CN1067326A - 超导材料及其制造方法 - Google Patents

超导材料及其制造方法 Download PDF

Info

Publication number
CN1067326A
CN1067326A CN92103605A CN92103605A CN1067326A CN 1067326 A CN1067326 A CN 1067326A CN 92103605 A CN92103605 A CN 92103605A CN 92103605 A CN92103605 A CN 92103605A CN 1067326 A CN1067326 A CN 1067326A
Authority
CN
China
Prior art keywords
powder
mentioned
superconductor
gained
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN92103605A
Other languages
English (en)
Inventor
糸崎秀夫
田中三郎
桧坦贤次郎
服部久雄
藤森直治
矢津修示
上代哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of CN1067326A publication Critical patent/CN1067326A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4512Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing thallium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0408Processes for depositing or forming copper oxide superconductor layers by sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661Processes performed after copper oxide formation, e.g. patterning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

本发明超导材料的特征在于它主要包含具有下 式:TlXCaYBaCuZOa(这里,X、Y、Z是分别满足0.5 ≤X≤3.0,0.5≤Y≤3.0,0.9≤Z≤4.0的数)。所述成 分构成的复合氧化物。

Description

本发明与超导材料及其制造方法有关。更详细地说,本发明与在非常高的温度下呈现超导现象的新型超导材料及其制造方法有关。
特定的物质在超导现象下呈抗磁性,即既使在其内部有有限的恒定电流流过,也不产生电位差。
这种超导现象的应用领域包括核融合炉,MIID(磁流体动力)发电、输电、储电等电力领域;磁悬浮列车、电磁推进船舶等动力领域;检测磁场、高频、放射线等所用的超级高灵敏度传感器领域;NMR(核磁共振)高能物理实验装置等计测等领域;进而过渡到π介子治疗等医学领域等等极为广阔的领域,而且,既使在以约瑟夫逊元件为代表的电子领域,也把它预期作为不仅是用来降低电能消耗,而且是能够实现具有极高工作速度的元件的一种技术。
可是,过去,超导是仅在超低温下才能观测到的现象。即,既使对原有的超导材料中普遍认为具有最高超导临界温度TC的Nb3Ge来说,也把23.2K这样的极低的温度长期作为超导临界温度的极限。因此,为了实现超导现象,要用沸点为4.2K的液态氦,把超导材料冷却至TC以下。但是,使用液态氦时,包括液化设备在内的冷却设备所引起的技术负担及费用负担极大,从而妨碍了超导技术的实用化。
然而,在1986年,Bednorz及Muller等人发现了具有较高TC的复合氧化物超导材料,从而大大提高了高温超导的可能性(Z.phys.B64(1986)189)。
Bednorz及Muller等人发现的氧化物超导体是(La,Ba)aCuO4,这种氧化物超导体被称作为K2NiF4型氧化物,其结晶结构虽然类似于原来的钙钛矿型超导氧化物,但其TC与原来的超导材料相比有飞跃性的提高,大约为30K左右。
在1987年2月,Chu等人进一步发现了临界温度为90K级的(称作YBCO)用Y,Ba2Cu3O7-k表示的Ba-Y-Cu-O系复合氧化物。(physical Review Letter(58)9,pp 908-910)。
随着这些材料的发现,人们期望靠非低温超导体立刻促进超导技术的实用化。
液体氮的处理比较容易,价格也较便宜,随着在液态氮的温度下工作的超导材料的发现,超导技术的实用化取得了很大的进展。但是,在基本的冷却设备结构不变的情况下,只能实现由冷却介质那部份低价格化所引起的超导技术的低消费。
另外,如果考虑超导状态的稳定性的话,则希望冷却介质的温度(特别是沸点)与对应材料的超导临界温度TC之差足够大,就实用而言,还有必要进一步提高超导材料的临界温度。
本发明的目的在于提供能够减少冷却设备对利用超导技术的限制、可稳定地利用超导现象、且在高温下呈现超导特性的新型超导材料及其制造方法。
本发明的超导材料,其特征在于:主要包含具有下式所述成分构成的复合氧化物:
TlxCayBaCuzOa其中:x、y、z是分别满足0.5≤x≤3.0,0.5≤y≤3.0及0.9≤z≤4.0的数。
上述x、y及z值如能满足1.5≤x≤2.5、1.5≤y≤2.5及2.5≤z≤3.5更好。
主要包含上述复合氧化物的超导材料,可以用烧结体或薄膜的形式得到。
本发明的超导材料主要包含上述式子所示的复合氧化物,但它并严格限定于上述比例,即使它是由在这些比例的±50%的范围内,更好一点为±20%的范围内的成份组成的,有时也能呈现有效的超导特性。即,上述定义中“主要包含”这4个字的含义是,用本发明的方法制成的超导材料,也可包含上式定义的原子比以外的成份。
本发明的超导材料,正如以后所述的那样,不但呈现出极优的超导特性,在稳定性方面也很突出,而且,即使在空气中也能长时间发挥出有效的超导特性。
另外,本发明的超导材料,也可包含上述成份构成所含元素以外的元素,如以ppm(百万分之几)数量级混入的避免不了的杂质或为了提高所得烧结体或薄膜的其他特性而添加的第3成份。具体举例来说,第3成份可以是元素周期表中的Ⅱa族元素和Ⅲa族元素。
本发明还提供了上述超导材料烧结体的制造方法。本发明的制造方法的特征在于:把由Tl、Ca、Ba及Cu元素的单质粉末或至少包含这些元素中之一的化合物粉末混合在一起形成的包含所有这些元素的混合物或烧制这种混合物后粉碎所得的烧制体粉末作为原料粉末,且至少包括一次烧结这种原料粉末的工序。
上述烧结操作最好在上述原料粉末成形后进行。
上述化合物的粉末,可以从分别含有Ba、Ca、Tl及Cu元素的氧化物,碳酸盐、硫酸盐、硝酸盐及草酸盐中选择。如重点考虑产品质量的话,氧化物较为有利,而如考虑原料粉末配制的容易程度,则碳酸盐等更好一些。
另外,在把碳酸盐、硫酸盐、硝酸盐及草酸盐粉末用作原料粉末时,在烧结前先进行预烧,除去这些盐类物质所包含的碳、硫磺、氮等元素,对提高成品质量也是很有好处的。因此,在本发明的较好的一个实施例中,是把分别含有Ba、Ca、Tl及Cu元素的氧化物,碳酸盐、硫酸盐、硝酸盐及草酸盐粉末混合在一起,烧制所得的这种混合物,然后把将该混合物粉碎所得的烧制体粉末用作原料粉末。
按照本发明者等人的研究,要想使上述复合氧化物材料成为具有较高超导性能的烧结体,有必要对以下各类进行严格控制:
(1)原料粉末的粒径、(2)烧制温度、(3)粉碎后的烧制体粉末的粒径及(4)烧结温度。
按本发明所期望的实施状态,成形前的烧制或烧结粉末粒径在10μm以下,在1到5μm的范围内更好。即,如烧制处理前的原料粉末的平均粒径超过10μm的话,既使经历了烧结后的粉碎工序,结晶粒也不能充分做到微细化。因此,为了达到结晶粒的微细化,最好使原料粉末的粒径小于10μm,如在1到5μm的范围内更好。
如结晶粒径处在5μm以下的话,粉末的微细化效果将很显著。另外,如粉碎以使结晶粒径低于1μm,鉴于加工期间有杂质混入的危险等理由,对工业生产是不利的。另外,由于最终烧结后所进行的粉末的细粒化将直接影响成品结晶粒径,所以在这方面应特别注意。
另外,将烧制、粉碎、成形等一系列工序重复多次,例如2次以上,使原料粉末或烧制体均质化,则可以得到质量极佳的成品。
上述烧制及烧结工序所采用的温度最好是750℃以上,而且温度范围的上限最好是所用原料粉末中融点最低的化合物的融点。更具体地说,可以提高到800到900℃的温度范围。另外,这种烧结温度最好保持1个小时到50个小时。
上述烧结温度,是制造超导材料时重要的控制要素,必须只在不使烧结中的材料熔融的固相反应中进行烧结,并且应该控制温度,以使烧结后形成的复合氧化物结晶体不致过大。因此,烧结温度应是不超过烧制体粉末融点的温度。但是,烧结温度如果过低,烧结反应就会不充分,所以必须至少在750℃以上的环境中加热。
上述烧结时间,虽然一般说来长一点可以得到所期望的成份构成,但实际上,最好是在1小时到50小时的范围内。
另外,同控制烧结处理时的理由相同,也有必要严格控制原料粉末的烧制处理。即,这种烧制温度如达不到800℃,则烧制反应不能充分进行,从而不能得到所希望的物质构成。但是,与烧结处理时的理由相同,也不希望烧制温度超过原料粉末的融点。
本发明的超导材料,也可把用上述烧结体的制造方法所得到的超导烧结体作靶,用物理淀积法在基板上长成超导薄膜涂覆到基板上。
这时,靶的成份最好按构成靶的各元素的蒸发率等进行调整,以使形成的薄膜的组成为上述超导材料的成份。就物理淀积法来说,虽然一般希望用溅射法或离子镀法,但也可用电子束法或分子束作外生长法。
就用于生长薄膜的基板来说,使用结晶结构与所形成的复合氧化物相似的物质较为有利,所希望的物质可以具体举例如下:MgO、BaTiO3、SiO2、LaGaO3、LaAlO3、青玉、YSZ等。
这时,用作蒸发源的物质可以是形成超导材料的单质元素,包含这些元素的化合物的粉末混合物,烧制由这些单质元素和/或包含这些元素的化合物粉末混合而成的混合物所得的烧制体,把这种烧制体粉碎后所得的粉末,把这种烧制体粉末或上述各种化合物粉末烧结后所得的烧结体或其粉末。
另外,为了使成膜后的复合氧化物薄膜的各成份比例较为恰当,最好按各元素的淀积效率预先调整蒸发源各元素的组成比例和/或氧气分压。
正如以上所述的,本发明的多种元素复合氧化物超导材料,是临界温度比原来的超导材料明显高出许多的超导体。另外,就长期保持超导特性这方面来说,这种超导材料也比过去的复合氧化物超导材料优越。
由于按照本发明,可以得到具有稳定、较高临界温度的新型超导材料,就可以用经济的冷却设备来实现超导现象。
本发明的超导材料可以以板状体、细长线状体或小型零件的形式得到,另外,用溅射等方法制成的薄膜,可以适用于约瑟夫逊元件,SQUID(超导量子干涉器件)、超导磁铁、各种传感器等广泛的领域。
以下,用实施例来具体说明本发明。这只不过是本发明的一个实施例,实际上,本发明的技术范围是没有任何限制的。
首先,把市场上买来的BaCO3粉末、CaCO3粉末及CuO粉末用球磨机粉碎至粒径为10微米左右的颗粒,再混合起来。在925℃的环境下烧制这种粉末混合物达30分钟,就得到了Ba-Ca-Cu-O烧制体。
把得到的烧制体,再用球磨机粉碎至粒径小于10微米后,再加入Tl2O3,粉碎/混合以使粒径小于5微米,这样就得到了原料粉末。还有,所得到的原料粉末,按该原料粉末中的各元素的原子比例Tl∶Ca∶Ba∶Cu=2∶2∶1∶3进行配制。
把这样得到的原料粉末压制成形后,在900℃下烧结1小时。
当测定用以上方法制成的试料的超导临界温度时,试料在110K处电阻急骤下降,在85K处电阻就检测不出了。
这个临界温度的测定是按一定方法,用Ag导电涂料在试件2端安上电极,然后用低温箱中的4探针法进行。温度用校准后的Au(Fe)-铬镍合金热偶进行监视。
另外,把这个试料放置在空气中20天后再进行测定,未发现对超导特性有意义的偏差。
对按上述方法得到的试料进一步用ICP(电感偶合等离子体发光分光分析装置)分析和重量变化测定相结合进行成份分析,试料的成份构成可用式:
Tl2Ca2BaCu3Oa
表示,a的值约为9.5。

Claims (6)

1、一种超导薄膜的制造方法,其特征在于:把由Tl、Ca、Ba及Cu各元素的单质粉末或至少包含这些元素之一的化合物的粉末混合而成包含所有上述元素的混合物、或烧制这种混合物后粉碎所得的烧制体粉末作为原料粉末,把主要包含至少经过对上述这种原料粉末烧结一次所得的,具有下式:
TlxCayBaCuzOa
这里,x、y、z是分别满足0.5≤X≤3.0、0.5≤y≤3.0及0.9≤z≤4.0的数
所示成份构成的复合氧化物的烧结体作为靶,用物量淀积法在基板上生长薄膜。
2、如权利要求1所述的方法,其特征在于:上述物量淀积法是溅射法或离子镀法。
3、如权利要求1和2中任一项所述的方法,其特征在于:上述x、y、z是分别满足1.5≤x≤2.5、1.5≤y≤2.5、2.5≤z≤3.5的数。
4、如权利要求1到3中任一项所述的方法,其特征在于:待使上述原料粉末成形后,再进行上述烧结处理。
5、如权利要求1所述的方法,其特征在于:上述化合物的粉末是从分别含有Ba、Ca、Tl及Cu元素的氧化物、碳酸盐、硫酸盐、硝酸盐及草酸盐中选择的。
6、如权利要求1所述的方法,其特征在于:烧制从分别含有Ba、Ca、Tl及Cu元素的氧化物、碳酸盐、硫酸盐、硝酸盐及草酸盐中选择出来的化合物粉末混合物,把粉碎所得的烧制体粉末作为原料粉末。
CN92103605A 1988-02-25 1992-05-16 超导材料及其制造方法 Pending CN1067326A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP42691/88 1988-02-25
JP4269188 1988-02-25
CN89101162A CN1018113B (zh) 1988-02-25 1989-02-25 超导材料及其制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN89101162A Division CN1018113B (zh) 1988-02-25 1989-02-25 超导材料及其制造方法

Publications (1)

Publication Number Publication Date
CN1067326A true CN1067326A (zh) 1992-12-23

Family

ID=12643065

Family Applications (2)

Application Number Title Priority Date Filing Date
CN89101162A Expired CN1018113B (zh) 1988-02-25 1989-02-25 超导材料及其制造方法
CN92103605A Pending CN1067326A (zh) 1988-02-25 1992-05-16 超导材料及其制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN89101162A Expired CN1018113B (zh) 1988-02-25 1989-02-25 超导材料及其制造方法

Country Status (5)

Country Link
EP (1) EP0330585B1 (zh)
KR (1) KR0125876B1 (zh)
CN (2) CN1018113B (zh)
AU (1) AU617766B2 (zh)
DE (1) DE68907949T2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389471C (zh) * 2005-08-16 2008-05-21 孙万海 超导电材料及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870052A (en) * 1988-03-08 1989-09-26 International Business Machines Corporation Tl-Ca-Ba-Cu-O compositions electrically superconducting above 120 degree K and processes for their preparation
JPH02124759A (ja) * 1988-07-15 1990-05-14 Sumitomo Electric Ind Ltd 超電導材料の製造方法
DE68909945T2 (de) * 1988-08-10 1994-03-03 Du Pont Supraleitende metalloxidzusammensetzungen und verfahren zur herstellung.
CN1317777C (zh) * 2003-08-29 2007-05-23 南开大学 铊系高温超导薄膜材料及其制备方法
CN112824555B (zh) * 2019-11-21 2023-06-06 中国科学院上海微系统与信息技术研究所 一种钛氧化物超导薄膜的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3854977T3 (de) * 1987-03-14 2002-11-21 Sumitomo Electric Industries Verfahren zur Abscheidung eines supraleitenden dünnen Filmes
AU589068B2 (en) * 1987-08-10 1989-09-28 Furukawa Electric Co. Ltd., The Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
CA1313031C (en) * 1987-10-02 1993-01-26 Fujikura Ltd. Method of producing a superconductive oxide conductor and an oxide superconductor produced by the method
ATE120036T1 (de) * 1988-01-15 1995-04-15 Univ Arkansas Supraleiter und verfahren zu deren herstellung.
US4962083A (en) * 1988-02-12 1990-10-09 University Of Arkansas High temperature T1-Ba-Ca-Cu-O and T1-Sr-Cu-O superconductor
US4994432A (en) * 1988-01-15 1991-02-19 University Of Arkansas High temperature superconductor system and processes for making same
US5236889A (en) * 1988-02-26 1993-08-17 Mitsubishi Materials Corporation Process for producing bi-ca-sr-cu-o, tl-ca-sr-cu-o and tl-ba-ca-cu-o superconducting ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389471C (zh) * 2005-08-16 2008-05-21 孙万海 超导电材料及其制备方法

Also Published As

Publication number Publication date
DE68907949D1 (de) 1993-09-09
CN1036287A (zh) 1989-10-11
KR890013812A (ko) 1989-09-26
AU617766B2 (en) 1991-12-05
CN1018113B (zh) 1992-09-02
EP0330585A2 (en) 1989-08-30
DE68907949T2 (de) 1994-02-24
EP0330585A3 (en) 1990-11-07
AU3084889A (en) 1989-08-31
KR0125876B1 (ko) 1997-12-18
EP0330585B1 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
US5100866A (en) Process for producing compound oxide high temperature superconducting material Tly Cul-y O3-z where RE=Y or La
Shaban et al. The structural properties of Y 1-X La X Ba 4 Cu 7 O 15+ δ superconductor compound.
CN1018113B (zh) 超导材料及其制造方法
EP0301958B1 (en) Superconducting material and a method for preparing the same
DE3854493T2 (de) Verfahren zur Herstellung eines Dünnschichtsupraleiters.
US5502029A (en) Laminated super conductor oxide with strontium, calcium, copper and at least one of thallium, lead, and bismuth
JPH07172834A (ja) 酸化物超電導材料およびその製造方法
US5049541A (en) Process for preparing superconductor
US20110045984A1 (en) Superconductive Compositions with Enhanced Flux Pinning
Biju et al. Flux pinning properties of rare earth modified (Bi, Pb)-2212 superconductors
US5968878A (en) Oxide superconductor and method of producing same
JP2817170B2 (ja) 超電導材料の製造方法
JP3219563B2 (ja) 金属酸化物とその製造方法
CN1041237A (zh) 铋系复合氧化物超导薄膜的成膜方法
JP2514685B2 (ja) 超電導材料とその製造方法
EP0366510B1 (en) Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system
WO1991005087A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
JPH01224229A (ja) 超電導材料及びその製造方法
US6482775B2 (en) Oxide superconductor
JP2555505B2 (ja) 金属酸化物材料
JPH01215722A (ja) 超電導材料及びその製造方法
JPH01215716A (ja) 超電導材料の製造方法
US5225397A (en) Method for preparing superconducting thin film
JP3247914B2 (ja) 金属酸化物材料
JPH07102968B2 (ja) 超電導材料の製造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication