CN106747462B - 过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法 - Google Patents

过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法 Download PDF

Info

Publication number
CN106747462B
CN106747462B CN201611104716.1A CN201611104716A CN106747462B CN 106747462 B CN106747462 B CN 106747462B CN 201611104716 A CN201611104716 A CN 201611104716A CN 106747462 B CN106747462 B CN 106747462B
Authority
CN
China
Prior art keywords
glass
transition metal
metal boride
oxidation resistance
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611104716.1A
Other languages
English (en)
Other versions
CN106747462A (zh
Inventor
汪欣
李争显
杜继红
杨涛
李晴宇
严鹏
彭易发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN201611104716.1A priority Critical patent/CN106747462B/zh
Publication of CN106747462A publication Critical patent/CN106747462A/zh
Application granted granted Critical
Publication of CN106747462B publication Critical patent/CN106747462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/111Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种过渡金属硼化物‑玻璃超高温抗氧化复合材料,该复合材料由过渡金属硼化物和玻璃制成,所述过渡金属硼化物为HfB2、ZrB2或TiB2,所述玻璃为硅酸盐玻璃。本发明还提供了一种制备该过渡金属硼化物‑玻璃超高温抗氧化复合材料的方法,包括以下步骤:一、将过渡金属硼化物粉末和玻璃粉末加入高能球磨机中球磨,得到混合粉末;二、将混合粉末压制成型,得到压坯;三、对压坯进行无压烧结,得到过渡金属硼化物‑玻璃超高温抗氧化复合材料。本发明复合材料能够在高温氧化环境中原位生成以氧化物为“骨架”、硼硅酸盐玻璃为填充剂的复合氧化膜,具有优良的高温抗氧化能力和良好的抗高温高速气流冲刷的能力。

Description

过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法
技术领域
本发明属于超高温防护技术领域,具体涉及一种过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法。
背景技术
在所有过渡族金属的硼化物中,IVB族金属的硼化物在1500℃时具备最优的高温抗氧化性能。同时,超高温硼化物陶瓷熔点高,并兼具良好的化学稳定性和高温力学性能,在超高温领域有着广阔的应用前景。硼化物陶瓷通过热压烧结工艺单独作为热端部件,或作为碳-碳复合材料的高温防护涂层中的重要组元,得到了广泛的应用。
然而,超高温硼化物陶瓷的高温抗氧化性能受到氧化产物(B2O3)物理性质的限制。当温度升高至1200℃左右时,氧化生成的B2O3玻璃膜软化,黏度降低,对氧的阻挡效果有限;当氧化温度进一步升高至B2O3的挥发温度即1500℃时,B2O3挥发严重,这导致硼化物陶瓷在高温下氧化速率过快。而且,超高温硼化物陶瓷自身熔点高达3000℃左右,即使在添加助熔剂的情况下采用热压烧结工艺,硼化物块体材料的制备温度也在2000℃左右,过高的烧结制备温度也限制了其在超高温领域的应用。
玻璃涂层自身具备非常高的化学和高温稳定性,不存在晶界等短路扩散通道,对氧的阻挡作用极强,且具备优异的耐烧蚀性能。
本发明经过长期深入研究发现,若将超高温硼化物与玻璃陶瓷进行复合,在高温氧化环境中原位生成以氧化物为“骨架”、硼硅酸盐玻璃为填充剂的复合氧化膜,在不影响硼化物陶瓷抗热冲刷性能的同时,可以显著提高材料的高温抗氧化性能,同时改善复合材料的制备特性。然而,截至目前,尚未发现过渡金属硼化物-玻璃超高温抗氧化复合材料的相关技术见诸报道。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种过渡金属硼化物-玻璃超高温抗氧化复合材料,该过渡金属硼化物-玻璃复合超高温抗氧化复合材料可在高温氧化环境中原位生成以氧化物为“骨架”、硼硅酸盐玻璃为填充剂的复合氧化膜,具有优良的高温抗氧化能力和良好的抗高温高速气流冲刷的能力。
为解决上述技术问题,本发明采用的技术方案是:过渡金属硼化物-玻璃超高温抗氧化复合材料,其特征在于,该复合材料由过渡金属硼化物和玻璃制成,所述过渡金属硼化物为HfB2、ZrB2或TiB2,所述过渡金属硼化物的质量占复合材料总质量的85%~95%,所述玻璃为硅酸盐玻璃,所述复合材料在1100℃~1800℃高温条件下具有抗氧化和抗热冲刷能力。
上述的一种过渡金属硼化物-玻璃超高温抗氧化复合材料,其特征在于,所述硅酸盐玻璃的化学成分按质量百分比计为:B2O3 3%~20%,Al2O3 2%~15%,ZrO2 3%~10%,CaO或SrO 3%~5%,KNO3或Na2O或ZnO 5%~20%,余量为SiO2
另外,本发明还提供一种制备上述过渡金属硼化物-玻璃超高温抗氧化复合材料的方法,其特征在于,该方法包括以下步骤:
步骤一、将过渡金属硼化物粉末和玻璃粉末加入高能球磨机中,在球磨速率为200r/min~500r/min的条件下球磨0.5h~6h,得到混合粉末;
步骤二、将步骤一中所述混合粉末压制成型,得到压坯;
步骤三、对步骤二中所述压坯进行无压烧结,得到过渡金属硼化物-玻璃超高温抗氧化复合材料。
上述的方法,其特征在于,步骤一中所述过渡金属硼化物粉末的粒度小于3μm,所述玻璃粉末的粒径小于5μm。
上述的方法,其特征在于,步骤二中所述压制成型的设备为粉末压片机或冷等静压机,所述压制成型的压制力为40MPa~180MPa。
上述的方法,其特征在于,步骤三中所述无压烧结的具体过程为:将压坯置于马弗炉或真空烧结炉中,先在升温速率为10℃/min~30℃/min的条件下升温至200℃~400℃后保温30min~120min,然后在升温速率为10℃/min~15℃/min的条件下升温至1000℃~1800℃后保温30min~60min,最后随炉冷却至25℃室温。
本发明与现有技术相比具有以下优点:
1、本发明提供的是一种由过渡金属硼化物和玻璃复合而成的具有超高温抗氧化性能的复合材料,在高温氧化环境中原位生成以氧化物为“骨架”、硼硅酸盐玻璃为填充剂的复合氧化膜,该复合材料相对于玻璃基复合材料具有更好的抗热冲刷性能,同时相对于硼化物陶瓷,在1100℃~1800℃高温具有更低的高温氧化速率。
2、本发明通过将过渡金属硼化物超高温陶瓷与玻璃进行复合,一方面可以显著降低块体材料的烧结温度;另一方面,该超高温抗氧化材料可以通过无压烧结方法制备,具有实施简单,对设备要求低的优点。
下面结合附图和实施例对本发明作进一步详细说明。
附图说明
图1为本发明实施例1制备的TiB2-玻璃超高温抗氧化复合材料的光学显微照片。
图2为本发明实施例1制备的TiB2-玻璃超高温抗氧化复合材料的XRD图谱。
图3为本发明实施例1制备的TiB2-玻璃超高温抗氧化复合材料的SEM截面照片。
图4为本发明实施例2制备的TiB2-玻璃超高温抗氧化复合材料的光学显微照片。
图5为本发明实施例2制备的TiB2-玻璃超高温抗氧化复合材料的XRD图谱。
图6为本发明实施例2制备的TiB2-玻璃超高温抗氧化复合材料的SEM截面照片。
图7为本发明实施例3制备的ZrB2-玻璃超高温抗氧化复合材料的光学显微照片。
具体实施方式
实施例1
本实施例提出了一种TiB2-玻璃超高温抗氧化复合材料,该复合材料由TiB2和玻璃制成,所述TiB2的质量占复合材料总质量的95%,所述玻璃为硅酸盐玻璃,其化学成分按质量百分比计为:B2O3 7%,Al2O3 5%,ZrO2 3%,CaO 3%,KNO3 12%,余量为SiO2
本实施例TiB2-玻璃超高温抗氧化复合材料的制备方法包括以下步骤:
步骤一、将粒度小于3μm的TiB2粉末和粒径小于5μm的玻璃粉末加入高能球磨机中,在球磨速率为320r/min的条件下球磨混合4h,得到混合粉末;
步骤二、利用粉末压片机或冷等静压机对步骤一中所述混合粉末压制成型,控制压制成型的压制力为80MPa,得到规格为Φ25mm×2mm的压坯;
步骤三、对步骤二中所述压坯进行无压烧结,具体过程为:将压坯置于马弗炉或真空烧结炉中,先在升温速率为10℃/min~30℃/min的条件下升温至200℃~400℃后保温30min~120min,然后在升温速率为10℃/min~15℃/min的条件下升温至1000℃~1800℃后保温30min~60min,最后随炉冷却至25℃室温,得到TiB2-玻璃超高温抗氧化复合材料。
图1为本发明实施例1制备的TiB2-玻璃超高温抗氧化复合材料的光学显微照片。由图1可以得知:本发明实施例1制备的TiB2-玻璃超高温抗氧化复合材料整体完整,棱角分明,表面无明显空隙。图2为本发明实施例1制备的TiB2-玻璃超高温抗氧化复合材料的XRD图谱。由图2可知:除了添加的TiB2陶瓷的衍射峰,衍射图谱中还出现了TiBO3和B2O3的衍射峰,这表明在无压烧结过程中,TiB2氧化生成了晶态的B2O3和TiO2,且氧化产物进一步发生界面反应生成了TiBO3。图3为本发明实施例1制备的TiB2-玻璃超高温抗氧化复合材料的SEM截面照片。由图3可知:复合材料内部无明显孔洞,能观察到明显的TiB2陶瓷颗粒,但界面反应层不明显。
本实施例制备的TiB2-玻璃超高温抗氧化复合材料在1200℃大气环境中氧化5h后氧化膜的厚度约80~110μm,氧化10h后氧化膜的厚度约120~150μm;在1400℃大气环境中氧化5h后,氧化膜的厚度约为130~150μm。
实施例2
本实施例提出了一种TiB2-玻璃超高温抗氧化复合材料,该复合材料由TiB2和玻璃制成,所述TiB2的质量占复合材料总质量的90%,所述玻璃为硅酸盐玻璃,其化学成分按质量百分比计为:B2O3 7%,Al2O3 5%,ZrO2 3%,CaO 3%,KNO3 12%,余量为SiO2
本实施例TiB2-玻璃超高温抗氧化复合材料的制备方法包括以下步骤:
步骤一、将粒度小于3μm的TiB2粉末和粒径小于5μm的玻璃粉末加入高能球磨机中,在球磨速率为500r/min的条件下球磨混合2h,得到混合粉末;
步骤二、利用粉末压片机或冷等静压机对步骤一中所述混合粉末压制成型,控制压制成型的压制力为100MPa,得到规格为Φ25mm×2mm的压坯;
步骤三、对步骤二中所述压坯进行无压烧结,具体过程为:将压坯置于马弗炉或真空烧结炉中,先在升温速率为20℃/min的条件下升温至400℃后保温30min,然后在升温速率为10℃/min的条件下升温至1200℃后保温30min,最后随炉冷却至25℃室温得到TiB2-玻璃超高温抗氧化复合材料。
图4为本发明实施例2制备的TiB2-玻璃超高温抗氧化复合材料的光学显微照片。由图4可以得知:本发明实施例2制备的TiB2-玻璃超高温抗氧化复合材料整体完整,棱角分明,表面无明显空隙。图5为本发明实施例2制备的TiB2-玻璃超高温抗氧化复合材料的XRD图谱。由图5可知:除了添加的TiB2陶瓷的衍射峰,衍射图谱中还出现了TiBO3和B2O3的衍射峰,这表明在无压烧结过程中,TiB2氧化生成了晶态的B2O3和TiO2,且氧化产物进一步发生界面反应生成了TiBO3。图6为本发明实施例2制备的TiB2-玻璃超高温抗氧化复合材料的SEM截面照片。由图6可知:复合材料内部无明显孔洞,能观察到明显的TiB2陶瓷颗粒,但界面反应层不明显。
本实施例制备的TiB2-玻璃超高温抗氧化复合材料在1200℃大气环境中氧化5h后氧化膜的厚度约80~100μm,氧化10h后氧化膜的厚度约120~140μm;在1400℃大气环境中氧化5h后,氧化膜的厚度约为130~150μm,展现出了良好的高温抗氧化能力。
实施例3
本实施例提出了一种ZrB2-玻璃超高温抗氧化复合材料,该复合材料由ZrB2和玻璃制成,所述ZrB2的质量占复合材料总质量的90%,所述玻璃为硅酸盐玻璃,其化学成分按质量百分比计为:B2O3 20%,Al2O3 2%,ZrO2 10%,SrO 3%,Na2O 5%,余量为SiO2
本实施例ZrB2-玻璃超高温抗氧化复合材料的制备方法包括以下步骤:
步骤一、将粒度小于3μm的ZrB2粉末和粒径小于5μm的玻璃粉末加入高能球磨机中,在球磨速率为200r/min的条件下球磨混合6h,得到混合粉末;
步骤二、利用粉末压片机或冷等静压机对步骤一中所述混合粉末压制成型,控制压制成型的压制力为180MPa,得到规格为Φ25mm×2mm的压坯;
步骤三、对步骤二中所述压坯进行无压烧结,具体过程为:将压坯置于马弗炉或真空烧结炉中,先在升温速率为30℃/min的条件下升温至400℃后保温30min,然后在升温速率为15℃/min的条件下升温至1800℃后保温30min,最后随炉冷却至25℃室温得到ZrB2-玻璃超高温抗氧化复合材料。
图7为本发明实施例3制备的ZrB2-玻璃超高温抗氧化复合材料的光学显微照片。由图7可以得知:本发明实施例3制备的ZrB2-玻璃超高温抗氧化复合材料整体完整,棱角分明,表面无明显空隙。通过对本发明实施例3制备的ZrB2-玻璃超高温抗氧化复合材料的相对密度可达90%以上。通过对本发明实施例3制备的ZrB2-玻璃超高温抗氧化复合材料进行XRD和EDS分析,可以得知:制备态的复合材料主要由ZrB2陶瓷构成,含有少量的ZrO2和B2O3,这表明在无压烧结过程中ZrB2发生了氧化。通过对本发明实施例3制备的ZrB2-玻璃超高温抗氧化复合材料的SEM分析,可以得知:复合材料内部无明显孔洞,界面反应层不明显。
本实施例制备的ZrB2-玻璃超高温抗氧化复合材料在1200℃大气环境中氧化5h后氧化膜的厚度约70~90μm,氧化10h后氧化膜的厚度约110~140μm;在1400℃大气环境中氧化5h后,氧化膜的厚度约为130~150μm,展现出了良好的高温抗氧化能力。
实施例4
本实施例提出了一种HfB2-玻璃超高温抗氧化复合材料,该复合材料由HfB2和玻璃制成,所述HfB2的质量占复合材料总质量的90%,所述玻璃为硅酸盐玻璃,其化学成分按质量百分比计为:B2O3 3%,Al2O3 15%,ZrO2 3%,CaO 5%,ZnO 20%,余量为SiO2
本实施例HfB2-玻璃超高温抗氧化复合材料的制备方法包括以下步骤:
步骤一、将粒度小于3μm的HfB2粉末和粒径小于5μm的玻璃粉末加入高能球磨机中,在球磨速率为200r/min的条件下球磨混合0.5h,得到混合粉末;
步骤二、利用粉末压片机或冷等静压机对步骤一中所述混合粉末压制成型,控制压制成型的压制力为40MPa,得到规格为Φ25mm×2mm的压坯;
步骤三、对步骤二中所述压坯进行无压烧结,具体过程为:将压坯置于马弗炉或真空烧结炉中,先在升温速率为30℃/min的条件下升温至200℃后保温120min,然后在升温速率为15℃/min的条件下升温至1000℃后保温60min,最后随炉冷却至25℃室温得到HfB2-玻璃超高温抗氧化复合材料。
通过对本发明实施例4制备的HfB2-玻璃超高温抗氧化复合材料的相对密度可达90%以上。通过对本发明实施例4制备的HfB2-玻璃超高温抗氧化复合材料进行XRD和EDS分析,可以得知:制备态的复合材料主要由HfB2陶瓷构成,含有少量的HfO2和B2O3,这表明在无压烧结过程中HfB2发生了氧化。通过对本发明实施例4制备的HfB2-玻璃超高温抗氧化复合材料的SEM分析,可以得知:复合材料内部无明显孔洞,界面反应层不明显。
本实施例制备的HfB2-玻璃超高温抗氧化复合材料在1200℃大气环境中氧化5h后氧化膜的厚度约85μm,氧化10h后氧化膜的厚度约130μm;在1400℃大气环境中氧化5h后,氧化膜的厚度约为145μm,展现出了良好的高温抗氧化能力。
实施例5
本实施例提出了一种TiB2-玻璃超高温抗氧化复合材料,该复合材料由TiB2和玻璃制成,所述TiB2的质量占复合材料总质量的90%,所述玻璃为硅酸盐玻璃,其化学成分按质量百分比计为:B2O3 15%,Al2O3 8%,ZrO2 8%,CaO 4%,KNO3 12%,余量为SiO2
本实施例TiB2-玻璃超高温抗氧化复合材料的制备方法包括以下步骤:
步骤一、将粒度小于3μm的TiB2粉末和粒径小于5μm的玻璃粉末加入高能球磨机中,在球磨速率为200~500r/min的条件下球磨混合0.5~6h,得到混合粉末;
步骤二、利用粉末压片机或冷等静压机对步骤一中所述混合粉末压制成型,控制压制成型的压制力为100MPa,得到规格为Φ25mm×2mm的压坯;
步骤三、对步骤二中所述压坯进行无压烧结,具体过程为:将压坯置于马弗炉或真空烧结炉中,先在升温速率为20℃/min的条件下升温至300℃后保温50min,然后在升温速率为12℃/min的条件下升温至1500℃后保温50min,最后随炉冷却至25℃室温得到TiB2-玻璃超高温抗氧化复合材料。
通过对本发明实施例5制备的TiB2-玻璃超高温抗氧化复合材料进行光学显微分析,可以得知:本发明实施例5制备的TiB2-玻璃超高温抗氧化复合材料整体完整,棱角分明,表面无明显空隙。通过对本发明实施例5制备的TiB2-玻璃超高温抗氧化复合材料进行XRD分析,可以得知:除了添加的TiB2陶瓷的衍射峰,衍射图谱中还出现了TiBO3和B2O3的衍射峰,这表明在无压烧结过程中,TiB2氧化生成了晶态的B2O3和TiO2,且氧化产物进一步发生界面反应生成了TiBO3。通过对本发明实施例5制备的TiB2-玻璃超高温抗氧化复合材料的SEM分析,可以得知:复合材料内部无明显孔洞,能观察到明显的TiB2陶瓷颗粒,但界面反应层不明显。
本实施例制备的TiB2-玻璃超高温抗氧化复合材料在1200℃大气环境中氧化5h后氧化膜的厚度约90μm,氧化10h后氧化膜的厚度约130μm;在1400℃大气环境中氧化5h后,氧化膜的厚度约为150μm,展现出了良好的高温抗氧化能力。
实施例6
本实施例提出了一种ZrB2-玻璃超高温抗氧化复合材料,该复合材料由ZrB2和玻璃制成,所述ZrB2的质量占复合材料总质量的90%,所述玻璃为硅酸盐玻璃,其化学成分按质量百分比计为:B2O3 18%,Al2O3 6%,ZrO2 7%,CaO 4%,KNO3 9%,余量为SiO2
本实施例ZrB2-玻璃超高温抗氧化复合材料的制备方法包括以下步骤:
步骤一、将粒度小于3μm的ZrB2粉末和粒径小于5μm的玻璃粉末加入高能球磨机中,在球磨速率为250r/min的条件下球磨混合3h,得到混合粉末;
步骤二、利用粉末压片机或冷等静压机对步骤一中所述混合粉末压制成型,控制压制成型的压制力为80MPa,得到规格为Φ25mm×2mm的压坯;
步骤三、对步骤二中所述压坯进行无压烧结,具体过程为:将压坯置于马弗炉或真空烧结炉中,先在升温速率为15℃/min的条件下升温至300℃后保温60min,然后在升温速率为12.5℃/min的条件下升温至1300℃后保温40min,最后随炉冷却至25℃室温得到ZrB2-玻璃超高温抗氧化复合材料。
通过对本发明实施例6制备的ZrB2-玻璃超高温抗氧化复合材料进行光学显微分析,可以得知:本发明实施例6制备的ZrB2-玻璃超高温抗氧化复合材料整体完整,棱角分明,表面无明显空隙。通过对本发明实施例2制备的ZrB2-玻璃超高温抗氧化复合材料进行XRD分析,可以得知:除了添加的ZrB2陶瓷的衍射峰,衍射图谱中还出现了ZrBO3和B2O3的衍射峰,这表明在无压烧结过程中,ZrB2氧化生成了晶态的B2O3和ZrO2,且氧化产物进一步发生界面反应生成了ZrBO3。通过对本发明实施例6制备的ZrB2-玻璃超高温抗氧化复合材料的SEM分析,可以得知:复合材料内部无明显孔洞,能观察到明显的ZrB2陶瓷颗粒,但界面反应层不明显。
通过对本发明实施例6制备的ZrB2-玻璃超高温抗氧化复合材料的相对密度可达90%以上。通过对本发明实施例6制备的ZrB2-玻璃超高温抗氧化复合材料进行XRD和EDS分析,可以得知:制备态的复合材料主要由ZrB2陶瓷构成,含有少量的ZrO2和B2O3,这表明在无压烧结过程中ZrB2发生了氧化。通过对本发明实施例6制备的ZrB2-玻璃超高温抗氧化复合材料的SEM分析,可以得知:复合材料内部无明显孔洞,界面反应层不明显。
本实施例制备的ZrB2-玻璃超高温抗氧化复合材料在1200℃大气环境中氧化5h后氧化膜的厚度约75μm,氧化10h后氧化膜的厚度约120μm;在1400℃大气环境中氧化5h后,氧化膜的厚度约为140μm,展现出了良好的高温抗氧化能力。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (4)

1.过渡金属硼化物-玻璃超高温抗氧化复合材料,其特征在于,该复合材料由过渡金属硼化物和玻璃制成,所述过渡金属硼化物为HfB2、ZrB2或TiB2,所述过渡金属硼化物的质量占复合材料总质量的85%~95%,所述玻璃为硅酸盐玻璃,所述复合材料在1100℃~1800℃高温条件下具有抗氧化和抗热冲刷能力;所述过渡金属硼化物的粒度小于3μm,所述玻璃的粒径小于5μm;
所述硅酸盐玻璃的化学成分按质量百分比计为:B2O3 3%~20%,Al2O32%~15%,ZrO23%~10%,CaO或SrO3%~5%,KNO3或Na2O或ZnO5%~20%,余量为SiO2
2.一种制备如权利要求1所述过渡金属硼化物-玻璃超高温抗氧化复合材料的方法,其特征在于,该方法包括以下步骤:
步骤一、将过渡金属硼化物粉末和玻璃粉末加入高能球磨机中,在球磨速率为200r/min~500r/min的条件下球磨0.5h~6h,得到混合粉末;
步骤二、将步骤一中所述混合粉末压制成型,得到压坯;
步骤三、对步骤二中所述压坯进行无压烧结,得到过渡金属硼化物-玻璃超高温抗氧化复合材料;所述无压烧结的具体过程为:将所述压坯置于马弗炉或真空烧结炉中,先在升温速率为10℃/min~30℃/min的条件下升温至200℃~400℃后保温30min~120min,然后在升温速率为10℃/min~15℃/min的条件下升温至1000℃~1800℃后保温30min~60min,最后随炉冷却至25℃室温。
3.根据权利要求2所述的方法,其特征在于,步骤一中所述过渡金属硼化物粉末的粒度小于3μm,所述玻璃粉末的粒径小于5μm。
4.根据权利要求2所述的方法,其特征在于,步骤二中所述压制成型的设备为粉末压片机或冷等静压机,所述压制成型的压制力为40MPa~180MPa。
CN201611104716.1A 2016-12-05 2016-12-05 过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法 Active CN106747462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611104716.1A CN106747462B (zh) 2016-12-05 2016-12-05 过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611104716.1A CN106747462B (zh) 2016-12-05 2016-12-05 过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106747462A CN106747462A (zh) 2017-05-31
CN106747462B true CN106747462B (zh) 2019-10-25

Family

ID=58878826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611104716.1A Active CN106747462B (zh) 2016-12-05 2016-12-05 过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106747462B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534825B (zh) * 2019-01-16 2021-06-01 电子科技大学 一种原位合成惰性玻璃相包覆的ZrB2及其制备方法
CN110028331A (zh) * 2019-04-11 2019-07-19 陶金旺 一种高温抗氧化的CfSiC复合材料及制备方法
CN114890778B (zh) * 2022-05-26 2023-03-24 南京中蓝智能科技有限公司 一种耐高温抗氧化纳米陶瓷材料及其烧结方法
CN115215551B (zh) * 2022-08-12 2023-05-26 西安石油大学 一种复合玻璃陶瓷颗粒、高温防护涂层及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646450A (zh) * 2002-04-09 2005-07-27 Snecma固体燃料推进器公司 由复合材料制成的部件的抗氧化保护

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1646450A (zh) * 2002-04-09 2005-07-27 Snecma固体燃料推进器公司 由复合材料制成的部件的抗氧化保护

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Oxidation Processes in Glass-Ceramic Composites Based on Titanium Boride;I. B. Ban’kovskaya;《Glass Physics and Chemistry》;20071231;第33卷(第1期);第80-85页 *
Thermogravimetric Investigation of the Oxidation of the ZrB2-SiO2 Composite in the Temperature Range 800-1300°C;D. V. Kolovertnov et al.;《Glass Physics and Chemistry》;20081231;第34卷(第4期);第461-469页 *

Also Published As

Publication number Publication date
CN106747462A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106747462B (zh) 过渡金属硼化物-玻璃超高温抗氧化复合材料及其制备方法
CN104725050B (zh) 一种采用自蔓延粉体制备高导热氮化铝陶瓷的方法
CN104671815B (zh) 一种ZrC‑TiC改性C/C‑SiC复合材料及其制备方法
CN104671814B (zh) 一种C/C-SiC-ZrC-TiC复合材料及其制备方法
CN103265331B (zh) 一种适用于石墨材料的C/SiC/Na2SiO3抗氧化复合涂层及其制备方法
CN103613388B (zh) 一种低温合成TiB2-TiC陶瓷复合材料的方法
CN108219681A (zh) 一种高温密封胶及其制备方法和用途
CN103979974B (zh) 一种C/SiC-HfB2-HfC超高温陶瓷基复合材料的制备方法
CN103387422A (zh) 在炭材料表面制备碳化硅/二硅化钼复合涂层的方法
CN106587629B (zh) 硼化物改性玻璃陶瓷基复合高温抗氧化涂层及其制备方法
CN103803804A (zh) 一种纳米玻璃陶瓷上转换发光材料及其制备方法
CN105384454A (zh) 一种复杂结构高韧性SiC基复合材料零件的快速制造方法
CN105418054A (zh) 一种新型特种陶瓷材料的制备方法
CN103724032A (zh) 一种二维纤维布增强氮化硅-碳化硅陶瓷复合材料及其制备方法
CN108059354A (zh) 一种利用传统玻璃熔制工艺制备无铅无碱金属低温共烧陶瓷(ltcc)粉体的方法
CN110282976A (zh) 一种三维结构碳化铪-钛硅碳复相陶瓷的制备方法
CN106116586A (zh) 一种钼合金MoSi2‑ZrO2‑Y2O3涂层及其制备方法和应用
CN109133723A (zh) 一种高温抗压隔热碳纤维布的制备方法
CN101684034B (zh) 一种密封玻璃粉体、密封玻璃陶瓷粉体及应用
CN104451238A (zh) 一种电子封装用新型高导热率金属复合材料的制备方法
CN104162661B (zh) 一种微波烧结Al2O3-TiC-TiN微米复合陶瓷刀具材料的方法
CN103011834A (zh) 一种高致密度复合陶瓷的制备方法
CN104261822A (zh) 一种氧化锆复合陶瓷及其制备方法
CN109609099B (zh) 一种高温相变储热材料
CN109020243A (zh) 钒钛磁铁尾矿制备微晶泡沫玻璃的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant