CN106732818B - 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用 - Google Patents

基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用 Download PDF

Info

Publication number
CN106732818B
CN106732818B CN201611239594.7A CN201611239594A CN106732818B CN 106732818 B CN106732818 B CN 106732818B CN 201611239594 A CN201611239594 A CN 201611239594A CN 106732818 B CN106732818 B CN 106732818B
Authority
CN
China
Prior art keywords
titanium dioxide
preparation
double layer
carboxylated
hollow material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611239594.7A
Other languages
English (en)
Other versions
CN106732818A (zh
Inventor
路建美
陈冬赟
蒋军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201611239594.7A priority Critical patent/CN106732818B/zh
Priority to CN201811475399.3A priority patent/CN109569739B/zh
Publication of CN106732818A publication Critical patent/CN106732818A/zh
Priority to US15/853,906 priority patent/US10160659B2/en
Application granted granted Critical
Publication of CN106732818B publication Critical patent/CN106732818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • B01J35/23
    • B01J35/30
    • B01J35/39
    • B01J35/51
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2201/00Polymeric substrate or laminate
    • B05D2201/02Polymeric substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Abstract

本发明公开了一种基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用;以粒径为180nm的聚苯乙烯纳米球为模板,以钛酸四丁酯为前驱体,煅烧制备空心二氧化钛粒子;将空心二氧化钛进行羧基化改性制备羧基化的二氧化钛;将羧基化的二氧化钛分散在乙醇中,以九水硝酸铬为组装剂、以均苯三甲酸为交联剂,进行层层自主装,制备基于二氧化钛的双层中空材料。本发明通过一系列步骤合成的TiO2@MIL‑100双层中空材料对硫化氢气体有着很好的光催化效果;并且其具有制备过程较为简便,生产原料易得等优点,在硫化氢有毒气体的处理方面具有应用前景。

Description

基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催 化处理中的应用
技术领域
本发明属于功能材料技术领域,具体涉及到一种基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用。
背景技术
硫化氢是一种典型的有毒气体,即使是在非常低的浓度下也会使人感到恶臭。并且当空气中硫化氢的体积分数高于10-6时,它会对人体造成相当大的伤害甚至会威胁生命健康。此外,硫化氢气体表现出相当强的酸性,当一些精密的仪器与硫化氢气体接触时,其内部精密的器件将被腐蚀导致仪器的精密度变低甚至损坏。硫化氢普遍存在于大气中,在各种行业中也会被经常使用。
二氧化钛(TiO2),可以在低浓度下来进行一些典型的有毒气体的催化氧化,其对于硫化氢气体的催化也有着显著的效果。然而,光电子-空穴对的快速重组和TiO2的窄的光响应迫使它的使用仅限于紫外光(<387纳米)。因此,二氧化钛经常以不同的方式来修饰,如掺杂过渡金属离子,与半导体的耦合等以提高光催化活性。
金属-有机骨架(MOF)是通过组装金属离子和有机配体来形成,其在药物递送、催化、气体储存和选择性吸附等方面具有显著应用;但是现有MOF材料表现出非腐蚀性气体如氢气,甲烷,二氧化碳等优异的吸附性能,而对腐蚀性硫化氢的吸附效果非常差。
发明内容
本发明目的是提供一种基于二氧化钛的双层中空材料及其制备方法,通过层层自主装法将MIL-100负载到经过改性的空心二氧化钛表面上,制备出TiO2@MIL-100双层中空材料,利用产品对硫化氢的吸附来增强二氧化钛对其的光催化效果,以实现其在硫化氢的光催化分离方面得到广泛的应用。
为了达到上述目的,本发明具体技术方案如下:
一种基于二氧化钛的双层中空材料的制备方法,包括以下步骤:
(1)以粒径为180nm的聚苯乙烯纳米球为模板,以钛酸四丁酯为前驱体,煅烧制备空心二氧化钛粒子;
(2)将空心二氧化钛进行羧基化改性制备羧基化的二氧化钛;
(3)将羧基化的二氧化钛分散在乙醇中,以九水硝酸铬为组装剂、以均苯三甲酸为交联剂,进行层层自主装,制备基于二氧化钛的双层中空材料。
上述技术方案中,步骤(1)中,氮气中,在表面活性剂存在下,将苯乙烯水溶液升温到80~90℃;然后滴入引发剂的水溶液,聚合10~20小时,制备聚苯乙烯纳米球;优选的,聚合结束后加入氯化钠得到沉淀,然后沉淀用离子交换水洗涤数次,在烘箱中干燥,得到粒径为180nm的聚苯乙烯纳米球。可以参见本发明实施例,根据本发明方法制备的聚苯乙烯纳米球粒径分布十分均匀,粒径为180nm,作为模板使用制备的中空材料大小一致,而且合适的空心尺寸可以保证中空二氧化钛的力学强度,不仅提高产品对硫化氢的处理能力,而且增加处理稳定性。
上述技术方案中,步骤(1)中,煅烧为在500~700℃煅烧2~3小时,煅烧时的升温速率为1~5℃/min;缓慢的升温速率有利于聚苯乙烯模板均匀分解而不破坏二氧化钛外壳。
上述技术方案中,步骤(1)中,将钛酸四丁酯加入乙腈中,搅拌制备钛酸四丁酯溶液;将聚苯乙烯纳米球加入溶剂中,超声分散制备聚苯乙烯悬浮液;然后将氨水、去离子水、钛酸四丁酯溶液滴入聚苯乙烯悬浮液,搅拌1小时制备混合液;然后洗涤混合液,再离心处理,得到的固体物干燥后煅烧制备空心二氧化钛粒子;钛酸四丁酯、聚苯乙烯纳米球、氨水的质量比为30:1:20。氨水抑制了钛酸四丁酯的分解使得二氧化钛外层均匀可控。
上述技术方案中,步骤(2)中,将空心二氧化钛加入硅烷偶联剂的乙醇溶液搅拌8~10小时;清洗离心之后将其转移到丁二酸酐的N,N-二甲基甲酰胺溶液中继续搅拌8~10小时;二氧化钛、硅烷偶联剂、丁二酸酐的质量比为50:1:1。
上述技术方案中,步骤(3)中,羧基化的二氧化钛、九水硝酸铬、均苯三甲酸的质量比为20:1:1;层层自组装的次数为10~20次;每次自组装的步骤为将九水硝酸铬乙醇溶液加入羧基化的二氧化钛分乙醇分散液中,搅拌,然后用乙醇清洗离心后再加入均苯三甲酸乙醇溶液,继续搅拌;然后清洗离心去除液体。层层自组装的方法使得有机金属框架材料的制备简单快速。
本发明通过苯乙烯制备聚苯乙烯作为模板,以钛酸四丁酯为前驱体,制备空心二氧化钛;然后进行羧基化改性,再通过层层自主装的方法在其表面包裹MIL-100材料,得到基于二氧化钛的双层中空材料;可以大量吸附硫化氢,实现优异的光催化效果。因此本发明公开了上述基于二氧化钛的双层中空材料在硫化氢光催化处理中的应用;同时,本发明还公开了上述基于二氧化钛的双层中空材料在污染气体处理中的应用。
本发明的优点:
1、本发明公开的基于二氧化钛的双层中空材料的制备方法采用原材料都是成本低廉,容易得到的,而且操作简便,整个过程中没有用到昂贵的设备,对工业化应用十分关键。
2、本发明公开的基于二氧化钛的双层中空材料是一种具有高表面积、高孔隙率以及具备化学可调性的新型多孔材料,对硫化氢气体具有高效率的光催化效果,可以用于各自环境下的硫化氢有毒气体的除去。
附图说明
图1 为聚苯乙烯的透射电镜图;
图2 为聚苯乙烯的扫描电镜图;
图3 为空心二氧化钛的透射电镜图;
图4 为空心二氧化钛的扫描电镜图;
图5 为TiO2@MIL-100双层中空材料的透射电镜图;
图6 为TiO2@MIL-100双层中空材料的扫描电镜图;
图7为TiO2@MIL-100双层中空材料对硫化氢气体的光催化效果曲线图。
具体实施方式
实施例一
聚苯乙烯纳米球的制备,具体步骤如下:
0.05g的十二烷基硫酸钠和15g苯乙烯单体加入到搅拌下的水80毫升,将温度在氮气保护下升温到80℃。此后,逐渐滴入20ml含0.15克过硫酸钾的水溶液。该混合物保持搅拌另外10小时,通过加入氯化钠使聚苯乙烯纳米球沉淀。最终产物用离子交换水洗涤数次,在烘箱中干燥,附图1和附图2为聚苯乙烯的TEM和SEM图,通过图片可以看出其结构分布均匀,粒径在180nm。
空心二氧化钛的制备,具体步骤如下:
0.5mL的钛酸四丁酯加入到20毫升的乙腈中,并保持搅拌10分钟。接着,0.017克的聚苯乙烯纳米球加入到90毫升的乙腈中,并通过超声分散。然后,将0.3毫升氨水,0.06毫升去离子水和20毫升钛酸四丁酯溶液滴入制备的聚苯乙烯悬浮液。将混合物在室温下搅拌1小时以完成化学反应。将产物在乙醇中洗涤,并离心三次,干燥。然后在500℃下以1℃每分钟的加热速度煅烧2小时,附图3和附图4为空心二氧化钛的TEM和SEM图,通过图片可以看出其结构分布均匀。
羧基化的二氧化钛的制备,具体步骤如下:
将空心二氧化钛加入硅烷偶联剂的乙醇溶液搅拌8小时;清洗离心之后将其转移到丁二酸酐的N,N-二甲基甲酰胺溶液中继续搅拌8小时;二氧化钛、硅烷偶联剂、丁二酸酐的质量比为50:1:1。
TiO2@MIL-100双层中空材料的制备,具体步骤如下:
将羧基化的二氧化钛分散在10毫升乙醇中,然后加入10毫升的九水硝酸铬乙醇溶液再室温下搅拌15分钟,用乙醇清洗离心后再加入10 毫升的均苯三甲酸乙醇溶液再25℃下搅拌30分钟。清洗离心后将上述程序重复20遍得到TiO2@MIL-100双层中空材料。
附图5和附图6为TiO2@MIL-100双层中空材料的TEM和SEM图,通过图片可以看出其结构。
实施例二
硫化氢气体的光催化,具体步骤如下:
将含有一个石英玻璃的间歇反应器(1.5L体积)用于硫化氢的光催化氧化。将0.5g上述制备的催化剂TiO2@MIL-100双层中空材料沉积在石英玻璃和然后将反应器抽真空。接着,1升的高纯空气和包含H2S(100 ppm的浓度)的0.5升混合气体被引入间歇式反应器, 使用GC分析H2S的浓度。
附图7为TiO2@MIL-100双层中空材料对硫化氢气体的光催化效果曲线。
通过以上分析,说明本发明通过一系列步骤合成的TiO2@MIL-100双层中空材料对硫化氢气体有着很好的光催化效果;并且其具有制备过程较为简便,生产原料易得等优点,在硫化氢有毒气体的处理方面具有应用前景。
实施例三
聚苯乙烯纳米球的制备,具体步骤如下:
0.05g的十二烷基硫酸钠和15g苯乙烯单体加入到搅拌下的水80毫升,将温度在氮气保护下升温到90℃。此后,逐渐滴入20ml含0.15克过硫酸钾的水溶液。该混合物保持搅拌另外8小时,通过加入氯化钠使聚苯乙烯纳米球沉淀。最终产物用离子交换水洗涤数次,在烘箱中干燥,可以看出其结构分布均匀,粒径在180nm。
空心二氧化钛的制备,具体步骤如下:
0.5mL的钛酸四丁酯加入到20毫升的乙腈中,并保持搅拌20分钟。接着,0.017克的聚苯乙烯纳米球加入到90毫升的乙腈中,并通过超声分散。然后,将0.3毫升氨水,0.06毫升去离子水和20毫升钛酸四丁酯溶液滴入制备的聚苯乙烯悬浮液。将混合物在室温下搅拌2小时以完成化学反应。将产物在乙醇中洗涤,并离心三次,干燥。然后在700℃下以5℃每分钟的加热速度煅烧2小时,可以看出其结构分布均匀。
羧基化的二氧化钛的制备,具体步骤如下:
将空心二氧化钛加入硅烷偶联剂的乙醇溶液搅拌10小时;清洗离心之后将其转移到丁二酸酐的N,N-二甲基甲酰胺溶液中继续搅拌10小时;二氧化钛、硅烷偶联剂、丁二酸酐的质量比为50:1:1。
TiO2@MIL-100双层中空材料的制备,具体步骤如下:
将羧基化的二氧化钛分散在10毫升乙醇中,然后加入10毫升的九水硝酸铬乙醇溶液再室温下搅拌30分钟,用乙醇清洗离心后再加入10 毫升的均苯三甲酸乙醇溶液再25℃下搅拌60分钟。清洗离心后将上述程序重复10遍得到TiO2@MIL-100双层中空材料;对硫化氢气体有着很好的光催化效果,1小时达到90%以上。

Claims (4)

1.一种基于二氧化钛的双层中空材料的制备方法,其特征在于,包括以下步骤:
(1)以粒径为180nm的聚苯乙烯纳米球为模板,以钛酸四丁酯为前驱体,煅烧制备空心二氧化钛;
(2)将空心二氧化钛进行羧基化改性制备羧基化的二氧化钛;
(3)将羧基化的二氧化钛分散在乙醇中,以九水硝酸铬为组装剂、以均苯三甲酸为交联剂,进行层层自组 装,制备基于二氧化钛的双层中空材料;
步骤(2)中,羧基化改性为将空心二氧化钛加入硅烷偶联剂的乙醇溶液中,搅拌8~10小时;然后取固体加入到丁二酸酐的N,N-二甲基甲酰胺溶液中,搅拌8~10小时得到羧基化的二氧化钛;二氧化钛、硅烷偶联剂、丁二酸酐的质量比为50:1:1;
步骤(3)中,每次自组装的步骤为将九水硝酸铬乙醇溶液加入羧基化的二氧化钛乙醇分散液中,搅拌,然后用乙醇清洗离心后再加入均苯三甲酸乙醇溶液,继续搅拌;然后清洗离心去除液体;
步骤(3)中,羧基化的二氧化钛、九水硝酸铬、均苯三甲酸的质量比为20:1:1;层层自组装的次数为10~20次。
2.根据权利要求1所述基于二氧化钛的双层中空材料的制备方法,其特征在于:步骤(1)中,氮气中,在表面活性剂存在下,将苯乙烯水溶液升温到80~90℃;然后滴入引发剂的水溶液,聚合10~20小时,聚合结束后加入氯化钠得到沉淀,然后沉淀用离子交换水洗涤,然后于60℃干燥,制备聚苯乙烯纳米球。
3.根据权利要求1所述基于二氧化钛的双层中空材料的制备方法,其特征在于:步骤(1)中,煅烧为在500~700℃煅烧2~3小时,煅烧时的升温速率为1~5℃/min。
4.根据权利要求1所述基于二氧化钛的双层中空材料的制备方法,其特征在于:步骤(1)中,将钛酸四丁酯加入乙腈中,搅拌制备钛酸四丁酯溶液;将聚苯乙烯纳米球加入溶剂中,超声分散制备聚苯乙烯悬浮液;然后将氨水、去离子水、钛酸四丁酯溶液滴入聚苯乙烯悬浮液,搅拌1小时制备混合液;然后洗涤混合液,再离心处理,得到的固体物干燥后煅烧制备空心二氧化钛粒子;钛酸四丁酯、聚苯乙烯纳米球、氨水的质量比为30:1:20。
CN201611239594.7A 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用 Active CN106732818B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611239594.7A CN106732818B (zh) 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用
CN201811475399.3A CN109569739B (zh) 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其在硫化氢光催化处理中的应用
US15/853,906 US10160659B2 (en) 2016-12-28 2017-12-25 Titanium-dioxide-based double-layer hollow material, preparation method thereof, and application thereof in photocatalytic treatment of hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611239594.7A CN106732818B (zh) 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201811475399.3A Division CN109569739B (zh) 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其在硫化氢光催化处理中的应用

Publications (2)

Publication Number Publication Date
CN106732818A CN106732818A (zh) 2017-05-31
CN106732818B true CN106732818B (zh) 2019-03-22

Family

ID=58924105

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201811475399.3A Active CN109569739B (zh) 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其在硫化氢光催化处理中的应用
CN201611239594.7A Active CN106732818B (zh) 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201811475399.3A Active CN109569739B (zh) 2016-12-28 2016-12-28 基于二氧化钛的双层中空材料及其在硫化氢光催化处理中的应用

Country Status (2)

Country Link
US (1) US10160659B2 (zh)
CN (2) CN109569739B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108772108B (zh) * 2018-05-31 2020-12-08 苏州大学 一种可见光响应的二氧化钛纳米线/金属有机骨架/碳纳米纤维膜及其制备方法及应用
CN108948366B (zh) * 2018-06-29 2020-12-25 福州大学 一种具有丰富Lewis酸性位的Fe-MOF催化剂的制备及其脱硫应用
CN108862242B (zh) * 2018-08-06 2020-02-21 厦门大学 一种磷掺杂中空碳材料的制备方法
CN109201120A (zh) * 2018-09-21 2019-01-15 武汉工程大学 可见光催化产氢的中空TiO2@ZIF-8异质结催化剂及其制备方法
KR102021420B1 (ko) * 2019-02-27 2019-09-16 우태영 광촉매 프리코트를 이용한 유리 및 알루미늄 구조체 공기필터 및 이의 제조방법
CN111111634B (zh) * 2019-12-04 2023-03-31 华南师范大学 一种二氧化钛大孔微球/金属钛复合材料及其制备方法和应用
CN110882725B (zh) * 2019-12-06 2021-07-09 北京科技大学 金属有机骨架负载二氧化钛光催化材料及其制备方法
CN112194320B (zh) * 2020-10-09 2022-11-01 伸荣(上海)水处理环保工程有限公司 一种切削液废水的处理工艺
CN112206833A (zh) * 2020-10-19 2021-01-12 陕西科技大学 一种中空二氧化钛@mil-101复合纳米微球及其制备方法和应用
CN112563428A (zh) * 2020-12-04 2021-03-26 南开大学 一种纳米结构修饰的电子传输层
CN112808238B (zh) * 2020-12-31 2022-04-22 华南理工大学 无机半导体-MOFs衍生物双空复合材料及其制备方法
CN113083370B (zh) * 2021-04-14 2023-11-24 苏州大学 一种共价键连接的TiO2@CTF-Py异质结材料及其制备方法与应用
CN113184915A (zh) * 2021-04-23 2021-07-30 扬州工业职业技术学院 双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用
CN113197220B (zh) * 2021-05-06 2022-04-12 维尼健康(深圳)股份有限公司 一种用于无纺布的除螨消毒剂及其制备方法
CN113441182B (zh) * 2021-06-29 2022-04-19 安徽农业大学 一种核壳型二氧化钛@羧基壳聚糖纳米微粒的制备方法
CN113428893B (zh) * 2021-07-14 2023-03-24 陕西科技大学 一种羧基化改性纳米二氧化钛紫外屏蔽剂及其制备方法
CN113548691B (zh) * 2021-08-23 2023-04-25 合肥学院 一种用于毒死蜱识别与降解的纳米二氧化钛人工抗体壳层的制备方法
CN114314795B (zh) * 2021-12-24 2023-10-31 王晶晶 一种负载型氧化铝颗粒活化过硫酸盐降解有机污染物方法
CN115532247A (zh) * 2022-11-08 2022-12-30 江苏中科睿赛污染控制工程有限公司 一种三维多孔氨气净化用催化材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240130A (zh) * 2013-05-21 2013-08-14 中国石油大学(北京) 光催化分解水用TiO2/MIL-101复合催化剂及制备方法和应用
CN104492381A (zh) * 2014-11-28 2015-04-08 上海工程技术大学 非均相TiO2/Co金属有机骨架材料及其制备方法和应用
CN105170097A (zh) * 2015-09-29 2015-12-23 安徽工程大学 一种TiO2/ZIF-8核壳结构纳米复合材料及其制备方法
CN106238100A (zh) * 2016-07-28 2016-12-21 北京科技大学 二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料的制备及应用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520122A (en) * 1983-12-05 1985-05-28 Uop Inc. Immobilization of organic species on refractory inorganic oxides
US6171372B1 (en) * 1997-10-13 2001-01-09 Hitachi Zosen Corporation Nitrogen dioxide absorbent
CN100519689C (zh) * 2005-11-02 2009-07-29 苏州大学 发光功能性复合材料及其制备方法
US20130084318A1 (en) * 2010-06-04 2013-04-04 Sudipta Ghosh Dastidar Microspheres and photoprotective personal care composition comprising same
CN104324696A (zh) * 2014-11-11 2015-02-04 天津工业大学 掺杂介孔复合材料的水处理薄膜的制备及应用新方法
CN104722338B (zh) * 2015-04-02 2017-03-15 哈尔滨工业大学 一种钛改性MIL‑101(Cr)催化剂的制备方法
CN105289509A (zh) * 2015-11-24 2016-02-03 天津工业大学 一种具有核壳结构的介孔复合材料制备方法
CN105413638A (zh) * 2015-11-24 2016-03-23 天津工业大学 一种具有sod沸石构型的核壳型复合材料制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240130A (zh) * 2013-05-21 2013-08-14 中国石油大学(北京) 光催化分解水用TiO2/MIL-101复合催化剂及制备方法和应用
CN104492381A (zh) * 2014-11-28 2015-04-08 上海工程技术大学 非均相TiO2/Co金属有机骨架材料及其制备方法和应用
CN105170097A (zh) * 2015-09-29 2015-12-23 安徽工程大学 一种TiO2/ZIF-8核壳结构纳米复合材料及其制备方法
CN106238100A (zh) * 2016-07-28 2016-12-21 北京科技大学 二氧化钛纳米片负载MIL‑100(Fe)复合光催化材料的制备及应用方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A p-type Ti(IV)-based metal–organic framework;Junkuo Gao et al.;《ChemComm》;20141231;第1885-1892页 *
Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2;Dangqin Jin1;《Microchim Acta》;20151231;第3786-3788页 *
钛酸四丁酯水解制备聚苯乙烯/二氧化钛核壳粒子及空心二氧化钛微球;王金刚;《高分子学报》;20110731;第778-783页 *

Also Published As

Publication number Publication date
US20180179079A1 (en) 2018-06-28
CN109569739A (zh) 2019-04-05
CN109569739B (zh) 2020-12-08
US10160659B2 (en) 2018-12-25
CN106732818A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106732818B (zh) 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用
CN106492761A (zh) 一种磁性水凝胶微球的制备方法
CN105413638A (zh) 一种具有sod沸石构型的核壳型复合材料制备方法
CN103934008A (zh) 一种埃洛石负载磷酸银光催化剂的制备
CN106554431B (zh) 双孔硅胶载体和负载型聚乙烯催化剂及其制备方法和应用以及乙烯聚合的方法
CN104475027A (zh) 一种具有sod沸石构型的用于富集和催化降解有机物的新型复合材料
CN105289509A (zh) 一种具有核壳结构的介孔复合材料制备方法
CN107570194B (zh) 一种Fe/Co-Nx/TiO2光催化剂及其制备方法和应用
CN109126729A (zh) 一种乙二胺改性磁性壳聚糖的方法及去除废水中双氯芬酸的应用
Ouwehand et al. Titania-functionalized diatom frustules as photocatalyst for indoor air purification
CN108404987A (zh) 一种提高纳米颗粒@MOFs材料催化效率的方法
CN105727904B (zh) 一种有害气体吸附剂的制备方法
CN105879910A (zh) 一种聚(苯乙烯-甲基丙烯酸)/纳米银复合微球及其制备方法
CN104307525A (zh) 泡沫镍负载TiO2光催化剂的制备方法
CN104307484A (zh) 一种具有呼吸效应的用于富集和催化降解有机物的新型复合材料
CN106115779B (zh) 一种中空纳米TiO2包碳Yolk‑shell结构的制备方法
CN108927102A (zh) 一种二氧化钛纳米管材料的制备方法及应用
CN105565375A (zh) 一种纳米级多孔二氧化钛空心球的制备方法
CN105435745B (zh) 一种锌铁氧体@壳聚糖/氧化石墨烯复合材料及其制备方法和应用
CN109225215A (zh) 一种高效选择性光催化还原水中硝态氮的光催化材料及其制备方法
CN105964217A (zh) 一种磁性KMS-1/Fe3O4复合材料的制备方法及其用于去除环丙沙星
CN102600906A (zh) 分子印迹型光催化剂的制备方法
CN104947178B (zh) 大空腔Bi空心球纳米晶的制备方法
CN112316985A (zh) 一种二氧化碳加氢制甲醇的催化材料及其制备方法
CN107519942A (zh) 采用&#34;一锅法&#34;制备具有呼吸效应的新型复合材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant