CN113184915A - 双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用 - Google Patents

双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用 Download PDF

Info

Publication number
CN113184915A
CN113184915A CN202110439815.XA CN202110439815A CN113184915A CN 113184915 A CN113184915 A CN 113184915A CN 202110439815 A CN202110439815 A CN 202110439815A CN 113184915 A CN113184915 A CN 113184915A
Authority
CN
China
Prior art keywords
ferroferric oxide
shell
double
coated
oxide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110439815.XA
Other languages
English (en)
Inventor
吴启超
宿致佳
倪俨杰
孙凡婷
解明星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Polytechnic Institute
Original Assignee
Yangzhou Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Polytechnic Institute filed Critical Yangzhou Polytechnic Institute
Priority to CN202110439815.XA priority Critical patent/CN113184915A/zh
Publication of CN113184915A publication Critical patent/CN113184915A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本案涉及一种双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用,首先制得四氧化三铁纳米颗粒;然后进行碳和二氧化钛包覆,再使用氢氩气氛进行煅烧得到氢化二氧化钛和碳双层壳包覆的四氧化三铁纳米颗粒,该纳米颗粒可用于制备锂离子电池负极材料。本发明制得了以四氧化三铁为核心,碳层为中间层,氢化二氧化钛为最外层包覆层的双层包覆的核壳结构四氧化三铁纳米颗粒;氢化后的二氧化钛在电导率上有很大的提升,扩大了复合材料在储能以及半导体领域应用;双层壳包覆有效避免Fe3O4纳米颗粒在电池循环过程中的体积膨胀;本发明工艺简单、成本低廉,适宜于工业化批量生产;制得的四氧化三铁纳米颗粒具有形貌规则、均一度好等特点。

Description

双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用
技术领域
本发明涉及过渡金属纳米材料制备领域,具体为一种双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用。
背景技术
目前,过渡金属氧化物的种类多样化,具有良好的铁电、超导、压电以及磁弹性等独特性质,在能量储存、能量转化、太阳能器件以及半导体等领域具有广泛的应用前景。二氧化钛和碳常常被用作辅助材料来改性材料表面的稳定性以及弥补材料本身未具备的性质,从而获得新型的含二氧化钛和碳的纳米复合结构材料,使其在电子、电池、催化剂、生物医学、电波等方面有广阔的应用前景。
然而目前通常采用单一的TiO2或碳对过渡金属进行包覆,TiO2本身的导电性能较差;单层碳包覆不能长久有效的抑制Fe3O4纳米颗粒在电池循环过程中的体积膨胀,且碳包覆过程通常需要较高温度,不符合绿色化学要求。
发明内容
针对现有技术中的不足之处,本发明目的在于提供一种氢化二氧化钛和碳双层包覆的核壳结构四氧化三铁纳米颗粒的制备方法,制得的纳米颗粒具有形貌规则、均一度好以及高电化学性能等特点。
为实现上述目的,本发明提供如下技术方案:
一种双层壳包覆的四氧化三铁纳米颗粒的制备方法,包括以下步骤:
S1:将铁盐以及六亚甲基四胺加入乙二醇溶液中,搅拌得到浑浊液,随后转移至反应釜中进行水热反应得到四氧化三铁纳米颗粒;
S2、将四氧化三铁纳米颗粒加入无水乙醇与去离子水混合溶液中,搅拌使其分散均匀;随后加入氨水,甲醛以及间苯二酚,搅拌得到混合溶液A;
S3、将混合溶液A转移至反应釜中进行水热反应得到碳包覆核壳结构四氧化三铁纳米颗粒;
S4、将碳包覆核壳结构四氧化三铁纳米颗粒加入无水乙醇溶液中,搅拌得到混合溶液B,随后加入钛酸四丁酯,水浴搅拌得到二氧化钛和碳双层包覆的核壳结构四氧化三铁纳米颗粒;
S5、将二氧化钛和碳双层包覆的核壳结构四氧化三铁纳米颗粒加入到氢氧化钠溶液中,搅拌后向其中加入盐酸,搅拌后过滤得到固体C;
S6、将固体C置于管式炉中,使用氢氩气氛进行煅烧得到氢化二氧化钛和碳双层壳包覆的四氧化三铁纳米颗粒。
进一步地,所述铁盐为三氯化铁、六水合氯化铁或硫酸亚铁。
进一步地,所述铁盐与六亚甲基四胺的质量比为2~3:1。
进一步地,所述S1的水热温度为200℃,水热时间为20h。
进一步地,所述S2中氨水、甲醛以及间苯二酚与四氧化三铁纳米颗粒的摩尔比为0.2:0.2:0.5:1~2。
进一步地,所述S3的水热温度为100℃,水热时间为24h。
进一步地,所述步骤S4中的混合溶液B与钛酸四丁酯的体积比为100:4,水浴温度为48℃,水浴时间为20h。
进一步地,所述S6中的氢氩混合气比例为1:19,煅烧温度为450℃,煅烧时间为2h。
本发明还提供一种采用如上所述的制备方法制得的双层壳包覆的四氧化三铁纳米颗粒。
本发明进一步提供一种双层壳包覆的四氧化三铁纳米颗粒在制备锂离子电池负极材料中的应用。
本发明的有益效果是:本发明制得了以四氧化三铁为核心,碳层为中间层,氢化二氧化钛为最外层包覆层的双层包覆的核壳结构四氧化三铁纳米颗粒。氢化后的二氧化钛在电导率上有很大的提升,扩大了复合材料在储能以及半导体领域应用。采用氢化二氧化钛和碳共同包覆,有效避免Fe3O4纳米颗粒在电池循环过程中的体积膨胀。本发明制备过程容易控制、工艺简单、成本低廉,适宜于工业化批量生产;制得的四氧化三铁纳米颗粒具有形貌规则、均一度好等特点。
附图说明
图1为本发明的Fe3O4的SEM图;
图2为本发明C/Fe3O4的SEM图;
图3为本发明TiO2/C/Fe3O4的SEM图;
图4为本发明H-TiO2/C/Fe3O4的SEM图;
图5为本发明H-TiO2/C/Fe3O4的TEM图;
图6为本发明H-TiO2/C/Fe3O4的X射线衍射图;
图7为C/Fe3O4作为半电池扣式锂离子电池阳极材料时的循环性能图;
图8为TiO2/C/Fe3O4作为半电池扣式锂离子电池阳极材料时的循环性能图;
图9为H-TiO2/C/Fe3O4作为半电池扣式锂离子电池阳极材料时的循环性能图;
图10为本发明实施例2双层壳包覆的四氧化三铁纳米颗粒的SEM图;
图11为本发明实施例3双层壳包覆的四氧化三铁纳米颗粒的SEM图。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1:
S1、将1.2g的三氯化铁和0.6g的六亚甲基四胺加入90mL的乙二醇溶液中溶解得到铁离子溶液;将铁离子溶液在200℃下,水热反应20h,然后过滤,将滤饼分别用水和乙醇离心清洗,接着干燥滤饼得到四氧化三铁纳米颗粒,记为Fe3O4
S2、将1g的四氧化三铁纳米颗粒加入90mL去离子水和无水乙醇(15mL:15mL)的混合溶液中,磁力搅拌40min;随后向其中加入0.1mL 28%的氨水,2mL甲醛以及0.8g间苯二酚,搅拌30min,得到混合溶液A。
S3、将混合溶液A在100℃下,水热反应24h,然后过滤,将滤饼分别用水和乙醇离心清洗,接着干燥滤饼得到单层碳包覆核壳结构四氧化三铁纳米颗粒,记为C/Fe3O4
S4、将C/Fe3O4加入100mL的无水乙醇溶液中,搅拌得到混合溶液B;向混合溶液B中加入4mL钛酸四丁酯,水浴温度为48℃,搅拌20h,然后过滤,将滤饼分别用水和乙醇离心清洗,接着干燥滤饼得到二氧化钛和碳双层包裹的核壳结构四氧化三铁纳米颗粒,记为TiO2/C/Fe3O4
S5、将TiO2/C/Fe3O4加入150mL的2M氢氧化钠溶液中,搅拌均匀后缓慢加入0.2M的盐酸溶液直至无气泡产生,过滤,将滤饼分别用水和乙醇离心清洗,接着干燥滤饼得到固体C;
S6、将固体C置于管式炉中,使用氢氩气氛(体积比为1:19)进行煅烧,煅烧温度为450℃,煅烧时间为2h,得到氢化二氧化钛和碳双层包裹的核壳结构四氧化三铁纳米颗粒,记为H-TiO2/C/Fe3O4
参照图1-4,分别为Fe3O4、C/Fe3O4、TiO2/C/Fe3O4、H-TiO2/C/Fe3O4的SEM图,从图中可以看出Fe3O4纳米球的表面毛糙,类似于荔枝状;C/Fe3O4纳米材料由于致密的碳层进行包覆显示出光滑的表面;TiO2/C/Fe3O4纳米材料显示由于TiO2层的存在将C/Fe3O4纳米球包裹在一起,部分发生聚合;氢化后的H-TiO2/C/Fe3O4纳米材料可以发现H-TiO2以枝状的形式存在,C/Fe3O4纳米材料被H-TiO2层完整的包裹。
如图5为H-TiO2/C/Fe3O4的TEM图,从图中可以看出以四氧化三铁纳米颗粒为核的直径为~150nm,碳壳的厚度为~20nm,氢化二氧化钛壳的厚度为~5nm,形貌规则。
如图6,通过对比四氧化三铁以及二氧化钛的结晶峰,进一步证实了H-TiO2/C/Fe3O4为氢化二氧化钛和碳双层包裹的核壳结构四氧化三铁纳米颗粒。
将上述制得的C/Fe3O4、TiO2/C/Fe3O4、H-TiO2/C/Fe3O4作为半电池扣式锂离子阳极材料,首先,准备4个浆料瓶,记为1、2、3、4号,在每个浆料瓶中依次加入1mL的N-甲基-2-吡咯烷酮(NMP)有机溶剂,20mg聚偏二氟乙烯,20mg导电炭黑,充分搅拌20min左右,随后将充分研磨的160mg活性物质C/Fe3O4、TiO2/C/Fe3O4、H-TiO2/C/Fe3O4分别加入到1、2、3、4号浆料瓶中,搅拌24h,用涂布机将制成的浆料以30mm的厚度分别涂抹于4片铜箔上,将铜箔真空干燥8h。随后,将铜箔切成硬币大小的电极片,称量得到单个电极上活性物质的质量。最后,在充满氩气的手套箱里以扣式电池的组装顺序安装好CR2032型扣式电池,其中电解液使用1MLiPF6,静置24h,随后进行相应的测试。
测试方法:使用新威CT-4008型电池测试仪,电压范围为0.01~3.00V,电流密度为0.3Ag-1进行电化学性能测试,从图7-9中可以发现,C/Fe3O4作为锂离子半电池负极材料循环200圈后的容量为707mAh g-1;再负载二氧化钛得到的TiO2/C/Fe3O4容量降到了433mAh g-1,由于二氧化钛自身导电率很低,加入后反而会影响材料的电化学性能。但是对二氧化钛氢化后得到的H-TiO2/C/Fe3O4容量有所增大达到了868mAh g-1,较单层的C/Fe3O4还要高出很多,说明双层壳包覆的四氧化铁纳米颗粒有效抑制了在电池循环过程中的体积膨胀,提高了其导电性。
实施例2:
将实施例1中1.2g的三氯化铁替换成1.1g六水合三氯化铁,其余步骤同实施例1,制得双层壳包覆的四氧化三铁纳米颗粒。
实施例3:
将实施例1中1.2g的三氯化铁替换成1.0g硫酸亚铁,其余步骤同实施例1,制得双层壳包覆的四氧化三铁纳米颗粒。
图10和图11分别为实施例2和实施例3的纳米颗粒的SEM图,均制得了核为四氧化三铁,双壳为碳和氢化二氧化碳的纳米颗粒。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (10)

1.一种双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,包括以下步骤:
S1:将铁盐以及六亚甲基四胺加入乙二醇溶液中,搅拌得到浑浊液,随后转移至反应釜中进行水热反应得到四氧化三铁纳米颗粒;
S2、将四氧化三铁纳米颗粒加入无水乙醇与去离子水混合溶液中,搅拌使其分散均匀;随后加入氨水,甲醛以及间苯二酚,搅拌得到混合溶液A;
S3、将混合溶液A转移至反应釜中进行水热反应得到碳包覆核壳结构四氧化三铁纳米颗粒;
S4、将碳包覆核壳结构四氧化三铁纳米颗粒加入无水乙醇溶液中,搅拌得到混合溶液B,随后加入钛酸四丁酯,水浴搅拌得到二氧化钛和碳双层包覆的核壳结构四氧化三铁纳米颗粒;
S5、将二氧化钛和碳双层包覆的核壳结构四氧化三铁纳米颗粒加入到氢氧化钠溶液中,搅拌均匀后缓慢加入盐酸溶液直至无气泡产生,搅拌后过滤得到固体C;
S6、将固体C置于管式炉中,使用氢氩气氛进行煅烧得到氢化二氧化钛和碳双层壳包覆的四氧化三铁纳米颗粒。
2.如权利要求1所述的双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,所述铁盐为三氯化铁、六水合氯化铁或硫酸亚铁。
3.如权利要求1所述的双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,所述铁盐与六亚甲基四胺的质量比为2~3:1。
4.如权利要求1所述的双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,所述S1的水热温度为200℃,水热时间为20h。
5.如权利要求1所述的双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,所述S2中氨水、甲醛以及间苯二酚与四氧化三铁纳米颗粒的摩尔比为0.2:0.2:0.5:1~2。
6.如权利要求1所述的双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,所述S3的水热温度为100℃,水热时间为24h。
7.如权利要求1所述的双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,所述步骤S4中的混合溶液B与钛酸四丁酯的体积比为100:4,水浴温度为48℃,水浴时间为20h。
8.如权利要求1所述的双层壳包覆的四氧化三铁纳米颗粒的制备方法,其特征在于,所述S6中的氢氩混合气比例为1:19,煅烧温度为450℃,煅烧时间为2h。
9.一种采用如权利要求1-8中任一项所述的制备方法制得的双层壳包覆的四氧化三铁纳米颗粒。
10.一种如权利要求9所述的双层壳包覆的四氧化三铁纳米颗粒在制备锂离子电池负极材料中的应用。
CN202110439815.XA 2021-04-23 2021-04-23 双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用 Pending CN113184915A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110439815.XA CN113184915A (zh) 2021-04-23 2021-04-23 双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110439815.XA CN113184915A (zh) 2021-04-23 2021-04-23 双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113184915A true CN113184915A (zh) 2021-07-30

Family

ID=76978458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110439815.XA Pending CN113184915A (zh) 2021-04-23 2021-04-23 双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113184915A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115472801A (zh) * 2022-10-11 2022-12-13 扬州工业职业技术学院 氢化二氧化钛修饰核壳结构多孔四氧化三铁和氧化镍的制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191762A (zh) * 2013-04-15 2013-07-10 天津大学 氟化二氧化钛/碳/四氧化三铁三层纳米复合材料及制备
CN104993126A (zh) * 2015-07-28 2015-10-21 河北工业大学 碳包覆Fe3O4纳米颗粒锂离子电池负极材料制备方法及其应用
CN107611405A (zh) * 2017-09-13 2018-01-19 天津工业大学 一种锂电池用碳包覆四氧化三铁纳米核壳型微球的制备方法
US20180179079A1 (en) * 2016-12-28 2018-06-28 Soochow University Titanium-dioxide-based double-layer hollow material, preparation method thereof, and application thereof in photocatalytic treatment of hydrogen sulfide
CN108379581A (zh) * 2018-03-30 2018-08-10 上海交通大学 一种四氧化三铁-碳-金药物载体及其制备方法
CN112357956A (zh) * 2020-09-28 2021-02-12 浙江理工大学 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191762A (zh) * 2013-04-15 2013-07-10 天津大学 氟化二氧化钛/碳/四氧化三铁三层纳米复合材料及制备
CN104993126A (zh) * 2015-07-28 2015-10-21 河北工业大学 碳包覆Fe3O4纳米颗粒锂离子电池负极材料制备方法及其应用
US20180179079A1 (en) * 2016-12-28 2018-06-28 Soochow University Titanium-dioxide-based double-layer hollow material, preparation method thereof, and application thereof in photocatalytic treatment of hydrogen sulfide
CN107611405A (zh) * 2017-09-13 2018-01-19 天津工业大学 一种锂电池用碳包覆四氧化三铁纳米核壳型微球的制备方法
CN108379581A (zh) * 2018-03-30 2018-08-10 上海交通大学 一种四氧化三铁-碳-金药物载体及其制备方法
CN112357956A (zh) * 2020-09-28 2021-02-12 浙江理工大学 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王娜娜: "微纳结构及缺陷二氧化钛包覆层对锂/钠二次电池负极材料的改性研究", 《CNKI博士学位论文全文库》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115472801A (zh) * 2022-10-11 2022-12-13 扬州工业职业技术学院 氢化二氧化钛修饰核壳结构多孔四氧化三铁和氧化镍的制备方法和应用

Similar Documents

Publication Publication Date Title
CN108336316B (zh) 一种基于MOFs表面改性的富锂正极材料及其制备方法
CN108767260B (zh) 一种碳包覆FeP中空纳米电极材料及其制备方法和应用
EP3371104B1 (en) Direct synthesis of carbon doped tio2-bronze nanostructures as anode materials for high performance lithium batteries
Auer et al. Recent Progress in Understanding Ion Storage in Self‐Organized Anodic TiO2 Nanotubes
Zhu et al. Precise growth of Al2O3/SnO2/CNTs composites by a two-step atomic layer deposition and their application as an improved anode for lithium ion batteries
CN108288703B (zh) 一种石墨烯包覆掺氟钛酸锂纳米线的制备方法及其应用
Feng et al. Carbon-coated Fe2O3 hollow sea urchin nanostructures as high-performance anode materials for lithium-ion battery
CN108172782B (zh) 一种具有壳-核结构碳包裹多孔氧化亚钴纳米材料的制备方法及应用
Feng et al. NiO Flowerlike porous hollow nanostructures with an enhanced interfacial storage capability for battery-to-pseudocapacitor transition
CN106410153A (zh) 一种氮化钛包覆钛酸镍复合材料及其制备方法和应用
CN109574078B (zh) 一种一氧化锰纳米颗粒及其应用和制备方法
CN111933904A (zh) 双金属硫化物及其制备方法、复合物及其制备方法、锂硫正极材料及锂硫电池
CN111825126A (zh) 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法
CN113571681B (zh) 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用
JP2020075848A (ja) 線状多孔チタン酸リチウム材料及びその調製並びに製品
Chen et al. High-performance Zn 2 SnO 4 anodes enabled by MOF-derived MnO decoration and carbon confinement for lithium-ion batteries
CN111384365A (zh) 碳包覆多层NiO空心球复合材料的制备方法
CN113184915A (zh) 双层壳包覆的四氧化三铁纳米颗粒、其制备方法和应用
Guo et al. Constructing P-doped self-assembled V 2 C MXene/NiCo-layered double hydroxide hybrids toward advanced lithium storage
Lu et al. Fe 3 C doped modified nano-Si/C composites as high-coulombic-efficiency anodes for lithium-ion batteries
CN108023079B (zh) 一种混合过渡金属硼酸盐负极材料及其制备方法
CN112768679A (zh) 一维豌豆状双金属钒酸铁纳米线材料及其制备方法和应用
CN112670477B (zh) 一种氮化钒量子点原位植入碳球复合材料及其制备方法和储钠应用
Wang et al. Hollow and yolk-shell structured off-stoichiometric tungsten trioxide via selective leaching and hydrogenation for enhanced lithium storage properties
Kumar et al. Synthesis and energy applications of m ulti‐shell micro/n ano‐spheres

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination