸收线蓝移,便于充分吸收太阳光中高能量部分,可用于太阳能电池等领域。

Description

一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法
技术领域
本发明涉及纳米材料技术领域,具体涉及一种含纤锌矿孪晶结构的CuInS2纳米晶及其制备方法。
背景技术
CuInS2是一种Ⅰ-Ⅲ-Ⅵ三元化合物,在室温下的禁带宽度为1.53eV,属于直接半导体材料,在可见光区域内具有很高的摩尔消光系数。更重要的是,其不含有毒的重金属元素,在发光二极管(LED)、太阳能电池(Solar Cells),生物科技等领域有着广泛的应用前景。
2008年,潘道成以Cu(dedc)2(二乙基二硫代氨基甲酸铜)和In(dedc)3(二乙基二硫代氨基甲酸铟)为前驱体,将其在十二硫醇中共分解,第一次制备了黄铜矿结构以外晶型的CuInS2纳米材料:闪锌矿CuInS2纳米晶和纤锌矿CuInS2纳米晶,从而引起了许多学者对不同结构的CuInS2纳米晶的极大兴趣。2009年,Nose等人通过改变络合物配体的种类制备出尺寸为5.5nm的闪锌矿和纤锌矿结构CuInS2纳米晶。类似的,通过选择合适的溶剂,HuangWC等人在乙二胺中合成了纤锌矿结构的CuInS2纳米晶。
本发明申请人在现有研究的基础上,研发制备出一种新型的含有波浪形孪晶结构的纤锌矿CuInS2纳米晶。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种新型的含有波浪形孪晶结构的纤锌矿CuInS2纳米晶及其制备方法。
为解决上述技术问题,本发明提供的技术方案是:
提供一种含有纤锌矿孪晶结构的CuInS2纳米晶,所述CuInS2纳米晶为纤锌矿结构和黄铜矿结构的混合晶相,并且在纤锌矿CuInS2纳米晶中存在孪晶结构。
按上述方案,所述CuInS2纳米晶粒径为5~15nm。
本发明还提供上述含纤锌矿孪晶结构的CuInS2纳米晶的制备方法,其步骤如下:
1)制备Cu和S的前驱体溶液:将铜盐加入到十二硫醇中,加热搅拌,直到铜盐完全溶解,得到铜离子浓度为0.08~0.12mol/L的Cu和S的前驱体溶液;
2)制备含纤锌矿孪晶结构的CuInS2纳米晶:将In(CH3COO)3粉末加入油胺和十八烯的混合溶剂中,在惰性气氛保护下加热至80~120℃脱气处理30~60分钟得到含铟溶液,将含铟溶液加热至210~250℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,其中含铟溶液中元素In与Cu和S的前驱体溶液中元素Cu的摩尔比为1:0.8~1.2,保温2~4小时,反应完成后用乙醇对反应溶液进行沉淀、离心分离并烘干得到含纤锌矿孪晶结构的CuInS2纳米晶。
按上述方案,步骤1)所述铜盐为CuI、CuCl、CuCl2、Cu(OAc)、Cu(OAc)2、Cu(NO3)2中的一种。
按上述方案,步骤2)所述油胺和十八烯的混合溶剂中油胺体积分数为20~30%。
按上述方案,步骤2)所述含铟溶液中铟离子浓度为0.01mol/L。
本发明还提供上述含纤锌矿孪晶结构的CuInS2纳米晶在太阳能电池制备方面的应用。
本发明以十八烯作为溶剂,油胺作为包覆剂,铜盐、In(CH3COO)3和十二硫醇分别作为铜源、铟源和硫源,先制备Cu+浓度为0.08~0.12mol/L的铜和硫的前驱体溶液,然后快速注入到高温(210~250℃)的含In(CH3COO)3的十八烯和油胺溶液中并保温2~4小时,将反应产物离心清洗处理和烘干之后得到具有孪晶结构的纤锌矿CuInS2纳米晶。
本发明的有益效果在于:1、本发明采用热注入法以较简单的工艺制备出具有孪晶结构的纤锌矿CuInS2纳米晶,通过控制反应过程中油胺、十八烯混合溶液中油胺的体积分数来调控产物的孪晶结构,制备方法可控性强,工艺参数容易控制,无污染、产率高。2、本发明所得具有孪晶结构的纤锌矿CuInS2纳米晶是一种准零维材料,其相对于没有孪晶结构的量子点而言,吸收线蓝移,可用于太阳能电池等领域。
附图说明
图1为本发明实施例1所制备的产物的XRD图谱以及纤锌矿、黄铜矿结构CuInS2的pdf卡片,图中横坐标为衍射角度,纵坐标为相对强度;
图2为实施例1所制备的产物的透射电镜图片,其中图2b为图2a方形区域的高分辨率透射电镜图片;
图3为实施例1和3所制备出的产物进行X射线光电子能谱(XPS)测试分析结果;
图4为对比例1所制备出的产物的高分辨率透射电镜图片(HRTEM);
图5为实施例2和对比例1所制备出的产物的紫外可见吸收光谱(a)和由紫外可见吸收光谱数据得到的禁带宽度图(b)。
具体实施方式
本发明所述的反应所用的药品,主要包括In(CH3COO)3、CuI、十八烯、十二硫醇、油胺和无水乙醇等。首先配制好Cu和S的前驱体溶液,然后快速注入到210~250℃的含In(CH3COO)3的十八烯和油胺混合溶液中,在惰性气体保护下反应2~4小时,然后水浴冷却终止反应,将产物用无水乙醇沉淀,并离心,重复沉淀、离心步骤多次后置于烘箱中干燥得到一种含有纤锌矿孪晶结构的CuInS2纳米晶。
下面结合实施例及附图对本发明作进一步说明,但并不局限于下面所述内容。
实施例1
制备含纤锌矿孪晶结构的CuInS2纳米晶,步骤如下:
1)制备Cu和S的前驱体溶液:将0.019g CuI(0.1mmol)加入到1mL十二硫醇中,加热到60℃搅拌直到CuI完全溶解,得到CuI浓度为0.1mol/L的无色透明的Cu和S的前驱体溶液;
2)制备含纤锌矿孪晶结构的CuInS2纳米晶:配制10mL油胺和十八烯的混合溶剂,混合溶剂中油胺体积分数为20%,将混合溶剂转入容积为25mL的三口烧瓶中,向三口烧瓶中加入0.029g In(CH3COO)3(0.1mmol),然后在充氮气条件下将三口烧瓶加热至110℃脱气处理40分钟得到含铟溶液,然后将含铟溶液加热到230℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,保温3小时。反应完成后用过量的乙醇对反应溶液进行沉淀,并离心分离。重复沉淀、离心步骤三次,将得到的固体在60℃下烘干得到产物。
图1为本实施例所制备的产物的XRD图谱以及纤锌矿、黄铜矿结构CuInS2的pdf卡片,图中横坐标为衍射角度,纵坐标为相对强度。其中纤锌矿结构CuInS2的标准衍射峰由计算得出。从图中可以看出,在本实施例的条件下得到了纤锌矿结构和黄铜矿结构的混合晶相,在衍射角为28°时,衍射峰最强,这是因为其强度是黄铜矿的(112)面和纤锌矿的(002)面两组晶面的衍射强度的加和。纤锌矿的两组晶面(101)和(103)对应的衍射角度都比理论计算值向大角度方向偏移了0.8°左右,其余峰位对应良好,这是由于在纤锌矿结构CuInS2中形成了孪晶面而导致的。
图2为本实施例所制备的产物的透射电镜图片,其中图2b为图2a方形区域的高分辨率透射电镜图片。图2a显示制备的产物的尺寸为8~10nm。从高分辨率透射电镜图片上可以看出,所得的纳米晶在三维尺度上的尺寸都很小且可比拟,所以可以视作准零维材料。图2b中0.32和0.34nm的晶面间距分别对应CuInS2黄铜矿结构的(112)晶面和纤锌矿结构的(100)晶面。在纤锌矿结构的CuInS2中,可以看到明显的孪晶面和孪晶边界。该孪晶结构只能在高分辨率透射电镜图片下才能被清楚的看到,鉴于篇幅有限,所以不再展示其它处类似孪晶结构。该孪晶的大量存在可被XRD图谱上纤锌矿特征峰(101)和(103)的偏移所佐证。
图3为实施例1所制备出的产物进行X射线光电子能谱(XPS)测试分析结果。图a为产物的全谱扫描图。图b、c和d为产物的铜元素、铟元素和硫元素的窄谱扫描图。通过对该结果进行定量计算,得出实施例1所制备所得样品中铜、铟和硫的原子摩尔比分别为1.03:1:1.98。
实施例2
制备含纤锌矿孪晶结构的CuInS2纳米晶,步骤如下:
1)制备Cu和S的前驱体溶液:将0.015g CuI加入到1mL十二硫醇中,加热到60℃搅拌直到CuI完全溶解,得到CuI浓度为0.08mol/L的无色透明的Cu和S的前驱体溶液;
2)制备含纤锌矿孪晶结构的CuInS2纳米晶:配制10mL油胺和十八烯的混合溶剂,混合溶剂中油胺体积分数为25%,将混合溶剂转入容积为25mL的三口烧瓶中,向三口烧瓶中加入0.029g In(CH3COO)3(0.1mmol),然后在充氮气条件下将三口烧瓶加热至110℃脱气处理40分钟得到含铟溶液,然后将含铟溶液加热到210℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,保温2小时。反应完成后用过量的乙醇对反应溶液进行沉淀,并离心分离。重复沉淀、离心步骤三次,将得到的固体在60℃下烘干得到产物。
实施例3
制备含纤锌矿孪晶结构的CuInS2纳米晶,步骤如下:
1)制备Cu和S的前驱体溶液:将0.019g CuI加入到1mL十二硫醇中,加热到60℃搅拌直到CuI完全溶解,得到CuI浓度为0.1mol/L的无色透明的Cu和S的前驱体溶液;
2)制备含纤锌矿孪晶结构的CuInS2纳米晶:配制10mL油胺和十八烯的混合溶剂,混合溶剂中油胺体积分数为30%,将混合溶剂转入容积为25mL的三口烧瓶中,向三口烧瓶中加入0.029g In(CH3COO)3(0.1mmol),然后在充氮气条件下将三口烧瓶加热至110℃脱气处理40分钟得到含铟溶液,然后将含铟溶液加热到230℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,保温3小时。反应完成后用过量的乙醇对反应溶液进行沉淀,并离心分离。重复沉淀、离心步骤三次,将得到的固体在60℃下烘干得到产物。
图3为实施例1和3所制备出的产物进行X射线光电子能谱(XPS)测试分析结果。图a为两个样品的全谱扫描图。图b、c和d为两个样品的铜元素、铟元素和硫元素的窄谱扫描图。从图中可以看出,两个样品的所有元素的特征峰都一致,表明两个样品中所含的元素和化合价都相同。对图3的峰位进行定量分析,显示,铜、铟和硫的化合价分别为+1,+3和-2价。通过对该结果进行定量计算,得出实施例3所制备所得样品中铜、铟和硫的原子摩尔比分别为1.20:1:1.74。
实施例4
制备含纤锌矿孪晶结构的CuInS2纳米晶,步骤如下:
1)制备Cu和S的前驱体溶液:将0.023g CuI加入到1mL十二硫醇中,加热到60℃搅拌直到CuI完全溶解,得到CuI浓度为0.12mol/L的无色透明的Cu和S的前驱体溶液;
2)制备含纤锌矿孪晶结构的CuInS2纳米晶:配制10mL油胺和十八烯的混合溶剂,混合溶剂中油胺体积分数为20%,将混合溶剂转入容积为25mL的三口烧瓶中,向三口烧瓶中加入0.029g In(CH3COO)3(0.1mmol),然后在充氮气条件下将三口烧瓶加热至110℃脱气处理40分钟得到含铟溶液,然后将含铟溶液加热到250℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,保温2小时。反应完成后用过量的乙醇对反应溶液进行沉淀,并离心分离。重复沉淀、离心步骤三次,将得到的固体在60℃下烘干得到产物。
实施例5
制备含纤锌矿孪晶结构的CuInS2纳米晶,步骤如下:
1)制备Cu和S的前驱体溶液:将0.015g CuI加入到1mL十二硫醇中,加热到60℃搅拌直到CuI完全溶解,得到CuI浓度为0.08mol/L的无色透明的Cu和S的前驱体溶液;
2)制备含纤锌矿孪晶结构的CuInS2纳米晶:配制10mL油胺和十八烯的混合溶剂,混合溶剂中油胺体积分数为30%,将混合溶剂转入容积为25mL的三口烧瓶中,向三口烧瓶中加入0.029g In(CH3COO)3(0.1mmol),然后在充氮气条件下将三口烧瓶加热至110℃脱气处理40分钟得到含铟溶液,然后将含铟溶液加热到250℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,保温4小时。反应完成后用过量的乙醇对反应溶液进行沉淀,并离心分离。重复沉淀、离心步骤三次,将得到的固体在60℃下烘干得到产物。
对比例1
制备CuInS2纳米晶,步骤如下:
1)制备Cu和S的前驱体溶液:将0.023g CuI加入到1mL十二硫醇中,加热到60℃搅拌直到CuI完全溶解,得到CuI浓度为0.12mol/L的无色透明的Cu和S的前驱体溶液;
2)制备CuInS2纳米晶:配制10mL油胺和十八烯的混合溶剂,混合溶剂中油胺体积分数为5%,将混合溶剂转入容积为25mL的三口烧瓶中,向三口烧瓶中加入0.029g In(CH3COO)3(0.1mmol),然后在充氮气条件下将三口烧瓶加热至110℃脱气处理40分钟得到含铟溶液,然后将含铟溶液加热到230℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,保温3小时。反应完成后用过量的乙醇对反应溶液进行沉淀,并离心分离。重复沉淀、离心步骤三次,将得到的固体在60℃下烘干得到产物。
图4为本对比例所制备样品的高分辨率透射电镜(HRTEM)图片。图片显示该纳米晶晶格条纹清晰,无孪晶结构;晶面间距为0.34nm,对应纤锌矿铜铟硫晶体的(110)晶面。
图5为本对比例和实施例2所制备出样品的紫外可见吸收光谱(a)和由紫外可见吸收光谱数据得到的禁带宽度图(b)。由a图可以看出,两个样品对可见光都有较好的吸收;并且含有孪晶结构的铜铟硫纳米晶的吸收曲线出现了蓝移现象。将两样品的紫外可见吸收光谱数据进行变换(横坐标为电子伏特,纵坐标为(αhv)2,其中α为样品在特定波长处的吸收系数,h为普朗克常数,v为特定波长出的光子频率),得到两样品的禁带宽度分别为2.02eV和1.39eV。说明具有孪晶结构的纤锌矿铜铟硫纳米晶体具有更高的禁带宽度,有利于吸收太阳光中能量较高的波段。
显然,本领域的技术人员可以对本发明的具有孪晶结构的纤锌矿CuInS2纳米晶及其制备方法及其纳米材料进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明的权利要求及其等同的技术范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种含有纤锌矿孪晶结构的CuInS2纳米晶,其特征在于:所述CuInS2纳米晶为纤锌矿结构和黄铜矿结构的混合晶相,并且在纤锌矿CuInS2纳米晶中存在孪晶结构。
2.根据权利要求1所述的具有孪晶结构的纤锌矿CuInS2纳米晶,其特征在于:所述CuInS2纳米晶粒径为5~15nm。
3.一种权利要求1-2任一所述的含纤锌矿孪晶结构的CuInS2纳米晶的制备方法,其特征在于步骤如下:
1)制备Cu和S的前驱体溶液:将铜盐加入到十二硫醇中,加热搅拌,直到铜盐完全溶解,得到铜离子浓度为0.08~0.12mol/L的Cu和S的前驱体溶液;
2)制备含纤锌矿孪晶结构的CuInS2纳米晶:将In(CH3COO)3粉末加入油胺和十八烯的混合溶剂中,在惰性气氛保护下加热至80~120℃脱气处理30~60分钟得到含铟溶液,将含铟溶液加热至210~250℃,再向含铟溶液中迅速注入步骤1)所得Cu和S的前驱体溶液,其中含铟溶液中元素In与Cu和S的前驱体溶液中元素Cu的摩尔比为1:0.8~1.2,保温2~4小时,反应完成后用乙醇对反应溶液进行沉淀、离心分离并烘干得到含纤锌矿孪晶结构的CuInS2纳米晶。
4.根据权利要求3所述的制备方法,其特征在于步骤1)所述铜盐为CuI、CuCl、CuCl2、Cu(OAc)、Cu(OAc)2、Cu(NO3)2中的一种。
5.根据权利要求3所述的制备方法,其特征在于步骤2)所述油胺和十八烯的混合溶剂中油胺体积分数为20~30%。
6.根据权利要求3所述的制备方法,其特征在于步骤2)所述含铟溶液中铟离子浓度为0.01mol/L。
7.一种权利要求1-2任一所述的含纤锌矿孪晶结构的CuInS2纳米晶在太阳能电池制备方面的应用。
CN201710104059.9A 2017-02-24 2017-02-24 一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法 Active CN106830055B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710104059.9A CN106830055B (zh) 2017-02-24 2017-02-24 一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710104059.9A CN106830055B (zh) 2017-02-24 2017-02-24 一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法

Publications (2)

Publication Number Publication Date
CN106830055A true CN106830055A (zh) 2017-06-13
CN106830055B CN106830055B (zh) 2018-08-07

Family

ID=59134361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710104059.9A Active CN106830055B (zh) 2017-02-24 2017-02-24 一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法

Country Status (1)

Country Link
CN (1) CN106830055B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933326A (zh) * 2021-10-14 2022-01-14 山东镓数智能科技有限公司 (10-13)取向六方纤锌矿结构晶体孪晶的检测方法
CN114085667A (zh) * 2022-01-19 2022-02-25 武汉理工大学 一种铜基量子点/纳米晶复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234779A (zh) * 2008-03-06 2008-08-06 中国科学院化学研究所 铜铟硫半导体纳米粒子的制备方法
CN102502788A (zh) * 2011-10-13 2012-06-20 中国科学院过程工程研究所 一种铜铟硫三元半导体纳米颗粒的简单可控的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234779A (zh) * 2008-03-06 2008-08-06 中国科学院化学研究所 铜铟硫半导体纳米粒子的制备方法
CN102502788A (zh) * 2011-10-13 2012-06-20 中国科学院过程工程研究所 一种铜铟硫三元半导体纳米颗粒的简单可控的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
解兵兵等: "水相合成黄铜矿-纤锌矿CuInS2纳米材料", 《中国化学会第29届学术年会》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933326A (zh) * 2021-10-14 2022-01-14 山东镓数智能科技有限公司 (10-13)取向六方纤锌矿结构晶体孪晶的检测方法
CN114085667A (zh) * 2022-01-19 2022-02-25 武汉理工大学 一种铜基量子点/纳米晶复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106830055B (zh) 2018-08-07

Similar Documents

Publication Publication Date Title
CN102517003B (zh) 一种新型近红外水溶性铜铟硫三元量子点的水热制备方法
Yang et al. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method
CN103582690B (zh) 一种制备核壳纳米粒子及其溶液的方法
Yousefi et al. Synthesis and characterization of single crystal PbO nanoparticles in a gelatin medium
Hao et al. Synthesis of NiWO4 powder crystals of polyhedron for photocatalytic degradation of Rhodamine
CN102181293B (zh) 一种水溶性Zn掺杂CdTe量子点CdxZn1-xTe的制备方法
CN101786609B (zh) 一种棒形ZnSe荧光纳米晶的合成方法
CN103361066A (zh) 一步法合成CdSe/CdS核壳结构量子点的制备方法
CN102249289A (zh) 一种溶剂热制备纤锌矿ZnS细纳米棒的方法
Shi et al. Selective synthesis and photoelectric properties of Cu3SbS4 and CuSbS2 nanocrystals
Wang et al. One-step synthesis of water-soluble CdS quantum dots for silver-ion detection
CN106830055B (zh) 一种含纤锌矿孪晶结构的铜铟硫纳米晶及其制备方法
Panahi-Kalamuei et al. Self-assembly of nanoparticles to form tree-like tellurium nanostructures using novel starting reagents
Tomar et al. Optical properties of Silica capped Mn doped ZnS quantum dots
CN105540663A (zh) CuSbS2纳米晶材料的可控制备方法
Tian et al. Egg albumin-assisted sol–gel synthesis and photo-catalytic activity of SnO 2 micro/nano-structured biscuits
CN105060338A (zh) 一种相选择性铜锌锡硫纳米晶的制备方法
CN106986370B (zh) 一种立方形铜硫属纳米晶的制备方法
Zhou et al. A facile method for preparation ZnO with different morphology and their optical property
CN102086397A (zh) 水相快速制备硫醇包覆的可溶性近红外CdTe量子点的方法
CN105923648B (zh) 一种氧化锌晶体及其制备方法和应用
CN108328647A (zh) 一种纤锌矿结构CuInS2纳米晶的制备方法
CN106833648B (zh) 一种高效合成具有黄铜矿结构的CuInSe2量子点的方法
CN108517206A (zh) 一种纳米氧化锌核壳量子点的制备方法
CN104118899A (zh) ZnO/SnO2复合材料的超临界流体干燥制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant