CN106747628A - 一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法 - Google Patents

一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法 Download PDF

Info

Publication number
CN106747628A
CN106747628A CN201710115403.4A CN201710115403A CN106747628A CN 106747628 A CN106747628 A CN 106747628A CN 201710115403 A CN201710115403 A CN 201710115403A CN 106747628 A CN106747628 A CN 106747628A
Authority
CN
China
Prior art keywords
foam
sio
high temperature
carbon
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710115403.4A
Other languages
English (en)
Other versions
CN106747628B (zh
Inventor
陈照峰
余盛杰
汪洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710115403.4A priority Critical patent/CN106747628B/zh
Publication of CN106747628A publication Critical patent/CN106747628A/zh
Application granted granted Critical
Publication of CN106747628B publication Critical patent/CN106747628B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法,其特征在于,所述的耐高温增强SiO2气凝胶绝热材料包括碳泡沫增强体、网格状碳化硅纳米线、SiO2气凝胶,网格状碳化硅纳米线填充分割碳泡沫内部孔隙空间,SiO2气凝胶均匀填充于碳泡沫增强体,密度为0.05~0.15g/cm3,孔隙率大于90%。碳泡沫增强体为柔性碳泡沫,由三聚氰胺泡沫高温热解得到,网格状碳化硅纳米线,直径为50~20nm。化学气相沉积制备碳化硅‑碳复合泡沫,采用常压干燥技术制备SiO2气凝胶进而得到耐高温泡沫增强SiO2气凝胶绝热材料。本发明具有的优点:1、网状SiC纳米线支撑碳骨架,提高复合材料力学性能;2、碳化硅纳米线降低泡沫孔径,降低材料的热导率;3、复合材料整体密度超低。

Description

一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法
技术领域
本发明涉及一种绝热材料及其制备方法,特别涉及一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法。
背景技术
气凝胶是近年来受到广泛关注的一类多孔隔热材料。气凝胶的固相骨架由纳米颗粒交联而成,孔径在几纳米至几十纳米之间,具有很高的比表面积,最常见的气凝胶有SiO2、Al2O3及炭气凝胶等。由于气凝胶具有独特的纳米结构,其热传导路径均被明显抑制,具有极低的热导率,目前SiO2气凝胶是导热系数最低的气凝胶材料,因此,SiO2气凝胶的室温热导率可低至0.012~0.020W/m·K,比传统隔热材料的性能优异。虽然SiO2气凝胶材料的热导率很低,但是存在高脆性和低强度缺陷,极大地限制了SiO2气凝胶的实际应用。因此将气凝胶与无机物或有机物进行复合或交联,可以制备具有较好力学和隔热、磁学、催化等性能的复合SiO2气凝胶材料,但密度和导热系数也会有所增大。
柔性泡沫碳是一种碳素骨架和相互连通的孔腔组成的具有三维网状结构的轻质多孔材料,碳原子之间以一定的成键方式相互连接,密度约为5~10mg/cm3。柔性泡沫碳具有密度低、热性能优异、热导率低等优点,既是一种极具潜力的隔热材料。但柔性泡沫碳抗压强度低,在严苛、复杂的气动环境可靠性难以保证,因此,需要通过改性提高柔性碳泡沫的抗压性能。碳化硅因具有优良的热稳定性和化学稳定性,可在高达1000℃以上温度工作,并且在氧化、还原等高温环境下具有很好的抗腐蚀性、强度保持率。碳化硅晶须由于其特殊尺寸效应,其导热系数比块体低了许多,同时在柔性碳泡沫内部大孔隙填充碳化硅晶须不仅可以提高碳泡沫力学性能,并且内部孔径缩小从而降低导热系数,可以作为SiO2气凝胶的增强体。
申请号为201410157562.7的中国发明专利公开了一种弹性碳泡沫氧气还原催化剂及其制备方法,其特征在于该弹性碳泡沫氧气还原剂是在含微量氧条件下,直接高温碳化三聚氰胺泡沫材料制备而成,通过该方法制备的弹性碳泡沫具有自支撑的三维网络结构、良好的回弹性,优异的氧气还原催化性能,并且其氧气还原性能和弹性可以通过调节微氧的浓度来调控。该专利是采用三聚氰胺泡沫热解得到碳泡沫应用于氧气还原催化剂载体,与本专利应用领域不相同,因此制备工艺以及材料结构存在较大的差异。
申请号为201410743407.3的中国发明专利公开了一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法,其特征在于该耐高温高强度SiC包覆碳泡沫复合隔热材料是一种由碳泡沫和碳化硅气凝胶构成;其空气气氛中耐温性在690~700℃,比纯碳泡沫材料提高了约100℃,表观密度在0.4~0.6g/cm3,抗压强度在11~15MPa,室温热导率在0.4~0.6W/(m.K)。其制备方法是二氧化硅溶胶注入到碳泡沫材料的孔洞中,经过溶胶-凝胶、老化和干燥得到碳泡沫增强的氧化硅气凝胶复合隔热材料,然后在惰性氛围保护下进行高温热处理,从而制备出一种耐高温高强度SiC包覆碳泡沫复合隔热材料。该发明具有用料简单和工艺简捷的优点,工艺过程操作简单,容易实现规模生产。但是该制备方法得到的SiC包覆材料结构疏松,致密性差,并且导热系数很高,密度较大。
发明内容
本发明要解决的技术问题是克服现有技术的不足,旨在提供一种耐高温泡沫增强SiO2气凝胶绝热材料,其特征在于,所述的耐高温增强SiO2气凝胶绝热材料包括碳泡沫增强体、网格状碳化硅纳米线、SiO2气凝胶,网格状碳化硅纳米线填充分割碳泡沫内部孔隙空间,SiO2气凝胶均匀填充于碳泡沫增强体,密度为0.05~0.15g/cm3,孔隙率大于90%。碳泡沫增强体为柔性碳泡沫,由三聚氰胺泡沫高温热解得到,网格状碳化硅纳米线,直径为50~200nm。
本发明旨在提供一种耐高温泡沫增强SiO2气凝胶绝热材料的制备方法,其特征在于,包括以下顺序步骤:
(1)将三聚氰胺泡沫热解得到的柔性泡沫碳浸入无水乙醇中,超声振荡清洗10~30min,取出后烘箱中100~120℃烘干备用;
(2)将六水硝酸镍、无水乙醇按照1∶(10~50)的摩尔比配制硝酸镍溶液;
(4)碳泡沫浸入硝酸镍溶液中,浸渍4~10h;
(5)浸渍结束后烘干,放入气相沉积炉中,化学气相沉积碳化硅纳米线,以三氯甲基硅烷为碳化硅气源,氢气为载气,氩气作为稀释气体,沉积温度900~1100℃,沉积时间为1~3h,形成碳化硅-碳复合泡沫材料;
(6)采用氧化硅质量分数含量为10~20%的硅溶胶为SiO2气凝胶硅源,将去离子水∶无水乙醇∶硅溶胶按体积分数比为(1~1.5)∶(0.5~1)∶1混合搅拌,将碳化硅-碳复合泡沫浸入混合液中,调节PH至6~8进行胶凝反应;
(7)胶体进行老化,老化液为正硅酸乙酯与无水乙醇的混合液,正硅酸乙酯与无水乙醇体积比为1∶2~5,老化时间30~50h;
(8)经过溶剂置换-表面修饰-溶剂置换后,得到复合泡沫增强的SiO2湿凝胶;
(9)常压下梯度干燥,梯度干燥工艺为60~80℃保温1~2h,90~100℃保温1~2h,120~140℃保温1~2h,即可得到耐高温泡沫增强SiO2气凝胶绝热材料。
本发明具有的优点:1、网状SiC纳米线支撑碳骨架,提高复合材料力学性能;2、碳化硅纳米线降低泡沫孔径,降低材料的热导率;3、复合材料整体密度超低。
附图说明
图1为耐高温增强SiO2气凝胶绝热材料结构示意图
[10]为柔性碳泡沫;[20]为碳化硅晶须;[30]为SiO2气凝胶。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
实施例1
(1)将三聚氰胺泡沫热解得到的柔性泡沫碳浸入无水乙醇中,超声振荡清洗30min,取出后烘箱中100℃烘干备用;
(2)将六水硝酸镍、无水乙醇按照1∶20的摩尔比配制硝酸镍溶液;
(4)碳泡沫浸入硝酸镍溶液中,浸渍10h;
(5)浸渍结束后烘干,放入气相沉积炉中,化学气相沉积碳化硅纳米线,以三氯甲基硅烷为碳化硅气源,氢气为载气,氩气作为稀释气体,沉积温度1100℃,沉积时间为2h,形成碳化硅-碳复合泡沫材料;
(6)采用氧化硅质量分数含量为15%的硅溶胶为SiO2气凝胶硅源,将去离子水∶无水乙醇∶硅溶胶按体积分数比为1.5∶1∶1混合搅拌,将碳化硅-碳复合泡沫浸入混合液中,调节PH至7进行胶凝反应;
(7)胶体进行老化,老化液为正硅酸乙酯与无水乙醇的混合液,正硅酸乙酯与无水乙醇体积比为1∶2,老化时间40h;
(8)经过溶剂置换-表面修饰-溶剂置换后,得到复合泡沫增强的SiO2湿凝胶;
(9)常压下梯度干燥,梯度干燥工艺为80℃保温1h,100℃保温2h,120℃保温2h,即可得到耐高温泡沫增强SiO2气凝胶绝热材料。
实施例2
(1)将三聚氰胺泡沫热解得到的柔性泡沫碳浸入无水乙醇中,超声振荡清洗30min,取出后烘箱中100℃烘干备用;
(2)将六水硝酸镍、无水乙醇按照1∶10的摩尔比配制硝酸镍溶液;
(4)碳泡沫浸入硝酸镍溶液中,浸渍10h;
(5)浸渍结束后烘干,放入气相沉积炉中,化学气相沉积碳化硅纳米线,以三氯甲基硅烷为碳化硅气源,氢气为载气,氩气作为稀释气体,沉积温度1100℃,沉积时间为2h,形成碳化硅-碳复合泡沫材料;
(6)采用氧化硅质量分数含量为15%的硅溶胶为SiO2气凝胶硅源,将去离子水∶无水乙醇∶硅溶胶按体积分数比为1.5∶1∶1混合搅拌,将碳化硅-碳复合泡沫浸入混合液中,调节PH至7进行胶凝反应;
(7)胶体进行老化,老化液为正硅酸乙酯与无水乙醇的混合液,正硅酸乙酯与无水乙醇体积比为1∶2,老化时间40h;
(8)经过溶剂置换-表面修饰-溶剂置换后,得到复合泡沫增强的SiO2湿凝胶;
(9)常压下梯度干燥,梯度干燥工艺为80℃保温1h,100℃保温2h,120℃保温2h,即可得到耐高温泡沫增强SiO2气凝胶绝热材料。
上述仅为本发明的两个具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (4)

1.一种耐高温泡沫增强SiO2气凝胶绝热材料,其特征在于,所述的耐高温增强SiO2气凝胶绝热材料包括碳泡沫增强体、网格状碳化硅纳米线、SiO2气凝胶,网格状碳化硅纳米线填充分割碳泡沫内部孔隙空间,SiO2气凝胶均匀填充于碳泡沫增强体,密度为0.05~0.15g/cm3,孔隙率大于90%。
2.根据权利要求书1所述的耐高温泡沫增强SiO2气凝胶绝热材料,其特征在于,所述的碳泡沫增强体为柔性碳泡沫,由三聚氰胺泡沫高温热解得到。
3.根据权利要求书1所述的耐高温泡沫增强SiO2气凝胶绝热材料,其特征在于,所述的网格状碳化硅纳米线,直径为50~200nm。
4.一种耐高温泡沫增强SiO2气凝胶绝热材料的制备方法,其特征在于,包括以下顺序步骤:
(1)将三聚氰胺泡沫热解得到的柔性泡沫碳浸入无水乙醇中,超声振荡清洗10~30min,取出后烘箱中100~120℃烘干备用;
(2)将六水硝酸镍、无水乙醇按照1∶(10~50)的摩尔比配制硝酸镍溶液;
(4)碳泡沫浸入硝酸镍溶液中,浸渍4~10h;
(5)浸渍结束后烘干,放入气相沉积炉中,化学气相沉积碳化硅纳米线,以三氯甲基硅烷为碳化硅气源,氢气为载气,氩气作为稀释气体,沉积温度900~1100℃,沉积时间为1~3h,形成碳化硅-碳复合泡沫材料;
(6)采用氧化硅质量分数含量为15%的硅溶胶为SiO2气凝胶硅源,将去离子水∶无水乙醇∶硅溶胶按体积分数比为(1~1.5)∶(0.5~1)∶1混合搅拌,将碳化硅-碳复合泡沫浸入混合液中,调节PH至6~8进行胶凝反应;
(7)胶体进行老化,老化液为正硅酸乙酯与无水乙醇的混合液,正硅酸乙酯与无水乙醇体积比为1∶2~5,老化时间30~50h;
(8)经过溶剂置换-表面修饰-溶剂置换后,得到复合泡沫增强的SiO2湿凝胶;
(9)常压下梯度干燥,梯度干燥工艺为60~80℃保温1~2h,90~100℃保温1~2h,120~140℃保温1~2h,即可得到耐高温泡沫增强SiO2气凝胶绝热材料。
CN201710115403.4A 2017-02-22 2017-02-22 一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法 Active CN106747628B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710115403.4A CN106747628B (zh) 2017-02-22 2017-02-22 一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710115403.4A CN106747628B (zh) 2017-02-22 2017-02-22 一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106747628A true CN106747628A (zh) 2017-05-31
CN106747628B CN106747628B (zh) 2020-02-04

Family

ID=58960276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710115403.4A Active CN106747628B (zh) 2017-02-22 2017-02-22 一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106747628B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107200600A (zh) * 2017-07-24 2017-09-26 苏州宏久航空防热材料科技有限公司 一种具有低导热系数的泡沫碳基复合材料
CN107986282A (zh) * 2017-11-21 2018-05-04 南京航空航天大学 超长碳化硅纳米线棉毡及其制备方法
CN108467253A (zh) * 2018-01-20 2018-08-31 南京航空航天大学 一种碳化硅纳米线预制体增强氧化铝气凝胶材料及其制备方法
CN108751159A (zh) * 2018-05-27 2018-11-06 南京航空航天大学 一种CVI-SiC纳米线增强复合碳泡沫材料
CN109020469A (zh) * 2018-08-17 2018-12-18 苏州宏久航空防热材料科技有限公司 一种SiO2气凝胶/SiC泡沫复合绝热材料及其制备方法
CN109721945A (zh) * 2019-01-16 2019-05-07 苏州宏久航空防热材料科技有限公司 一种高介电常数无机泡沫树脂基复合材料基板及其制备方法
CN109734950A (zh) * 2018-12-28 2019-05-10 青岛海尔股份有限公司 气凝胶复合材料及其制备方法
CN111848173A (zh) * 2020-07-28 2020-10-30 郑州大学 一种三维多孔碳化硅陶瓷气凝胶及其制备方法
CN112011157A (zh) * 2020-09-07 2020-12-01 江南大学 一种可降解聚丁二酸丁二醇酯发泡材料及其制备方法
CN112250472A (zh) * 2020-10-16 2021-01-22 上海航翼高新技术发展研究院有限公司 一种果胶基气凝胶-碳泡沫航空航天复合材料的制备方法
CN112457034A (zh) * 2020-11-10 2021-03-09 中钢南京环境工程技术研究院有限公司 一种具有类鼻毛-鼻孔结构的C/SiC复合材料的制备方法
CN113003947A (zh) * 2021-03-24 2021-06-22 南京工业大学 一种硅基气凝胶-发泡材料隔热复合材料的制备方法
CN113831131A (zh) * 2021-11-11 2021-12-24 中南大学 碳泡沫原位生长碳纳米管复合电磁屏蔽材料及其制备方法
CN114524638A (zh) * 2022-03-04 2022-05-24 南京航空航天大学 一种超低热导率纳米纤维气凝胶复合材料及其制备方法
CN114773092A (zh) * 2022-04-29 2022-07-22 西安交通大学 一种通过氧化处理提高碳化硅纳米线气凝胶力学性能和隔热性能的方法
CN115160026A (zh) * 2022-07-12 2022-10-11 西北工业大学 一种隔热吸波泡沫材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691293A (zh) * 2009-09-11 2010-04-07 哈尔滨工业大学 纳米二氧化硅填充非石墨化泡沫炭制备隔热材料的方法
KR20110074176A (ko) * 2009-12-24 2011-06-30 엘지이노텍 주식회사 고순도 탄화규소 제품 제조 방법
CN104129973A (zh) * 2014-08-08 2014-11-05 苏州宏久航空防热材料科技有限公司 一种填充SiO2气凝胶的碳气凝胶的制备方法
CN104478475A (zh) * 2014-12-08 2015-04-01 南京工业大学 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
CN105237034A (zh) * 2015-09-11 2016-01-13 西北工业大学 一种基于模板制备多孔碳化硅陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691293A (zh) * 2009-09-11 2010-04-07 哈尔滨工业大学 纳米二氧化硅填充非石墨化泡沫炭制备隔热材料的方法
KR20110074176A (ko) * 2009-12-24 2011-06-30 엘지이노텍 주식회사 고순도 탄화규소 제품 제조 방법
CN104129973A (zh) * 2014-08-08 2014-11-05 苏州宏久航空防热材料科技有限公司 一种填充SiO2气凝胶的碳气凝胶的制备方法
CN104478475A (zh) * 2014-12-08 2015-04-01 南京工业大学 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
CN105237034A (zh) * 2015-09-11 2016-01-13 西北工业大学 一种基于模板制备多孔碳化硅陶瓷的方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107200600A (zh) * 2017-07-24 2017-09-26 苏州宏久航空防热材料科技有限公司 一种具有低导热系数的泡沫碳基复合材料
CN107986282B (zh) * 2017-11-21 2021-02-05 南京航空航天大学 超长碳化硅纳米线棉毡及其制备方法
CN107986282A (zh) * 2017-11-21 2018-05-04 南京航空航天大学 超长碳化硅纳米线棉毡及其制备方法
CN108467253A (zh) * 2018-01-20 2018-08-31 南京航空航天大学 一种碳化硅纳米线预制体增强氧化铝气凝胶材料及其制备方法
CN108751159A (zh) * 2018-05-27 2018-11-06 南京航空航天大学 一种CVI-SiC纳米线增强复合碳泡沫材料
CN109020469A (zh) * 2018-08-17 2018-12-18 苏州宏久航空防热材料科技有限公司 一种SiO2气凝胶/SiC泡沫复合绝热材料及其制备方法
CN109734950A (zh) * 2018-12-28 2019-05-10 青岛海尔股份有限公司 气凝胶复合材料及其制备方法
CN109721945A (zh) * 2019-01-16 2019-05-07 苏州宏久航空防热材料科技有限公司 一种高介电常数无机泡沫树脂基复合材料基板及其制备方法
CN111848173A (zh) * 2020-07-28 2020-10-30 郑州大学 一种三维多孔碳化硅陶瓷气凝胶及其制备方法
CN112011157A (zh) * 2020-09-07 2020-12-01 江南大学 一种可降解聚丁二酸丁二醇酯发泡材料及其制备方法
CN112250472A (zh) * 2020-10-16 2021-01-22 上海航翼高新技术发展研究院有限公司 一种果胶基气凝胶-碳泡沫航空航天复合材料的制备方法
CN112457034A (zh) * 2020-11-10 2021-03-09 中钢南京环境工程技术研究院有限公司 一种具有类鼻毛-鼻孔结构的C/SiC复合材料的制备方法
CN113003947A (zh) * 2021-03-24 2021-06-22 南京工业大学 一种硅基气凝胶-发泡材料隔热复合材料的制备方法
CN113831131A (zh) * 2021-11-11 2021-12-24 中南大学 碳泡沫原位生长碳纳米管复合电磁屏蔽材料及其制备方法
CN113831131B (zh) * 2021-11-11 2022-11-04 中南大学 碳泡沫原位生长碳纳米管复合电磁屏蔽材料及其制备方法
CN114524638A (zh) * 2022-03-04 2022-05-24 南京航空航天大学 一种超低热导率纳米纤维气凝胶复合材料及其制备方法
CN114773092A (zh) * 2022-04-29 2022-07-22 西安交通大学 一种通过氧化处理提高碳化硅纳米线气凝胶力学性能和隔热性能的方法
CN115160026A (zh) * 2022-07-12 2022-10-11 西北工业大学 一种隔热吸波泡沫材料的制备方法

Also Published As

Publication number Publication date
CN106747628B (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
CN106747628A (zh) 一种耐高温泡沫增强SiO2气凝胶绝热材料及其制备方法
Liang et al. Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures
CN103708476B (zh) 一种柔韧性二氧化硅气凝胶的制备方法
CN107200600A (zh) 一种具有低导热系数的泡沫碳基复合材料
CN102795826B (zh) 一种气凝胶/无机轻集料复合保温隔热材料及其制备方法
CN106904973A (zh) 一种轻质高强的泡沫碳基绝热复合材料
CN104129973B (zh) 一种填充SiO2气凝胶的碳气凝胶的制备方法
CN102584162B (zh) 一种一元或多元气凝胶隔热材料及其制备方法
CN108751159A (zh) 一种CVI-SiC纳米线增强复合碳泡沫材料
CN106007803B (zh) 耐高温多孔陶瓷/氧化铝气凝胶隔热材料
CN104478475B (zh) 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
Meliță et al. Aerogel, a high performance material for thermal insulation-A brief overview of the building applications
CN104528741B (zh) 一种有机改性纳米孔二氧化硅气凝胶及其制备方法
CN104119059A (zh) 一种碳凝胶/SiO2凝胶复合气凝胶
CN105198375A (zh) 一种绝热二氧化硅气凝胶/羟基化玻璃纤维毡复合材料及其制备方法
PT107101A (pt) Painéis flexíveis de aerogel hidrofóbico reforçado com feltro de fibras
CN105236912A (zh) 一种复合纤维增强疏水SiO2气凝胶及其制备方法
CN110822816B (zh) 一种倍半硅氧烷气凝胶的常压干燥方法
CN109020469A (zh) 一种SiO2气凝胶/SiC泡沫复合绝热材料及其制备方法
Jia et al. Facile fabrication of lightweight mullite fiber/phenolic ablator with low thermal conductivity via ambient pressure impregnation
CN102515181A (zh) 一种提高气凝胶复合材料强度的方法
Konuklu et al. Effect of pre-treatment methods on natural raw materials-based phase change material composites for building applications
CN206843332U (zh) 一种网状中空泡沫增强炭气凝胶高温隔热芯材
CN102807326B (zh) 一种聚合物改性的低温泡沫玻璃保温材料及其制备方法
CN106866180A (zh) 泡沫陶瓷复合SiO2气凝胶隔热材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant