CN106745332B - 燃烧法快速制备纳米尖晶石型镍锰酸锂材料 - Google Patents

燃烧法快速制备纳米尖晶石型镍锰酸锂材料 Download PDF

Info

Publication number
CN106745332B
CN106745332B CN201611042691.7A CN201611042691A CN106745332B CN 106745332 B CN106745332 B CN 106745332B CN 201611042691 A CN201611042691 A CN 201611042691A CN 106745332 B CN106745332 B CN 106745332B
Authority
CN
China
Prior art keywords
ion doped
spinel type
nickel ion
type nickel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611042691.7A
Other languages
English (en)
Other versions
CN106745332A (zh
Inventor
郭俊明
徐旺琼
白红丽
苏长伟
王锐
刘晓芳
白玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Minzu University
Original Assignee
Yunnan Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Minzu University filed Critical Yunnan Minzu University
Priority to CN201611042691.7A priority Critical patent/CN106745332B/zh
Publication of CN106745332A publication Critical patent/CN106745332A/zh
Application granted granted Critical
Publication of CN106745332B publication Critical patent/CN106745332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于金属氧化物纳米材料和锂离子电池技术领域,具体为一种燃烧法纳米尖晶石型镍锰酸锂材料的快速制备方法。具体是将按顺序分别称取醋酸锂、醋酸镍和醋酸锰固体放于坩锅中,镍盐置于中间层,加热使物料熔融沸腾自然混合均匀,直至发生燃烧反应,冷却得到燃烧产物,再将燃烧产物焙烧保温,冷却得到纳米尖晶石型镍锰酸锂LiNi0.05Mn1.95O4材料。本发明采用的燃烧法制备纳米尖晶石型镍锰酸锂材料具有操作简单、合成速度快、成本低廉和易于实现规模化生产的特点。

Description

燃烧法快速制备纳米尖晶石型镍锰酸锂材料
技术领域
本发明属于金属氧化物纳米材料和锂离子电池技术领域,具体为燃烧法快速制备纳米尖晶石型镍锰酸锂材料。尖晶石型镍锰酸锂颗粒粒径为50 nm~ 90 nm,均匀性好、结晶性好,具有尖晶石型八面体结构,有利于产品的工业化技术推广。
背景技术
目前,市售的锂离子电池正极材料LiCoO2、LiNi0.5Mn1.5O4、LiNi1/3Mn1/3Co1/3O2均是通过高温固相反应法合成的,采用的原料为Co、Ni、Mn的氧化物和Li2CO3、LiOH粉末,粉末粒度在5~10 µm,存在原料粉末混合不均匀,导致合成产物成分和粒度均匀性差,粉末粒度较大且分布不均匀,充放电及循环性能不理想等问题,特别是合成反应过程需要在高温(>900 ℃)下长时间(长达20h)才能完成,导致生产工艺的能耗过高、生产效率偏低。
纳米材料在锂嵌入脱出过程中,其电化学、晶体结构、颗粒形貌、物理性质方面都表现出特殊的行为,均与其本征性质有关。作为正极材料,由于离子扩散路径短,表面积较大,晶界区域大大增加,在动力学上具有明显的优势。对于充放电过程中体积变化较大的电极,纳米材料本身体积变化较小,而且具有较好的塑性和蠕变性,可以大大减轻电极的粉化问题。相对于尺寸较大的正极材料,具有比表面积大,离子扩散路径短,很适合于锂离子又快又稳定的嵌入和脱嵌,大的表面积能降低局部电流密度,从而循环特性明显地得到改善。
中国发明专利申请公开号 CN 103647069 A公开了一种甘氨酸法合成LiMn2O4纳米材料。具体地实验步骤是配制醋酸锂饱和水溶液,在15 ~ 35 ℃缓慢搅拌下加入甘氨酸饱和溶液,再按锂锰摩尔比1 ~ 3 : 4加入饱和乙酸锰溶液,用NH4OH调节溶液的pH值为5 ~6,然后升温在50 ~ 75 ℃的恒温水浴锅加热2.5小时,凝胶在真空干燥箱中干燥得到前驱体,然后将前驱体转入电炉中,在380 ℃预处理12小时,然后分别在450 ℃和650 ℃下煅烧3个小时得到产品。该发明的有益效果为:甘氨酸法合成的尖晶石LiMn2O4颗粒小,均匀性好,无团聚现象,粒子多为圆形,甘氨酸法合成的尖晶石LiMn2O4具有好的循环稳定性。
中国发明专利申请公开号 CN 103066270 A公开了一种纳米尖晶石型LiMn2O4的制备方法。包括如下步骤:将硝酸锂、硝酸锰均匀混合,配成总阳离子浓度为0.1 ~ 1.0 molL-1的母液,将混合液在超重力场中进行反应,并控制超重力反应器转子转速在400 ~ 2200rpm,优选800 ~ 1500 rpm,然后加入碳酸铵溶液;加入的碳酸铵溶液与上述混合液反应得到悬浊液;混合液不断循环直至反应完全;将所得悬浊液经过滤、干燥得到纳米尖晶石型LiMn2O4的前驱体;将得到的纳米尖晶石型LiMn2O4的前驱体进行煅烧,得到纳米尖晶石型LiMn2O4。该方法具有工艺简单,成本低廉,合成时间短等特点,同时制备的尖晶石型LiMn2O4粒径可控,可快速批量生产。
然而,采用燃烧法快速制备纳米尖晶石型镍锰酸锂正极材料还未见报道。本发明在较低温度下通过加热原料熔融沸腾达到自混合,并发生燃烧反应,只需保温3 h即可得到具有八面体的尖晶石型镍锰酸锂正极材料,颗粒尺寸为50 nm~ 90 nm,颗粒大小均匀和结晶性较好。
发明内容
本发明的一个目的在于提供一种燃烧法快速制备结晶性好的纳米尖晶石型镍锰酸锂正极材料。
本发明的技术方案如下:本发明采用醋酸锂、醋酸锰和醋酸镍为反应物,预先把马弗炉加热到设置的温度恒温,再把装有原料的坩埚放入马弗炉中,进行燃烧反应和焙烧,将物料加热燃烧反应1 h后,冷却到室温并研磨得到燃烧产物,将燃烧产物焙烧3 h,冷却即得到尖晶石型镍锰酸锂正极材料,具体合成步骤如下:
燃烧法快速制备纳米尖晶石型镍锰酸锂材料,其特征在于:以Li:Ni:Mn摩尔比1.0~1.04:x:2-x,其中x=0.02~0.15,按顺序分别称取固体锂盐、镍盐和锰盐分层放于同一坩锅中,镍盐置于中间层,将此坩锅放入预热恒温马弗炉中加热使物料熔融沸腾自然混合均匀,直至发生燃烧反应并保温共计1 h,取出冷却得到燃烧产物,研磨后再放入预热恒温的马弗炉中焙烧保温3 h,取出冷却得到纳米尖晶石型镍锰酸锂材料。
所述锂盐、镍盐和锰盐选用低熔点且包含有机酸根的盐作为原料和燃料。锂盐为醋酸锂,镍盐为醋酸镍,锰盐为醋酸锰。
所述预热恒温马弗炉的燃烧反应温度为400 ℃。
所述预热恒温的焙烧温度为600 ℃,取出冷却得最终产品。
所述尖晶石型镍锰酸锂的颗粒大小为50 ~ 90 nm。
附图说明
图1是本发明在实施例1中得到的LiNi0.05Mn1.95O4的SEM图。
图2是本发明在实施例1中得到的LiNi0.05Mn1.95O4的TEM图。
图3是本发明在实施例1中得到的LiNi0.05Mn1.95O4的HR-TEM图。
具体实施方式
实施例1
称取醋酸锂1.6909 g,醋酸镍0.2062 g和醋酸锰7.9212 g按顺序分别放置于300mL坩锅中,然后将坩锅放入预热恒温400 ℃马弗炉中加热发生燃烧反应,燃烧反应1h后,取出冷却至室温得到燃烧产物,研磨后,放入300mL的坩埚中,再在预热恒温 600 ℃的马弗炉进行焙烧保温3 h,取出冷却,得最终产品。

Claims (2)

1.快速制备纳米尖晶石型镍锰酸锂材料的方法,其特征在于以Li:Ni:Mn摩尔比1:x:2-x,其中x=0.02~0.10,按顺序分别称取醋酸锂固体锂盐、醋酸镍镍盐和醋酸锰锰盐分层放于同一坩埚中,镍盐置于中间层,将此坩埚放入预热恒温马弗炉中在燃烧反应温度300~600℃下加热使物料熔融沸腾自然混合均匀,直至发生燃烧反应并保温共计1h,取出冷却得到燃烧产物,研磨后再放入预热恒温的马弗炉中在焙烧温度400~700℃下焙烧保温3h,取出冷却得到颗粒大小为50~90nm的纳米尖晶石型镍锰酸锂材料。
2.根据权利要求1所述的方法,其特征在于所述镍锰酸锂的分子式为LiNi0.05Mn1.95O4
CN201611042691.7A 2016-11-24 2016-11-24 燃烧法快速制备纳米尖晶石型镍锰酸锂材料 Active CN106745332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611042691.7A CN106745332B (zh) 2016-11-24 2016-11-24 燃烧法快速制备纳米尖晶石型镍锰酸锂材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611042691.7A CN106745332B (zh) 2016-11-24 2016-11-24 燃烧法快速制备纳米尖晶石型镍锰酸锂材料

Publications (2)

Publication Number Publication Date
CN106745332A CN106745332A (zh) 2017-05-31
CN106745332B true CN106745332B (zh) 2019-03-08

Family

ID=58974164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611042691.7A Active CN106745332B (zh) 2016-11-24 2016-11-24 燃烧法快速制备纳米尖晶石型镍锰酸锂材料

Country Status (1)

Country Link
CN (1) CN106745332B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217833B (zh) * 2019-05-20 2021-01-26 大连理工大学 一种亚微米级正八面体结构镍锰酸锂材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610149A (zh) * 2004-10-13 2005-04-27 广州鸿森材料有限公司 锂离子电池正极材料的制备方法及其设备
CN100342569C (zh) * 2005-07-15 2007-10-10 广州鸿森材料有限公司 回转炉煅烧合成锂离子电池正极材料的方法
CN103490057B (zh) * 2013-09-27 2016-06-29 中国海洋石油总公司 一种锂离子电池用镍锰酸锂正极材料的制备方法
CN103730635A (zh) * 2013-12-18 2014-04-16 江苏科捷锂电池有限公司 燃烧法制备Li1.1Ni0.5Co0.2Mn0.3O2锂离子电池正极材料的方法
CN105914351B (zh) * 2016-04-14 2019-11-15 北京晶晶星科技有限公司 一种尖晶石型锰酸锂或镍锰酸锂的制备方法

Also Published As

Publication number Publication date
CN106745332A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN102054986B (zh) 微波法制备的超高容量锂离子电池正极材料及其方法
CN100342569C (zh) 回转炉煅烧合成锂离子电池正极材料的方法
CN101335348B (zh) 锂离子电池5V级正极材料球形LiNi0.5Mn1.5O4的制备方法
CN102386391B (zh) 一种制备三元复合正极材料LiNixCoyMn1-x-yO2的方法
CN102790203B (zh) 一种锂离子电池正极材料的制备方法
CN103794777B (zh) 一种表面包覆的镍锰酸锂正极材料的制备方法
CN101062789B (zh) 一种有机盐系液相燃烧合成锂离子电池正极材料的方法
CN106207151B (zh) 一种掺硼尖晶石型锰酸锂正极材料的制备方法
CN106025212A (zh) 一种铝镁氟包覆的镍钴锰酸锂正极材料及其制备方法
CN104091941B (zh) 一种富锂锰基层状锂电池正极材料及其制备方法
CN101555004A (zh) 交替微波快速制备磷酸铁锂的方法
CN106981653B (zh) 一种纳米级尖晶石型掺镍锰酸锂材料制备方法
CN105280909B (zh) 富锂锰基锂离子电池正极材料及其制备方法
CN103811745B (zh) 一种高比容量富锂型锂电池材料的制备方法
CN106745332B (zh) 燃烧法快速制备纳米尖晶石型镍锰酸锂材料
CN102157725A (zh) 微波烧结合成镍钴锰多元锂离子电池正极材料的方法
CN101481145B (zh) 一种制备锂离子电池正极材料LiMn2O4的方法
CN107275636A (zh) 一种钠离子电池正极材料Na0.7Li0.3Mn0.75O2的制备方法
CN104134794B (zh) 富锂锰基层状锂电池正极材料及其制备方法
CN1610149A (zh) 锂离子电池正极材料的制备方法及其设备
CN107394188B (zh) 一种锂离子电池用镂空球状氧化铌电极材料的制备方法
CN105591098A (zh) 一种La掺杂同时锂量变化的富锂正极材料及其制备方法
CN107342402B (zh) 一种制备LiNi1/3Co1/3Mn1/3O2三元正极材料的方法
CN107673408A (zh) 一种改性锰酸锂正极材料的制备方法
CN107123797B (zh) 一种镍掺杂富锂尖晶石锰酸锂正极材料制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant