CN106817131B - 基于动态振铃式运算放大器的高速流水线-逐次逼近型adc - Google Patents

基于动态振铃式运算放大器的高速流水线-逐次逼近型adc Download PDF

Info

Publication number
CN106817131B
CN106817131B CN201510857000.8A CN201510857000A CN106817131B CN 106817131 B CN106817131 B CN 106817131B CN 201510857000 A CN201510857000 A CN 201510857000A CN 106817131 B CN106817131 B CN 106817131B
Authority
CN
China
Prior art keywords
adc
successive approximation
quantization
bit
pipelined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510857000.8A
Other languages
English (en)
Other versions
CN106817131A (zh
Inventor
任俊彦
陈勇臻
王晶晶
朱凯
叶凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201510857000.8A priority Critical patent/CN106817131B/zh
Publication of CN106817131A publication Critical patent/CN106817131A/zh
Application granted granted Critical
Publication of CN106817131B publication Critical patent/CN106817131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供了一种基于动态振铃式运算放大器的高速流水线‑逐次逼近型ADC,包括:流水线型量化前端,实现该ADC中的高位的量化,其中该流水线型量化前端内设置有用于进行残差放大的动态振铃式残差放大器;余量量化后端,由两个逐次逼近型ADC子通道构成,用于实现ADC中的低位的比较量化,其中该两个逐次逼近型ADC子通道的输入端分别连接该动态振铃式残差放大器的输出端;数字选择和冗余位校准模块,与该两个逐次逼近型ADC子通道的输出端相连接并用于实现双通道时间交织的该逐次逼近型ADC的数字输出选择、数字输出的时刻对准以及冗余位校准。本发明相对于传统的流水线‑逐次逼近型ADC的高速率、低功耗的特点,减小了级间残差放大器静态功耗的开销。

Description

基于动态振铃式运算放大器的高速流水线-逐次逼近型ADC
技术领域
本发明涉及集成电路技术领域,尤其涉及一种基于动态振铃式运算放大器的高速流水线-逐次逼近型模数转换器(ADC)。
背景技术
流水线-逐次逼近型ADC是近几年在数据转换器设计领域出现的新结构,最先由Chun C.Lee和Micheal P.Flynn于2010年发表于超大规模集成电路会议(Symposium onVLSI circuits)上,基于流水线结构中最简化的两步式结构,前后两级的子ADC均采用逐次逼近型ADC来实现。该结构利用了流水线型ADC的高数据处理速率,同时结合逐次逼近型ADC在先进工艺下低功耗、高线性度的优点。两者的结合有利于在实现ADC高速高精度的同时,保障ADC的低功耗。
在流水线-逐次逼近型ADC中功耗开销最大的部分为级间的残差放大器。在单通道ADC中,残差放大器的速度由ADC的采样速率决定,精度由后级逐次逼近型ADC精度决定。所以低功耗流水线-逐次逼近型ADC中运算放大器的低功耗实现有助于整体ADC的高能效实现。
振铃式运算放大器是由Benjamin Hershberg、U.K.Moon等人于2012年发表于国际固态电路会议(ISSCC)上,最初的设计从环形振荡器出发,通过控制输出级在稳定工作时处于亚阈值状态而实现小信号放大的效果。最初实现方式是伪差分的运算放大器方式,同时通过外加偏置信号实现输出级工作状态的控制,如示意图1所示。运算放大器采用伪差分的形式,图1中给出一条差分通路的电路结构,由第一级反相器101,第二级反相器102,第三级反相器103级联而成,其中第二级反相器拆分为两组,在放大器处于重置状态,即开关105、106、107闭合的情况下,分别在电容108和109上存储不同的偏置电压,从而 使得在放大器处于正常工作时,电容108和109的电压使得第三极反相器103的NMOS管111和PMOS管110更容易进入弱反型、甚至亚阈值区域,因此提高了运算放大器的输出阻抗,使得环路可以稳定工作。图1中电容104为自校准电容,在电路处于重置状态时,存储放大器稳定工作状态下的输入端共模电压与输入信号共模电压的电压差。
随后由Yong Lim和Michael P.Flynn进行改良,分别于2014和2015年的ISSCC上发表文章,改良后的振铃式运算放大器如图2所示。Yong Lim等人的改进主要在于:(1)将伪差分电路修改为输入级全差分电路,第一级201中差分两路反相器中电流流过NMOS尾电流管204和205,静态电流大小受尾电流管204、205、偏置管208、第一级共模反馈控制管206和207等调节。共模反馈管205的反馈信号受控于输出端的共模电平。(2)将图1中分裂为两路的第二级102改进为图2中的202,通过电阻209实现第三级203中MOS管212和213稳定状态偏置点的分离,从而实现稳定的运算放大器静态工作点。(3)将图1中第二级102和第三级103中的MOS管改为高栅压管210、211、212、213等,更有利于实现运算放大器的稳定工作。
在Yong Lim等人的改进中,全差分第一级201的使用减小了第一级反相器的输出摆幅、降低了输出速率,不利于在高速电路中的实现;同时高栅压管的使用同样会降低反相器判断结果的传输速度。因此,本发明中提出了一种动态振铃式运算放大器,能够有效的提高振铃式运算放大器的稳定速度,并将该高速运算放大器应用于流水线-逐次逼近型ADC中。
发明内容
本发明的目的在于提出一种新型低功耗流水线-逐次逼近型ADC结构,其特点是利用动态振铃式运算放大器作为第一级高精度流水线级前端和第二级逐次逼近型ADC构成的余量量化后级之间的残差放大器,实现了具有流水线型ADC的高速量化特征的同时,仍保持逐次逼近型ADC的低功耗特征,同时通过动态运算放大器、以及其他模块电路的低功耗设计来进一步提高能效。
具体的,本发明提供了一种基于动态振铃式运算放大器的高速流水线-逐次逼 近型ADC,包括:
流水线型量化前端,实现该ADC中的高位的量化,其中该流水线型量化前端内设置有用于进行残差放大的动态振铃式残差放大器;
余量量化后端,由两个逐次逼近型ADC子通道构成,用于实现ADC中的低位的比较量化,其中该两个逐次逼近型ADC子通道的输入端分别连接该动态振铃式残差放大器的输出端;
数字选择和冗余位校准模块,与该两个逐次逼近型ADC子通道的输出端相连接并用于实现双通道时间交织的该逐次逼近型ADC的数字输出选择、数字输出的时刻对准以及冗余位校准。
较佳地,在上述的高速流水线-逐次逼近型ADC中,该流水线型量化前端为带冗余位的M位量化前端,其中M为正整数,该带冗余位的M位量化前端包括栅压自举采样开关、M位闪存型ADC、M位温度计编码电容型DAC、该动态振铃式残差放大器,
其中,该流水线型量化前端的输入信号分成两路,分别在该M位闪存型ADC和该M位温度计编码电容型DAC上实现信号采样。
较佳地,在上述的高速流水线-逐次逼近型ADC中,该两路的输入信号的采样电平值的偏差由该M位量化前端的冗余位消除。
较佳地,在上述的高速流水线-逐次逼近型ADC中,该动态振铃式残差放大器采用伪差分形式,其由第一级反相器、第二级反相器和第三级反相器构成,其中该第一级反相器设置有两个具有正反馈效果的第一电阻和第二电阻,该第一电阻的一端与第二电阻的一端相连,该第一电阻的另一端连接第一级反相器中的PMOS管的漏端和第二级反相器中NMOS管的栅端,且该第二电阻的另一端连接第一级反相器中的NMOS管的漏端和第二级反相器中PMOS管的栅端。
较佳地,在上述的高速流水线-逐次逼近型ADC中,进一步包括:时钟生成模块,根据外部输入的频率分别生成该流水线型量化前端的控制时钟信号以及该余量量化后端的控制时钟信号。
较佳地,在上述的高速流水线-逐次逼近型ADC中,该两个逐次逼近型ADC子通道为N位逐次逼近型ADC,其中N为正整数,该N位逐次逼近型ADC由二 进制编码的DAC、动态比较器、异步控制逻辑电路组成,
其中,该余量量化后端的控制时钟信号接入异步控制逻辑电路,以产生根据逻辑判断结果得到的异步控制时序,进而实现该二进制编码的DAC和动态比较器的控制。
较佳地,在上述的高速流水线-逐次逼近型ADC中,该两个逐次逼近型ADC子通道采用顶极板采样方式实现。
较佳地,在上述的高速流水线-逐次逼近型ADC中,该数字选择和冗余位校准模块由数字电路实现。
综上,本发明提出了一种兼顾高速和低功耗的基于振铃式运算放大器的高速流水线-逐次逼近型ADC架构。本发明中针对流水线级的低功耗设计,采用了无采样保持电路的结构;针对逐次逼近型ADC后级的高速低功耗设计,采用了顶极板采样的结构。
应当理解,本发明以上的一般性描述和以下的详细描述都是示例性和说明性的,并且旨在为如权利要求所述的本发明提供进一步的解释。
附图说明
包括附图是为提供对本发明进一步的理解,它们被收录并构成本申请的一部分,附图示出了本发明的实施例,并与本说明书一起起到解释本发明原理的作用。附图中:
图1为2012年最早发表的振铃式运算放大器结构示意图。
图2为2015年ISSCC中发表的振铃式运算放大器结构示意图。
图3为本发明提出的基于振铃式运算放大器的高速流水线-逐次逼近型ADC的一个实施例的结构示意图。
图4为本发明提出的子通道逐次逼近型ADC结构示意图。
图5为本发明提出的动态振铃式运算放大器的一个实施例。
图6为本发明中主要模块的时序控制图。
图7为本发明中流水线级冗余位设置说明图。
附图标记说明:
101、102、103为2012年最早发表的振铃式运算放大器结构中三级反相器电路,104为自校零电容,105、106、107为运算放大器重置开关,108、109为偏压存储电容,110、111为第三级输出管;
201、202、203为2015年ISSCC中发表的振铃式运算放大器结构中三级反相器电路,204、205为第一级尾电流管,206、207为第一级输出共模反馈控制管,208为偏置电流控制管,209为第三级MOS管的静态工作点分离电阻,210~213为第二级和第三级反相器电路中的MOS管;
301为流水线级前端,302为逐次逼近型ADC后级,303为数字选择和冗余位校准模块,304、311为栅压自举开关,305为M位闪存型ADC,306为M位DAC,307为振铃式运算放大器,308、309为子通道逐次逼近型ADC,310为时钟生成模块,311、312为两条信号采样通路;
401为按二进制大小分布的DAC电容阵列,402为动态比较器,403为异步控制逻辑;
501、502、503为本发明提出的高速振铃式运算放大器结构中三级反相器电路,504、505为两个正反馈电阻,506~509为一、二两级反相器电路中的反相器MOS管,510、511为后两级电路控制管,512为共模反馈电路;
601~606分别对应
Figure BDA0000862904410000051
等时序关系;
701、702为比较器失调、前后级比较器失配、采样时刻偏差等情况下出现残差传输曲线偏移情况。
具体实施方式
现在将详细参考附图描述本发明的实施例。
作为一个示例,本发明可以提供一种基于动态振铃式运算放大器的流水线-逐次逼近型ADC,其实施目标为一款200MS/s采样率、12位精度的ADC。
图3为本发明提出的基于振铃式运算放大器的高速流水线-逐次逼近型ADC的一个实施例的结构示意图。在图3所示的实施例中,基于动态振铃式运算放大器的高速流水线-逐次逼近型ADC主要包括:流水线型量化前端301、余量 量化后端302、数字选择和冗余位校准模块303以及时钟生成模块310。。
流水线型量化前端301实现该ADC中的高位(例如前M位)的量化,其中该流水线型量化前端301内设置有用于进行残差放大的动态振铃式残差放大器307。
较佳地,该流水线型量化前端301为带冗余位的M位量化前端(其中M为正整数),该带冗余位的M位量化前端301包括栅压自举采样开关304、M位闪存型ADC305、M位温度计编码电容型DAC306、该动态振铃式残差放大器307,实现ADC中高M位的量化以及残差的放大。该流水线型量化前端301的输入信号分成两路311和312,分别在该M位闪存型ADC305中的比较器前和该M位温度计编码电容型DAC306中的电容上实现信号采样。该两路的输入信号的采样电平值的偏差由该M位量化前端的冗余位消除。即,两条采样信号通路上的采样时刻偏差引入的采样电平值的偏差在本发明中通过对流水线级设置冗余位来消除。
根据上述结构,本发明的流水线型量化前端301采用无采样保持电路的结构,减少了采样保持电路中运算放大器的开销。
作为一个示例,本发明的流水线级采样量化前端301的冗余位可以设计采用0.5位冗余的设计方式,信号通过带冗余位的流水线级后的残差传输曲线如图7,图7中给出了2.5位流水线级的残差信号传输曲线示意图,在出现闪存型ADC305中比较器失调、采样时刻偏差引入采样电平误差、前后级301和302中比较器失配等情况下,均会在传输曲线中出现701和702所示的情况,通过冗余位的设计可以有效避免残差信号在放大溢出后级ADC302的输入信号范围,从而造成失码的情况。
更具体的,图5示出了本发明提出的动态振铃式运算放大器的一个实施例。考虑到本发明在高速环境下的应用,每一级反相器都应具有更高的速度。所以动态振铃式残差放大器307优选采用伪差分形式,其由第一级反相器501、第二级反相器502和第三级反相器503构成。给第一级反相器501更大的输出摆幅空间,以及更大的漏源电压。
较佳地,该第一级反相器501设置有两个具有正反馈效果的第一电阻504和第二电阻505。该第一电阻504的一端与第二电阻505的一端相连,该第一电阻504 的另一端连接第一级反相器501中的PMOS管506的漏端和第二级反相器502中NMOS管509的栅端,且该第二电阻505的另一端连接第一级反相器501中的NMOS管507的漏端和第二级反相器502中PMOS管510的栅端。如此连接方式,在振铃式运算放大器大信号建立的情况下,506和509两个MOS管更容易进入导通状态,从而实现信号的快速传递,大信号快速建立;在信号建立基本稳定,运算放大器进入小信号建立阶段,第三级503的输出阻抗逐渐呈现高阻态,第一级501中电流减小,504和505上的压降对于MOS管506和507的漏源电压进行压缩,在504和505电阻值的合理取值下,可以实现MOS管506和507的跨导最大化,从而有效提高运算放大器中小信号建立时的反应速度。本发明中在第一级反相器中引入的正反馈电阻504和505具有提高运算放大器大信号、小信号建立速度的优势,有助于实现振铃式运算放大器在高速电路中的应用。
例如,根据图5所示的结构,在
Figure BDA0000862904410000071
为高电平的情况下,后两级502和503不工作,第一级反相器501输入与输出端相连,用于实现子校零电容中电荷存储量的校准。在
Figure BDA0000862904410000072
为低电平的情况下,运算放大器工作。
为了进一步减小振铃式运算放大器的功耗,本发明中在运算放大器第二级502和第三级503中可以进一步加入受时钟信号
Figure BDA0000862904410000073
控制的尾管510和511。在运算放大器处于重置状态时,尾管510和511关闭,运算放大器后两级不工作,实现动态运算放大器的效果。此外,共模反馈电路512用于实现伪差分运算放大器的共模稳定。
余量量化后端302由两个逐次逼近型ADC子通道308和309构成,用于实现ADC中的低位的比较量化。其中,该两个逐次逼近型ADC子通道308和309的输入端分别连接该动态振铃式残差放大器307的输出端。
上述的两个逐次逼近型ADC子通道308和309优选为N位逐次逼近型ADC(其中N为正整数),如图4所示。该N位逐次逼近型ADC优选由二进制编码的DAC 401、动态比较器402、异步控制逻辑电路403组成,如图4所示,用于实现ADC后N位的比较量化。
该ADC结构优选为一款顶极板采样的异步逐次逼近型ADC。本发明中, 逐次逼近型ADC选用异步结构,由异步控制逻辑电路403的逻辑判断结果控制时序,有利于各个比特位的比较时间合理分配,实现快速比较。本发明中的顶极板采样401与传统底极板采样相比,采样结束后,可以直接进行信号比较,省略了一次信号比较以及电荷重分配的时间。从而减少了使得电容减小了一半,降低了面积开销,提高了转换速率。在本发明中,逐次逼近型ADC作为整体ADC的后级,精度要求相对较低,能够支持顶极板采样。
DAC401中的电容大小按二进制编码方式设计。在通道控制时钟
Figure BDA0000862904410000081
为高电平时,子通道为采样模式;在通道控制时钟
Figure BDA0000862904410000082
为低电平时,子通道为量化模式。通道控制时钟
Figure BDA0000862904410000083
接入异步控制逻辑电路403中用于产生根据逻辑判断结果得到的异步控制时序,实现比较器402以及DAC401的控制。
其中,该余量量化后端的控制时钟信号接入异步控制逻辑电路403,以产生根据逻辑判断结果得到的异步控制时序,进而实现该二进制编码的DAC401和动态比较器402的控制。
数字选择和冗余位校准模块303与该两个逐次逼近型ADC子通道308和309的输出端相连接并用于实现双通道时间交织的该逐次逼近型ADC的数字输出选择、数字输出的时刻对准以及冗余位校准。例如,该数字选择和冗余位校准模块303优选由数字电路实现。
时钟生成模块310根据外部输入的频率分别生成该流水线型量化前端301的控制时钟信号以及该余量量化后端302的控制时钟信号。例如,时钟生成模块310根据外部输入的频率为采样频率的正弦信号,通过时钟驱动电路、非交叠时钟生成电路、分频电路等生成ADC前端流水线级的控制时钟信号
Figure BDA0000862904410000084
Figure BDA0000862904410000085
等,以及双通道时间交织逐次逼近型ADC子通道的控制信号时钟
Figure BDA0000862904410000086
Figure BDA0000862904410000087
最后,本发明的时序图的一个实施例如图6所示,下面结合该时序图来举例说明本发明的工作过程:
(1)
Figure BDA0000862904410000088
为高电平时,流水线级前端工作于采样模式,由于DAC306中的采样电容采用底极板采样方式,电容顶极板连接共模信号,由时钟信号
Figure BDA0000862904410000089
控制栅压自举开关311,实现信号采样。在采样模式下,振铃式运算放大器处 于重置模式,不工作。
(2)
Figure BDA0000862904410000091
下降沿触发,则信号终止采样,同时闪存型ADC305根据采样得到的输入信号开始进行比较量化,在
Figure BDA0000862904410000092
上升沿到来前将量化结果传递至DAC306的参考电平选通端。
(3)
Figure BDA0000862904410000093
为高电平时,DAC306生成残差信号,并通过振铃式运算放大器放大,信号由后级子通道逐次逼近型ADC接收并完成后续量化。
(4)后级时间交织子通道ADC中子通道308由时钟信号
Figure BDA0000862904410000094
的控制,子通道309由时钟信号
Figure BDA0000862904410000095
控制。时钟信号
Figure BDA0000862904410000096
Figure BDA0000862904410000097
由时钟信号
Figure BDA0000862904410000098
分频并通过相应的逻辑电路产生。时钟信号
Figure BDA0000862904410000099
Figure BDA00008629044100000910
控制子通道308和子通道309交替工作,实现高速的信号量化与传递。
综上,本发明相对于传统的流水线-逐次逼近型ADC的高速率、低功耗的特点,减小了级间残差放大器静态功耗的开销;相对于已有的振铃式运算放大器研究成果,提高了放大器速度,使得能够应用于高速ADC中。
本领域技术人员可显见,可对本发明的上述示例性实施例进行各种修改和变型而不偏离本发明的精神和范围。因此,旨在使本发明覆盖落在所附权利要求书及其等效技术方案范围内的对本发明的修改和变型。

Claims (7)

1.一种基于动态振铃式运算放大器的高速流水线-逐次逼近型ADC,其特征在于,包括:
流水线型量化前端,实现所述ADC中的高位的量化,其中所述流水线型量化前端内设置有用于进行残差放大的动态振铃式残差放大器,所述动态振铃式残差放大器采用伪差分形式,其由第一级反相器、第二级反相器和第三级反相器构成,其中所述第一级反相器设置有两个具有正反馈效果的第一电阻和第二电阻,所述第一电阻的一端与第二电阻的一端相连,所述第一电阻的另一端连接第一级反相器中的PMOS管的漏端和第二级反相器中NMOS管的栅端,且所述第二电阻的另一端连接第一级反相器中的NMOS管的漏端和第二级反相器中PMOS管的栅端;
余量量化后端,由两个逐次逼近型ADC子通道构成,用于实现ADC中的低位的比较量化,其中所述两个逐次逼近型ADC子通道的输入端分别连接所述动态振铃式残差放大器的输出端;
数字选择和冗余位校准模块,与所述两个逐次逼近型ADC子通道的输出端相连接并用于实现双通道时间交织的所述逐次逼近型ADC的数字输出选择、数字输出的时刻对准以及冗余位校准。
2.如权利要求1所述的高速流水线-逐次逼近型ADC,其特征在于,所述流水线型量化前端为带冗余位的M位量化前端,其中M为正整数,所述带冗余位的M位量化前端包括栅压自举采样开关、M位闪存型ADC、M位温度计编码电容型DAC、所述动态振铃式残差放大器,
其中,所述流水线型量化前端的输入信号分成两路,分别在所述M位闪存型ADC和所述M位温度计编码电容型DAC上实现信号采样。
3.如权利要求2所述的高速流水线-逐次逼近型ADC,其特征在于,所述两路的输入信号的采样电平值的偏差由所述M位量化前端的冗余位消除。
4.如权利要求1所述的高速流水线-逐次逼近型ADC,其特征在于,进一步包括:时钟生成模块,根据外部输入的频率分别生成所述流水线型量化前端的控制时钟信号以及所述余量量化后端的控制时钟信号。
5.如权利要求4所述的高速流水线-逐次逼近型ADC,其特征在于,所述两个逐次逼近型ADC子通道为N位逐次逼近型ADC,其中N为正整数,所述N位逐次逼近型ADC由二进制编码的DAC、动态比较器、异步控制逻辑电路组成,
其中,所述余量量化后端的控制时钟信号接入异步控制逻辑电路,以产生根据逻辑判断结果得到的异步控制时序,进而实现所述二进制编码的DAC和动态比较器的控制。
6.如权利要求5所述的高速流水线-逐次逼近型ADC,其特征在于,所述两个逐次逼近型ADC子通道采用顶极板采样方式实现。
7.如权利要求1所述的高速流水线-逐次逼近型ADC,其特征在于,所述数字选择和冗余位校准模块由数字电路实现。
CN201510857000.8A 2015-11-30 2015-11-30 基于动态振铃式运算放大器的高速流水线-逐次逼近型adc Active CN106817131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510857000.8A CN106817131B (zh) 2015-11-30 2015-11-30 基于动态振铃式运算放大器的高速流水线-逐次逼近型adc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510857000.8A CN106817131B (zh) 2015-11-30 2015-11-30 基于动态振铃式运算放大器的高速流水线-逐次逼近型adc

Publications (2)

Publication Number Publication Date
CN106817131A CN106817131A (zh) 2017-06-09
CN106817131B true CN106817131B (zh) 2020-05-08

Family

ID=59155436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510857000.8A Active CN106817131B (zh) 2015-11-30 2015-11-30 基于动态振铃式运算放大器的高速流水线-逐次逼近型adc

Country Status (1)

Country Link
CN (1) CN106817131B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428595B (zh) * 2017-08-21 2022-06-24 瑞昱半导体股份有限公司 连续逼近式模拟至数字转换的校正装置
CN107911117B (zh) * 2017-11-22 2020-05-12 成都九芯微科技有限公司 一种高位建立时间动态校准电路
CN107896110B (zh) * 2017-12-15 2020-11-10 上海贝岭股份有限公司 自举采样开关电路、采样保持电路及时间交织型adc
CN109412593B (zh) * 2018-09-06 2022-06-03 东南大学 一种部分分裂流水线逐次逼近型adc数字电路
CN109921795B (zh) * 2019-01-24 2023-06-09 北京大学(天津滨海)新一代信息技术研究院 逐次逼近型模数转换器、基于双比较器的纠错方法及装置
CN110166053B (zh) * 2019-05-24 2024-02-09 莆田学院 高精度逐次逼近型8位模数转换装置及其控制方法
CN110176930B (zh) * 2019-05-29 2021-08-31 中国电子科技集团公司第二十四研究所 测量传输曲线跳变高度的多位分辨率子流水线结构
CN110504967B (zh) * 2019-08-30 2022-04-22 电子科技大学 一种流水线adc的级间增益失配校正方法
CN112737590A (zh) * 2019-10-28 2021-04-30 天津大学青岛海洋技术研究院 一种应用于高速大面阵adc的电流型读出电路
CN112564650B (zh) * 2020-12-21 2023-06-16 深圳市纽瑞芯科技有限公司 一种用于流水线逐次逼近型adc的残差放大器电路
CN113765523B (zh) * 2021-08-20 2023-08-01 华东师范大学 一种时域量化的高速流水线adc电路

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103518329A (zh) * 2011-04-28 2014-01-15 美国亚德诺半导体公司 预充电电容数模转换器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435978B1 (ko) * 2012-11-16 2014-09-02 서강대학교산학협력단 이중채널 sar 및 플래쉬 adc를 이용한 하이브리드 파이프라인 adc

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103518329A (zh) * 2011-04-28 2014-01-15 美国亚德诺半导体公司 预充电电容数模转换器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC";Yong Lim等;《IEEE Journal of Solid-State Circuits》;20150902;第50卷(第12期);第2904-2905页、图6-8,16 *
"A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure";Chun-Cheng Liu等;《IEEE JOURNAL OF SOLID-STATE CIRCUITS》;20100322;第45卷(第4期);第731-740页 *

Also Published As

Publication number Publication date
CN106817131A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
CN106817131B (zh) 基于动态振铃式运算放大器的高速流水线-逐次逼近型adc
WO2017091928A1 (zh) 基于动态振铃式运算放大器的高速流水线-逐次逼近型adc
US9742424B2 (en) Analog-to-digital converter
Yu et al. A 1-V 1.25-GS/S 8-bit self-calibrated flash ADC in 90-nm digital CMOS
US7333039B2 (en) Dual mode sample and hold circuit and cyclic pipeline analog to digital converter using the same
CN113193870A (zh) 一种低功耗、低版图面积的sar adc
CN103905046A (zh) 一种9级十位流水线adc电路
CN111865319A (zh) 一种基于四输入比较器的超低功耗逐次逼近型模数转换器
CN1561000B (zh) 抑制输入共模漂移的流水线结构模数转换器
CN102075192A (zh) 一种高速数字模拟转换电路及其工作方法
CN104753533A (zh) 一种分级共享式双通道流水线型模数转换器
Megha et al. Implementation of low power flash ADC by reducing comparators
US11716091B2 (en) Multi-bit resolution sub-pipeline structure for measuring jump magnitude of transmission curve
Zahrai et al. A low-power hybrid ADC architecture for high-speed medium-resolution applications
Wang et al. A 1.2 V 1.0-GS/s 8-bit voltage-buffer-free folding and interpolating ADC
CN214756299U (zh) 一种12位差分sar adc
TWI777464B (zh) 訊號轉換裝置與訊號轉換方法
Liechti et al. A 1.8 V 12-bit 230-MS/s pipeline ADC in 0.18 μm CMOS technology
Ha et al. A study of 10-bit 2-MS/s Successive Approximation Register ADC with low power in 180nm technology
Wu et al. A 42 mW 2 GS/s 4-bit flash ADC in 0.18-μm CMOS
Tsai et al. A 10-bit 50-MS/s SAR ADC for dual-voltage domain portable systems
Lai et al. SAR ADC with a body effect reduction T/H circuit for wireless power transfer applications
Li et al. A 14-Bit 2-GS/s DAC with SFDR> 70dB up to 1-GHz in 65-nm CMOS
Katic et al. A sub-mW pulse-based 5-bit flash ADC with a time-domain fully-digital reference ladder
CN219181502U (zh) 流水线型模数转换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant