CN105923648B - 一种氧化锌晶体及其制备方法和应用 - Google Patents

一种氧化锌晶体及其制备方法和应用 Download PDF

Info

Publication number
CN105923648B
CN105923648B CN201610165285.3A CN201610165285A CN105923648B CN 105923648 B CN105923648 B CN 105923648B CN 201610165285 A CN201610165285 A CN 201610165285A CN 105923648 B CN105923648 B CN 105923648B
Authority
CN
China
Prior art keywords
preparation
winter jujube
zinc nitrate
presoma
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610165285.3A
Other languages
English (en)
Other versions
CN105923648A (zh
Inventor
陈龙
汪建利
丁昌凤
亓昭鹏
郑玉船
王俊波
潘乐
常贯儒
李瑞锋
杨永梅
秦传高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huangshan University
Original Assignee
Huangshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huangshan University filed Critical Huangshan University
Priority to CN201610165285.3A priority Critical patent/CN105923648B/zh
Publication of CN105923648A publication Critical patent/CN105923648A/zh
Application granted granted Critical
Publication of CN105923648B publication Critical patent/CN105923648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种氧化锌晶体及其制备方法和应用。其制备步骤为:S1、配制硝酸锌溶液和沉淀剂溶液,以及冬枣汁液;S2、制备前驱体:向硝酸锌溶液中缓慢滴加尿素溶液,接着,缓慢滴加20mL冬枣汁;恒温搅拌2h后,抽滤、洗涤、在80℃烘箱中烘干;S3、制备氧化锌晶体:将S2中得到的前驱体在300℃下煅烧3h,冷却,得到ZnO晶体。所述沉淀剂采用尿素。利用上述制备方法制得的氧化锌晶体呈均匀分布的刺球状。将氧化锌晶体加入染料溶液中,搅拌均匀,在黑暗处充分吸附后,在太阳光照射条件下进行光催化降解。本发明通过仿生合成制备氧化锌晶体,较为环保,并且在光催化方面具有应用价值。

Description

一种氧化锌晶体及其制备方法和应用
技术领域
本发明属于功能材料技术领域,具体涉及一种氧化锌晶体及其制备方法和应用。
背景技术
纳米氧化锌作为一种新型的高功能无机产品,具有纳米材料的结构特点和性质,同时纳米氧化锌作为一种自激活的半导体材料,在室温条件下,禁带宽度为3.27ev,激子束缚能为60mev,这就导致其从理论角度上具备了从紫外光至可见光稳定的发射本领,并且纳米ZnO的比表面积比较大,表面活性中心比较多,这样为做催化剂提供了一定的条件,所以纳米氧化锌材料在光电材料、高效催化材料、紫外线屏蔽等方面具有广阔的应用开发前景。
现有技术中,人们用化学气相沉积(CVD)、热蒸发、电泳沉积和水热法等方法制备出了许多不同形貌的氧化锌纳米材料,如纳米棒,纳米管,纳米花,纳米纤维,纳米球等形貌。本发明旨在以物大分子为模板剂、提供一种环保的仿生合成微纳米ZnO的制备方法。
发明内容
本发明提供了一种氧化锌晶体,该氧化锌晶体通过仿生合成制备,较为环保,并且在光催化方面具有应用价值。
为实现上述目的之一提供一种氧化锌晶体的制备方法,本发明采用了以下技术方案:
S1、配制硝酸锌溶液和沉淀剂溶液:准确称量六水合硝酸锌52.0590g,制得0.7mol/L的硝酸锌溶液;准确称取尿素16.2000g,制得2.7mol/L的尿素溶液;
S2、配制冬枣汁液:将新鲜的冬枣去皮,用小刀切取25克,再用研钵将冬枣研磨成汁液;接着将研磨过后的物质抽滤,将所得滤液倒入250mL容量瓶中,定容至刻度,摇匀配制成250mL溶液,得到冬枣汁液;
S3、制备前驱体:在反应容器中加入40mL 0.7mol/L的硝酸锌溶液,向硝酸锌溶液中缓慢滴加2.7mol/L的尿素溶液40mL,接着,缓慢滴加20mL冬枣汁;然后置于恒温加热磁力搅拌器中搅拌,温度设为90℃,恒温搅拌2h;停止搅拌,待烧杯冷却后进行抽滤,并用乙醇洗涤,得到样品;最后将样品在80℃烘箱中存放4h,取出冷却后得到前驱体碱式碳酸锌Zn5(OH)6(CO3)2
S4、制备氧化锌晶体:将S3中制备所得前驱体Zn5(OH)6(CO3)2在300℃下煅烧3h后,冷却,得到产品B,即为六方形纤锌矿结构的ZnO晶体。
优选的,S2所得冬枣汁液用保鲜膜密封,并放入冰箱中保存。
进一步的,所述恒温加热磁力搅拌器搅拌速度设为10r/min。
本发明的目的之二是提供一种利用上述制备方法制得的氧化锌晶体。
优选的,该氧化锌晶体呈均匀分布的刺球状。
本发明的目的之三是提供一种如上述氧化锌晶体的应用,将氧化锌晶体加入染料(如甲基橙)溶液中,搅拌均匀,在黑暗处充分吸附3h后,在太阳光照射条件下进行光催化降解。
本发明的有益效果在于:
1)、本发明以冬枣汁液中的各种生物大分子为模板剂,利用硝酸锌、尿素/六亚甲基四胺和冬枣汁通过仿生合成制备成了刺球型的微纳米ZnO。本发明制备方法所用的实验试剂简单,无需加入有毒试剂,费用较低,回收率高,且不会对环境产生较大的污染,对环境友好。
2)、本发明利用生物原料冬枣汁液制备纳米氧化锌,试验证明冬枣汁液中的生物分子对氧化锌的合成具有调控作用,不仅使由前驱体煅烧后得到的ZnO样品结晶更加完好,具有六方形纤锌矿结构;而且还提高了光催化作用,这是由于经过冬枣汁调控制备的ZnO有更大的比表面积,使得更多的纳米ZnO吸附到染料(甲基橙)表面,使得降解速率有明显幅度的提高。
本发明冬枣汁液生物分子中含有N、O等电负性较大的原子,它们能够吸引带正电荷的Zn2+离子,提供成核位点,并对氧化锌晶体的生长过程起到调控作用,从而生成颗粒较小的刺球状ZnO晶体。
附图说明
图1为实施例1硝酸锌和尿素添加冬枣汁体系中前驱体的XRD图。
图1.1为硝酸锌和尿素添加冬枣汁体系中前驱体的TG图。
图1.2为硝酸锌和尿素添加冬枣汁体系中前驱体煅烧所得分解产物的XRD图。
图2为实施例1未添加冬枣汁的硝酸锌和尿素体系中前驱体的XRD图。
图2.1为硝酸锌和尿素体系中前驱体的TG图。
图2.2为硝酸锌和尿素体系中前驱体煅烧分解所得分解产物的XRD图。
图3.1为硝酸锌和尿素体系中前驱体煅烧所得分解产物的扫描电镜图。
图3.2为图3.1的放大图。
图4.1为硝酸锌和尿素添加冬枣汁体系中前驱体煅烧所得分解产物的扫描电镜图。
图4.2为图4.1的放大图。
图5为实施例1产物的光催化实验对照图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一、一种氧化锌晶体的制备方法
包括如下步骤:
S1、配制硝酸锌溶液和沉淀剂溶液:准确称量六水合硝酸锌52.0590g,溶解于小烧杯中,定容于250mL的容量瓶中,制得0.7mol/L的硝酸锌溶液;准确称取尿素16.2000g,在小烧杯中溶解,定容于100mL的容量瓶中,制得2.7mol/L的尿素溶液;
S2、配制冬枣汁液:将新鲜的冬枣去皮,用小刀切取25克,再用研钵将冬枣研磨成汁液;接着将研磨过后的物质抽滤,将所得滤液倒入250mL容量瓶中,定容至刻度,摇匀配制成250mL溶液,得到冬枣汁液;将冬枣汁液倒入250mL的烧杯中,用保鲜膜密封,并放入冰箱中保存;
S3、制备前驱体:在250mL的烧杯加入40mL 0.7mol/L的硝酸锌溶液,向硝酸锌溶液中缓慢滴加2.7mol/L的尿素溶液40mL,接着,缓慢滴加20mL冬枣汁;然后置于恒温加热磁力搅拌器中搅拌,搅拌速度设为10r/min,温度设为90℃,恒温搅拌2h;停止搅拌,待烧杯冷却后进行抽滤,并用4mL的乙醇洗涤,得到样品;最后将样品在80℃烘箱中存放4h,取出冷却将药品放入包装袋中,得到即为前驱体碱式碳酸锌Zn5(OH)6(CO3)2
S4、制备氧化锌晶体:将S3中制备所得前驱体Zn5(OH)6(CO3)2在300℃下煅烧3h后,冷却,得到产品B,即为六方形纤锌矿结构的ZnO晶体。
作为实施例1的对照试验:
一种氧化锌晶体的制备方法,包括如下步骤:
S1、配制硝酸锌溶液和沉淀剂溶液:准确称量六水合硝酸锌52.0590g,溶解于小烧杯中,定容于250mL的容量瓶中,制得0.7mol/L的硝酸锌溶液;准确称取尿素16.2000g,在小烧杯中溶解,定容于100mL的容量瓶中,制得2.7mol/L的尿素溶液;
S2、制备前驱体:在250mL的烧杯加入40mL 0.7mol/L的硝酸锌溶液,向硝酸锌溶液中缓慢滴加2.7mol/L的尿素溶液40mL,接着,缓慢滴加20mL蒸馏水;然后置于恒温加热磁力搅拌器中搅拌,搅拌速度设为10r/min,温度设为90℃,恒温搅拌2h;停止搅拌,待烧杯冷却后进行抽滤,并用4mL的乙醇洗涤,得到样品;最后将样品在80℃烘箱中存放4h,取出冷却将药品放入包装袋中,得到即为前驱体碱式碳酸锌Zn5(OH)6(CO3)2
S4、制备氧化锌晶体:将S3中制备所得前驱体Zn5(OH)6(CO3)2在300℃下煅烧3h后,冷却,得到产品A。
二、结构表征
如图1所示,为使用X-射线衍射仪测得硝酸锌和尿素添加冬枣汁体系中前驱体的XRD图谱,从图中我们可以看出2θ=13.2°、25.24°、28.2°、30.88°、32.84°、37.4°分别对应的Zn5(OH)6(CO3)2的(200)、(400)、(020)、(311)、(021)、(112)晶面,制备得前驱体的XRD图谱与Zn5(OH)6(CO3)2的标准卡片吻合,并且红外测试显示有O-H和碳酸根,更加确认前驱体为碱式碳酸锌Zn5(OH)6(CO3)2;如图2所示,为使用X-射线衍射仪测得未添加冬枣汁硝酸锌和尿素体系中前驱体的XRD图谱,从图中我们可以看出2θ=13°、25.64°、30.78°、33.22°、38.8°、46.82°分别对应的Zn5(OH)6(CO3)2的(200)、(400)、(311)、(002)、(420)、(131)晶面,与Zn5(OH)6(CO3)2的标准卡片基本吻合。
如图1.1所示,为硝酸锌和尿素添加冬枣汁体系中的前驱体TG图,从图中可以看到前驱体在300℃时已基本分解完全;如图2.1所示,为硝酸锌和尿素体系中的前驱体TG图,从图中可以看到前驱体在300℃时已基本分解完全。
如图1.2所示,为硝酸锌和尿素添加冬枣汁体系前驱体煅烧分解所得分解产物的XRD图谱。由图可知,衍射峰位于2θ=32°、34.64°、36.32°、47.74°、56.72°、62.72°、67.88°分别对应于ZnO的(100)、(002)、(101)、(102)、(110)、(103)、(200)晶面,与Zn0的标准卡片完全符合,其中(101)面的衍射峰最强,即晶体主要沿(101)面生长;前驱体在300℃下煅烧后,得到ZnO晶体结晶完好,属于六方形的纤锌矿结构,并且图中无杂峰,得到氧化锌晶体纯度高;如图2.2所示,为硝酸锌和尿素体系中前驱体煅烧分解所得分解产物的XRD图谱。由图可知,衍射峰位于2θ=31.72°、36.36°、56.56°、62.28°,分别对应于ZnO的(100)、(101)、(110)、(103)晶面,与Zn0的标准卡片相符,前驱体在300℃下煅烧后,能够得到的一定的ZnO晶体,属于六方形的纤锌矿结构;而图中的杂峰是碱式碳酸锌的峰位,故该体系没有完全高温分解完,仍有一定量的前驱体。
综上所述,表明冬枣汁液中生物分子对氧化锌的合成具有调控作用。
三、形貌表征
一种利用上述制备方法制得的氧化锌晶体,该氧化锌晶体呈均匀分布的刺球状。
由图3.1、3.2可见,没有加冬枣汁生成的ZnO为块状,附近的大颗粒我们推测是由小颗粒团聚成而成的,直径约为几十微米。看上去表面较为粗糙,蓬松,且分布不均匀,合成出的ZnO晶体比较凌乱。
图4.1、4.2为硝酸锌和尿素及冬枣汁液体系制得ZnO的扫描电镜图。由图可见,生成的ZnO颗粒呈刺球状,直径约为几微米,颗粒表面较为光滑,膨松,分布均匀,但与图3.1、3.2相比,颗粒较小,更接近于纳米级别。
四、光催化性能
准确称取甲基橙10mg,在小烧杯中溶解,定容于1000mL的容量瓶中,制得10mg/L甲基橙溶液,将氧化锌晶体加入该甲基橙染料溶液中,搅拌均匀,在黑暗处充分吸附3h后,在太阳光照射条件下进行光催化降解
分别取100mL质量浓度为10mg/L的甲基橙溶液于100mL烧杯中,溶液中再分别加入0.1g的样品A、B,搅拌均匀,黑暗处3h充分吸附后,在太阳光照射条件下进行光催化降解实验,并进行了空白对照试验。每隔0.5h取上层清液,用紫外-可见吸收光谱仪(设置最大吸收波长为465nm)测其吸光度,依据公式α=(1-A/A0)×100%来计算其降解率,其中A0和A分别是甲基橙溶液在降解前后的吸光度。
如图5所示,为光降解实验图,曲线A为有尿素和硝酸锌合成的纳米ZnO的光催化实验曲线,曲线B为是由尿素和硝酸锌及冬枣汁仿生合成的纳米ZnO的光催化实验曲线。可以看出:两个样品均有良好的光催化性能,然而当加入由冬枣汁液调控合成的纳米氧化锌时,甲基橙的降解速率有了更明显幅度的提高,表明生物大分子调控合成的纳米ZnO催化活性更优异。

Claims (3)

1.一种氧化锌晶体的制备方法,其特征在于包括如下步骤:
S1、配制硝酸锌溶液和沉淀剂溶液:准确称量六水合硝酸锌52.0590g,制得0.7mol/L的硝酸锌溶液;准确称取尿素16.2000g,制得2.7mol/L的尿素溶液;
S2、配制冬枣汁液:将新鲜的冬枣去皮,用小刀切取25克,再用研钵将冬枣研磨成汁液;接着将研磨过后的物质抽滤,将所得滤液倒入250mL容量瓶中,定容至刻度,摇匀配制成250mL溶液,得到冬枣汁液;
S3、制备前驱体:在反应容器中加入40mL 0.7mol/L的硝酸锌溶液,向硝酸锌溶液中缓慢滴加2.7mol/L的尿素溶液40mL,接着,缓慢滴加20mL冬枣汁;然后置于恒温加热磁力搅拌器中搅拌,温度设为90℃,恒温搅拌2h;停止搅拌,待烧杯冷却后进行抽滤,并用乙醇洗涤,得到样品;最后将样品在80℃烘箱中存放4h,取出冷却后得到前驱体碱式碳酸锌Zn5(OH)6(CO3)2
S4、制备氧化锌晶体:将S3中制备所得前驱体Zn5(OH)6(CO3)2在300℃下煅烧3h后,冷却,得到产品B,即为六方形纤锌矿结构的ZnO晶体。
2.根据权利要求1所述的一种氧化锌晶体的制备方法,其特征在于:S2所得冬枣汁液用保鲜膜密封,并放入冰箱中保存。
3.根据权利要求2所述的一种氧化锌晶体的制备方法,其特征在于:所述恒温加热磁力搅拌器搅拌速度设为10r/min。
CN201610165285.3A 2016-03-21 2016-03-21 一种氧化锌晶体及其制备方法和应用 Active CN105923648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610165285.3A CN105923648B (zh) 2016-03-21 2016-03-21 一种氧化锌晶体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610165285.3A CN105923648B (zh) 2016-03-21 2016-03-21 一种氧化锌晶体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105923648A CN105923648A (zh) 2016-09-07
CN105923648B true CN105923648B (zh) 2017-08-22

Family

ID=56840289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610165285.3A Active CN105923648B (zh) 2016-03-21 2016-03-21 一种氧化锌晶体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105923648B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390980A (zh) * 2016-11-03 2017-02-15 南京福特卡特材料科技有限公司 一种ZnO缺陷型纳米晶可见光催化剂及其制备方法
CN108855241B (zh) * 2018-06-15 2021-04-13 南京信息工程大学 一种花状光催化剂及其制备方法与应用
CN112744855A (zh) * 2021-01-09 2021-05-04 安徽大学绿色产业创新研究院 一种利用甘草地上部分提取液绿色合成纳米氧化锌的方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193935C (zh) * 2000-06-27 2005-03-23 张德福 一种制备纳米氧化锌的生产方法及其装置
CN1460643A (zh) * 2003-05-30 2003-12-10 中国科学院上海硅酸盐研究所 一种经改进的沉淀法制备纳米氧化锌粉体的方法
CN1323948C (zh) * 2005-02-02 2007-07-04 苏州大学 一种纳米氧化锌的制备方法
CN100560504C (zh) * 2007-10-31 2009-11-18 山东大学 片状多孔结构的ZnO纳米粉体的制备方法
CN101723436B (zh) * 2009-12-31 2011-05-11 厦门大学 自组装氧化锌空心球及其制备方法
CN104237464B (zh) * 2014-09-09 2016-04-06 上海纳米技术及应用国家工程研究中心有限公司 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备

Also Published As

Publication number Publication date
CN105923648A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
Ye et al. A comparative study of photocatalytic activity of ZnS photocatalyst for degradation of various dyes
Ni et al. Hydrothermal preparation and optical properties of ZnO nanorods
Jamali-Sheini et al. Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies
Ramezani et al. Synthesis, characterization, and morphological control of ZnMoO 4 nanostructures through precipitation method and its photocatalyst application
Chen et al. Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment
Yang et al. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism
Kiomarsipour et al. Characterization and optical property of ZnO nano-, submicro-and microrods synthesized by hydrothermal method on a large-scale
Luo et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light
Chakraborty et al. Room temperature chemical synthesis of flower-like ZnO nanostructures
Qian et al. Template-free synthesis of highly uniform α-GaOOH spindles and conversion to α-Ga2O3 and β-Ga2O3
Li et al. Facile synthesis of novel α-Ag 3 VO 4 nanostructures with enhanced photocatalytic activity
Tavakoli et al. Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice
CN105923648B (zh) 一种氧化锌晶体及其制备方法和应用
CN101249982B (zh) 硫化锌纳米粒子的制备方法及该方法制备得到的硫化锌纳米粒子
Peng et al. Construction of (001) facets exposed ZnO nanosheets on magnetically driven cilia film for highly active photocatalysis
CN104192900B (zh) 一种TiO2纳米晶的合成方法
Lin et al. Effects of multiple irradiations on luminescent materials and energy savings–A case study for the synthesis of BaMO4: Ln3+ (M= W, Mo; Ln= Eu, Tb) phosphors
Wang et al. Controllable synthesis of metastable γ-Bi2O3 architectures and optical properties
Lv et al. High photocatalytic property and crystal growth of spindle-like ZnO microparticles synthesized by one-step hydrothermal method
Li et al. Al-doping effects on structure and optical properties of ZnO nanostructures
CN109957394A (zh) 一种钙钛矿材料及其制备方法和应用
Zhang et al. Microwave heating synthesis and formation mechanism of chalcopyrite structured CuInS2 nanorods in deep eutectic solvent
CN109956874A (zh) 一种钙钛矿材料及其制备方法和应用
Kawashima et al. Chloride flux growth of idiomorphic A WO4 (A= Sr, Ba) single microcrystals
Choubey et al. Microwave assisted synthesis of CdS nanoparticles for structural and optical characterization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant