CN106823825A - 基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用 - Google Patents

基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用 Download PDF

Info

Publication number
CN106823825A
CN106823825A CN201710038093.0A CN201710038093A CN106823825A CN 106823825 A CN106823825 A CN 106823825A CN 201710038093 A CN201710038093 A CN 201710038093A CN 106823825 A CN106823825 A CN 106823825A
Authority
CN
China
Prior art keywords
graphene oxide
preparation
membrane
dopamine
dopa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710038093.0A
Other languages
English (en)
Inventor
刘燕
秦长春
刘占超
仇健
彭建波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710038093.0A priority Critical patent/CN106823825A/zh
Publication of CN106823825A publication Critical patent/CN106823825A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon

Abstract

本发明涉及一种基于多巴胺修饰的氧化石墨烯膜及其制备方法和应用,属于膜材料制备技术领域;本发明首先采用生物贻贝仿生得得方法制备多巴胺修饰的混和纤维素酯膜;然后在该膜表面真空抽滤氧化石墨烯溶液,干燥得到所述的膜;该膜能够分离表面活性剂稳定的油水乳液,具有分离效率高,稳定性好,可多次重复使用的优点;本发明采用真空抽滤制膜,制备方法简单,所需原料温和无毒易得,适合进行大规模生产和应用。

Description

基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用
技术领域
本发明属于膜材料制备领域,提供了一种基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用。
背景技术
随着社会经济的发展,来源于工业化生产的含油废水日益成为严重的环境问题。含油废水污染对生态系统可能造成毁灭性的破坏,对人体健康也造成潜在的危害。油类物质在废水中通常以三种状态存在:(1)浮上油,粒径大于100 μm,在石油污水中,这种油的含量高达60~80%;(2)分散油,油滴粒径介于10-100 μm,悬浮于水中;(3)乳化油,油滴粒径小于10 μm,呈乳化状态。对于第三种油水混合乳液,特别是表面活性剂稳定的油水乳液,因其具有油滴粒径小,分子之间作用复杂,不存在两相界面的特点,因此难以用一般方法对其进行有效分离。
石墨烯作为一种新兴的二维层状结构纳米碳材料,具有特殊的纳米孔道,在膜的应用方面得到越来越多的重视。近年来石墨烯膜在气体分离、海水淡化、污水处理等领域都获得了广泛的研究和应用。专利申请公布号为CN105251373A的专利成功地在多种微孔滤膜基底上制备了还原氧化石墨烯膜,能够有效地分离表面活性剂稳定的油水乳液。但该专利在制备膜的过程中采用多巴胺将亲水的氧化石墨烯还原,在一定程度上减少了膜的亲水和疏油能力,另外还原氧化石墨烯与基底微孔滤膜之间弱的黏附力会导致石墨烯膜的机械强度和稳定性能不足。
发明内容
本发明的目的在于解决现有技术存在的上述问题,提供了一种基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用
本发明首先提供一种基于多巴胺仿生修饰的氧化石墨烯膜,所述膜由片层状的氧化石墨烯均匀地堆叠在多巴胺修饰的基膜上,形成了具有纳米通道的氧化石墨烯膜。
本发明还提供所述膜的制备方法,其具体步骤如下:
(1)制备多巴胺修饰的混和纤维素酯膜:
首先将一张混和纤维素酯膜用去离子水浸泡除去表面杂质,然后置于含盐酸多巴胺的Tris-HCl缓冲溶液中;振荡反应一定时间,用去离子水清洗除去黏附不牢固的多巴胺,得到多巴胺修饰的混和纤维素酯膜。
(2)制备基于多巴胺修饰的氧化石墨烯膜:
将步骤(1)中制备的多巴胺修饰的混和纤维素酯膜固定在抽滤装置上,在过滤杯中加入一定量的氧化石墨烯水溶液,然后真空抽滤成膜,干燥,即可得到基于多巴胺修饰的氧化石墨烯膜。
上述制备方法步骤(1)中,所述混和纤维素酯膜(上海兴亚净化材料厂)为微孔滤膜,所述滤膜孔径具体为0.22或0.45 μm,滤膜直径不限,所述盐酸多巴胺的质量为20-80mg。
所述缓冲溶液为Tris-HCl溶液,所述缓冲溶液浓度具体为50 mmol/L,pH为8.5,反应所需体积量为20-80 mL。
所述反应在全温振荡培养箱中进行,反应温度为25℃,反应时间为12-24 h,转速为40-70 rpm。
上述制备方法步骤(1)中,最后制得的多巴胺修饰的混和纤维素酯膜需要用去离子水清洗。
所述氧化石墨烯溶液的浓度为1 mg/L,具体体积为30-60 mL。
所述真空抽滤压力具体为0-0.09 MPa,但不包括0。
所述干燥的温度为25-40℃,具体可为25℃。
所述基于多巴胺修饰的氧化石墨烯膜具有自支撑性质。
所制备的基于多巴胺仿生修饰的氧化石墨烯膜用于废水中油类物质的分离,具体可以用于表面活性剂稳定的油水乳液分离。
具体操作为:将制备的基于多巴胺修饰的氧化石墨烯膜固定在抽滤装置上,在过滤杯中加入表面活性剂稳定的油水乳液,然后真空过滤,收集滤液。
所述乳液为表面活性剂稳定的水包油型乳液,乳液粒径小于1 μm,可选表面活性剂为吐温20、吐温80、十六烷基三甲基溴化铵或十二烷基磺酸钠,油为石油醚、矿物油、正己烷或氯仿。
所述乳液通过如下方法制备:将表面活性剂、油和水按照比例0.3-1.3 g:4 mL:120 mL混合,并置于超声搅拌2-4 h而得到。
本发明利用基于多巴胺修饰的氧化石墨烯膜对乳液进行分离时,水能通过该膜而油被阻挡在膜外面,能够有效地实现油水分离。
与现有技术相比,本发明具有如下优点:
(1)采用生物贻贝仿生的方法,使多巴胺通过自聚合黏附修饰混和纤维素酯膜,导致混和纤维素酯膜的孔隙减少和孔径减小,有效增加了混和纤维素酯膜的截留率。该方法制备过程简单,适合大规模生产和应用。
(2)通过在恒压下抽滤,使片层状的氧化石墨烯均匀地堆叠在多巴胺修饰的基膜上。通过氧化石墨烯的含氧基团与多巴胺发生反应,使氧化石墨烯膜与基底紧密结合不易脱落破碎,保证氧化石墨烯膜的稳定性并提高膜整体的机械稳定性,有利于膜的保存和重复使用能力。
(3)膜中氧化石墨烯本身的亲水疏油能力得到有效保持,氧化石墨烯层与层之间堆叠形成的纳米通道,能够有效地截留粒径小于10 μm的油滴,结果表明该膜对表面活性剂稳定的水包油型乳液具有很好的分离效果,并且具有一定的抗污性能,能够多次循环使用。
附图说明
图1为实施例1中制备的基于多巴胺仿生修饰的氧化石墨烯膜置于室温下30天后的直观图。
图2为实施例3中涉及的商业混和纤维素酯膜(a)、多巴胺修饰的混和纤维素酯膜(b)、基于多巴胺仿生修饰的氧化石墨烯膜(c)的扫描电镜图。
图3为实施例1中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离吐温20稳定的石油醚/水乳液的效果图(左为分离前,右为分离后)。
图4为实施例2中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离吐温80稳定的矿物油/水乳液的效果图(左为分离前,右为分离后)。
图5为实施例3中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离十六烷基三甲基溴化铵稳定的正己烷/水乳液的效果图(左为分离前,右为分离后)。
图6为实施例4中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离十二烷基磺酸钠稳定的氯仿/水乳液的效果图(左为分离前,右为分离后)。
具体实施方式
下面结合具体实施例,进一步阐述本发明,但本发明的保护范围并不限于此。
实施例1:
(1)取一张孔径为0.22 μm的商业混和纤维素酯膜浸泡于去离子水中约1 h以除去表面的杂质。将洗净的膜平铺在培养皿中,依次加入20 mL 浓度为50 mmol/L Tris-HCl缓冲溶液(pH=8.5),20 mg盐酸多巴胺。然后将培养皿置于全温振荡培养箱中,反应温度设为25℃,转速设为40 rpm,反应时间为12 h。最后用去离子水浸泡备用,得到多巴胺修饰的混和纤维素酯膜。
(2)将步骤(1)制备的膜固定在真空抽滤装置上,加入60 mL 1mg/L氧化石墨烯溶液,于0.02 MPa下真空抽滤成膜。室温下自然干燥后,即得到基于多巴胺修饰的氧化石墨烯膜。
(3) 0.6 g吐温20,120 mL水和4 mL石油醚混合后,超声搅拌3 h,即制得吐温20稳定的石油醚/水乳液。
(4)将步骤(2)制备的氧化石墨烯膜固定于抽滤装置上,将步骤(3)制备的乳液加入到装置中,随着抽滤的进行,澄清的水透过膜进入接受瓶中,油则被氧化石墨烯膜阻挡,从而达到油水分离的目的,分离效率可达到97%,并且可以多次重复使用。
图1为实施例1中制备的基于多巴胺仿生修饰的氧化石墨烯膜置于室温下30天后的直观图,可以看到氧化石墨烯膜具有良好的抗皱和机械稳定性。
图3为实施例1中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离吐温20稳定的石油醚/水乳液的效果图(左为分离前,右为分离后),可以看到石油醚油滴被氧化石墨烯膜成功分离。
实施例2:
(1)取一张孔径为0.22 μm的商业混和纤维素酯膜浸泡于去离子水中约1 h以除去表面的杂质。将洗净的膜平铺在培养皿中,依次加入50 mL 50 mmol/L Tris-HCl缓冲溶液(pH=8.5),50 mg盐酸多巴胺。然后将培养皿置于全温振荡培养箱中,反应温度设为25℃,转速设为50 rpm,反应时间为15 h。最后用去离子水浸泡备用,得到多巴胺修饰的混和纤维素酯膜。
(2)将步骤(1)制备的膜固定在真空抽滤装置上,加入50 mL 1mg/L氧化石墨烯溶液,于0.05 MPa下真空抽滤成膜。室温下自然干燥后,即得到基于多巴胺修饰的氧化石墨烯膜。
(3) 1.3 g 吐温80,120 mL水和4 mL矿物油混合后,超声搅拌4 h,即制得吐温80稳定的矿物油/水乳液。
(4)将步骤(2)制备的氧化石墨烯膜固定于抽滤装置上,将步骤(3)制备的乳液加入到装置中,随着抽滤的进行,澄清的水透过膜进入接受瓶中,油则被氧化石墨烯膜阻挡,从而达到油水分离的目的,分离效率可达到92%,并且可以多次重复使用。
图4为实施例2中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离吐温80稳定的矿物油/水乳液的效果图(左为分离前,右为分离后),可以看到矿物油油滴被氧化石墨烯膜成功分离。
实施例3:
(1)取一张孔径为0.45 μm的商业混和纤维素酯膜浸泡于去离子水中约1 h以除去表面的杂质。将洗净的膜平铺在培养皿中,依次加入60 mL 50 mmol/L Tris-HCl缓冲溶液(pH=8.5),60 mg盐酸多巴胺。然后将培养皿置于全温振荡培养箱中,反应温度设为25℃,转速设为60 rpm,反应时间为20h。最后用去离子水浸泡备用,得到多巴胺修饰的混和纤维素酯膜。
(2)将步骤(1)制备的膜固定在真空抽滤装置上,加入40 mL 1mg/L氧化石墨烯溶液,于0.07 MPa下真空抽滤成膜。室温下自然干燥后,即得到基于多巴胺修饰的氧化石墨烯膜。
(3) 0.3 g 十六烷基三甲基溴化铵,120 mL水和4 mL正己烷混合后,超声搅拌2h,即制得十六烷基三甲基溴化铵稳定的正己烷/水乳液。
(4)将步骤(2)制备的氧化石墨烯膜固定于抽滤装置上,将步骤(3)制备的乳液加入到装置中,随着抽滤的进行,澄清的水透过膜进入接受瓶中,油则被氧化石墨烯膜阻挡,从而达到油水分离的目的,分离效率可达到87%,并且可以多次重复使用。
图2为实施例3中涉及的商业混和纤维素酯膜(a)、多巴胺修饰的混和纤维素酯膜(b)、基于多巴胺仿生修饰的氧化石墨烯膜(c)的扫描电镜图,可以看到多巴胺可以使混和纤维素酯膜的孔隙减少和孔径减小,氧化石墨烯膜存在着大量褶皱,紧密地堆叠在多巴胺修饰的混和纤维素酯膜表面。
图5为实施例3中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离十六烷基三甲基溴化铵稳定的正己烷/水乳液的效果图(左为分离前,右为分离后),可以看到正己烷油滴被氧化石墨烯膜成功分离。
实施例4:
(1)取一张孔径为0.45 μm的商业混和纤维素酯膜浸泡于去离子水中约1 h以除去表面的杂质。将洗净的膜平铺在培养皿中,依次加入80 mL 50 mmol/L Tris-HCl缓冲溶液(pH=8.5),80 mg盐酸多巴胺。然后将培养皿置于全温振荡培养箱中,反应温度设为25℃,转速设为70 rpm,反应时间为24 h。最后用去离子水浸泡备用,得到多巴胺修饰的混和纤维素酯膜。
(2)将步骤(1)制备的膜固定在真空抽滤装置上,加入30 mL 1mg/L氧化石墨烯溶液,于0.09 MPa下真空抽滤成膜。室温下自然干燥后,即得到基于多巴胺修饰的氧化石墨烯膜。
(3) 0.5 g 十二烷基磺酸钠,120 mL水和4 mL氯仿混合后,超声搅拌3 h,即制得十二烷基磺酸钠稳定的氯仿/水乳液。
(4)将步骤(2)制备的氧化石墨烯膜固定于抽滤装置上,将步骤(3)制备的乳液加入到装置中,随着抽滤的进行,澄清的水透过膜进入接受瓶中,油则被氧化石墨烯膜阻挡,从而达到油水分离的目的,分离效率可达到82%,并且可以多次重复使用。
图6为实施例4中制备的基于多巴胺仿生修饰的氧化石墨烯膜分离十二烷基磺酸钠稳定的氯仿/水乳液的效果图(左为分离前,右为分离后),可以看到氯仿油滴被氧化石墨烯膜成功分离。

Claims (10)

1.一种基于多巴胺仿生修饰的氧化石墨烯膜,其特征在于,所述膜由片层状的氧化石墨烯均匀地堆叠在多巴胺修饰的基膜上,形成了具有纳米通道的氧化石墨烯膜。
2.一种基于多巴胺仿生修饰的氧化石墨烯膜的制备方法,其特征在于,按照如下步骤进行:
(1)制备多巴胺修饰的混和纤维素酯膜:
首先将一张混和纤维素酯膜用去离子水浸泡除去表面杂质,然后置于含盐酸多巴胺的Tris-HCl缓冲溶液中;振荡反应一定时间,用去离子水清洗后得到多巴胺修饰的混和纤维素酯膜;
(2)制备基于多巴胺修饰的氧化石墨烯膜:
将步骤(1)中制备的多巴胺修饰的混和纤维素酯膜固定在抽滤装置上,在过滤杯中加入一定量的氧化石墨烯水溶液,然后真空抽滤成膜,干燥,即可得到基于多巴胺仿生修饰的氧化石墨烯膜。
3. 根据权利要求2所述的一种基于多巴胺仿生修饰的氧化石墨烯膜的制备方法,其特征在于,步骤(1)中所述混和纤维素酯膜为微孔滤膜,所述滤膜孔径为0.22或0.45 μm。
4. 根据权利要求2所述的一种基于多巴胺仿生修饰的氧化石墨烯膜的制备方法,其特征在于,步骤(1)中所述盐酸多巴胺的质量为20-80 mg;所述Tris-HCl缓冲溶液浓度具体为50 mmol/L,pH为8.5,反应所需体积量为20-80 mL。
5. 根据权利要求2所述的一种基于多巴胺仿生修饰的氧化石墨烯膜的制备方法,其特征在于,步骤(1)中所述震荡反应温度为25℃,反应时间为12-24 h,转速为40-70 rpm。
6. 根据权利要求2所述的一种基于多巴胺仿生修饰的氧化石墨烯膜的制备方法,其特征在于,步骤(2)中所述所述氧化石墨烯溶液的浓度为1 mg/L,用量为30-60 mL。
7. 根据权利要求2所述的一种基于多巴胺仿生修饰的氧化石墨烯膜的制备方法,其特征在于,步骤(2)中所述真空抽滤压力具体为0-0.09 MPa,但不包括0。
8.一种基于多巴胺仿生修饰的氧化石墨烯膜在油水混合乳液分离中的应用。
9. 根据权利要求8所述的应用,其特征在于,所述乳液为表面活性剂稳定的水包油型乳液,乳液粒径小于1 μm。
10.根据权利要求9所述的应用,其特征在于,所述表面活性剂为吐温20、吐温80、十六烷基三甲基溴化铵或十二烷基磺酸钠;所述的油为石油醚、矿物油、正己烷或氯仿。
CN201710038093.0A 2017-01-19 2017-01-19 基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用 Pending CN106823825A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710038093.0A CN106823825A (zh) 2017-01-19 2017-01-19 基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710038093.0A CN106823825A (zh) 2017-01-19 2017-01-19 基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106823825A true CN106823825A (zh) 2017-06-13

Family

ID=59124696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710038093.0A Pending CN106823825A (zh) 2017-01-19 2017-01-19 基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106823825A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107998904A (zh) * 2017-11-22 2018-05-08 华南理工大学 一种可用于气体分离的g-C3N4二维纳米片膜及其制备方法与在气体分离中的应用
CN108148224A (zh) * 2017-12-12 2018-06-12 明基材料有限公司 石墨烯/纤维素复合气凝胶及其制造方法
CN108159889A (zh) * 2017-12-18 2018-06-15 江苏大学 一种超亲水-超疏油的还原氧化石墨烯滤膜及用途
CN108295666A (zh) * 2018-01-12 2018-07-20 北京化工大学 一种自组装褶皱状rGO复合膜的制备方法
CN109433023A (zh) * 2018-09-14 2019-03-08 浙江工业大学 一种类石墨氮化碳插层的氧化石墨烯纳滤膜及其制备方法与应用
CN109758926A (zh) * 2018-10-31 2019-05-17 浙江工业大学 一种功能化石墨烯基纳滤膜及其制备方法与应用
CN110304624A (zh) * 2019-07-05 2019-10-08 郑州大学 碳量子点功能化氧化石墨烯层状膜及其制备与应用
CN114367204A (zh) * 2020-10-14 2022-04-19 天津大学 一种氧化石墨烯—MXene共混交联膜及其制备方法
CN114534527A (zh) * 2022-04-18 2022-05-27 重庆文理学院 一种膜过滤组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122743A1 (ko) * 2010-03-29 2011-10-06 성균관대학교 산학협력단 할로겐 원소가 포함된 환원제를 포함하는 그래핀옥사이드 환원제, 이에 의한 환원그래핀옥사이드의 제조방법 및 제조된 환원그래핀옥사이드의 용도
CN104001436A (zh) * 2014-06-16 2014-08-27 东华大学 一种氨基改性氧化石墨烯接枝改性超滤微滤膜的制备方法
CN105214512A (zh) * 2015-10-29 2016-01-06 中国科学院宁波材料技术与工程研究所 一种载体表面氧化石墨烯膜的制备方法及其应用
CN105251373A (zh) * 2015-09-16 2016-01-20 清华大学 一种还原氧化石墨烯乳液分离薄膜及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122743A1 (ko) * 2010-03-29 2011-10-06 성균관대학교 산학협력단 할로겐 원소가 포함된 환원제를 포함하는 그래핀옥사이드 환원제, 이에 의한 환원그래핀옥사이드의 제조방법 및 제조된 환원그래핀옥사이드의 용도
CN104001436A (zh) * 2014-06-16 2014-08-27 东华大学 一种氨基改性氧化石墨烯接枝改性超滤微滤膜的制备方法
CN105251373A (zh) * 2015-09-16 2016-01-20 清华大学 一种还原氧化石墨烯乳液分离薄膜及其制备方法与应用
CN105214512A (zh) * 2015-10-29 2016-01-06 中国科学院宁波材料技术与工程研究所 一种载体表面氧化石墨烯膜的制备方法及其应用

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107998904A (zh) * 2017-11-22 2018-05-08 华南理工大学 一种可用于气体分离的g-C3N4二维纳米片膜及其制备方法与在气体分离中的应用
CN107998904B (zh) * 2017-11-22 2021-05-14 华南理工大学 一种可用于气体分离的g-C3N4二维纳米片膜及其制备方法与在气体分离中的应用
CN108148224A (zh) * 2017-12-12 2018-06-12 明基材料有限公司 石墨烯/纤维素复合气凝胶及其制造方法
CN108159889A (zh) * 2017-12-18 2018-06-15 江苏大学 一种超亲水-超疏油的还原氧化石墨烯滤膜及用途
CN108295666B (zh) * 2018-01-12 2020-05-19 北京化工大学 一种自组装褶皱状rGO复合膜的制备方法
CN108295666A (zh) * 2018-01-12 2018-07-20 北京化工大学 一种自组装褶皱状rGO复合膜的制备方法
CN109433023B (zh) * 2018-09-14 2021-10-15 浙江工业大学 一种类石墨氮化碳插层的氧化石墨烯纳滤膜及其制备方法与应用
CN109433023A (zh) * 2018-09-14 2019-03-08 浙江工业大学 一种类石墨氮化碳插层的氧化石墨烯纳滤膜及其制备方法与应用
CN109758926A (zh) * 2018-10-31 2019-05-17 浙江工业大学 一种功能化石墨烯基纳滤膜及其制备方法与应用
CN109758926B (zh) * 2018-10-31 2022-02-11 浙江工业大学 一种功能化石墨烯基纳滤膜及其制备方法与应用
CN110304624A (zh) * 2019-07-05 2019-10-08 郑州大学 碳量子点功能化氧化石墨烯层状膜及其制备与应用
CN110304624B (zh) * 2019-07-05 2023-03-21 郑州大学 碳量子点功能化氧化石墨烯层状膜及其制备与应用
CN114367204A (zh) * 2020-10-14 2022-04-19 天津大学 一种氧化石墨烯—MXene共混交联膜及其制备方法
CN114534527A (zh) * 2022-04-18 2022-05-27 重庆文理学院 一种膜过滤组件

Similar Documents

Publication Publication Date Title
CN106823825A (zh) 基于多巴胺仿生修饰的氧化石墨烯膜及其制备方法和应用
Rohrbach et al. A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation
CN109985529A (zh) 一种两亲性油水分离滤膜的制备方法和使用方法
CN108771982A (zh) 一种超疏水/超亲油高效油水分离膜的制备方法
CN104998552B (zh) 一种油水分离网膜及其制备方法与应用
CN105251373A (zh) 一种还原氧化石墨烯乳液分离薄膜及其制备方法与应用
CN108722206A (zh) 一种抗污染自清洁型GO/ZnO-PVDF薄膜及其制备方法
CN102085459B (zh) 一种抗污染油水分离超滤膜的制备方法
CN106178986A (zh) 一种超亲水聚偏氟乙烯@多巴胺@二氧化硅复合材料的制备方法
CN104275099B (zh) 一种水下超疏油的改性聚偏氟乙烯膜的制备方法
Zhou et al. Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes
CN107312197A (zh) 超疏水海绵体材料及其制备方法
CN109621918A (zh) 一种氨基功能化多孔材料及其制备方法和应用
CN105327526A (zh) 一种用于分离乳化油的金属纤维毡及其改性方法和应用
Yue et al. Laminated superwetting aerogel/membrane composite with large pore sizes for efficient separation of surfactant-stabilized water-in-oil emulsions
CN107158959A (zh) 一种超亲水及水下超疏油多孔复合膜制备方法
CN108704490A (zh) 一种乳液分离超疏水皮胶原纤维膜的制备方法及其应用
CN107138048B (zh) 一种高性能氧化石墨烯/埃洛石纳米管复合水油分离膜的制备方法
CN106283894B (zh) 一种氧化石墨烯改性滤纸及其制备方法与应用
CN105536567B (zh) 一种海鞘纳米纤维素超滤膜及其制备方法和应用
Li et al. Wettable and flexible silica nanofiber/bead-based membranes for separation of oily wastewater
CN105854351A (zh) 用于油水分离的超疏水多孔膜及其制备方法和用途
CN109260768A (zh) 一种可磁性回收的四氧化三铁/多壁碳纳米管复合材料及其应用
CN106552519B (zh) 一种超亲水及水下超疏油碳酸钙杂化膜及制备方法和应用
CN105926366B (zh) 一种温度响应性油水分离滤纸及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613