CN106656191A - 自适应调整参考电压的逐次逼近型adc - Google Patents

自适应调整参考电压的逐次逼近型adc Download PDF

Info

Publication number
CN106656191A
CN106656191A CN201610841368.XA CN201610841368A CN106656191A CN 106656191 A CN106656191 A CN 106656191A CN 201610841368 A CN201610841368 A CN 201610841368A CN 106656191 A CN106656191 A CN 106656191A
Authority
CN
China
Prior art keywords
sar adc
reference voltage
dac
input
sar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610841368.XA
Other languages
English (en)
Inventor
高静
黄蕊
李奕
徐江涛
史再峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610841368.XA priority Critical patent/CN106656191A/zh
Publication of CN106656191A publication Critical patent/CN106656191A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/462Details of the control circuitry, e.g. of the successive approximation register
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/001Analogue/digital/analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/002Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明属模拟集成电路设计技术领域,为实现在高照度下,采用高参考电压;在低照度下,采用低参考电压,从而可以实现在低照度情况下的高精度量化,同时不需增加额外功耗和转换周期数。本发明采用的技术方案是,自适应调整参考电压的逐次逼近型ADC,由前端比较器模块、SAR ADC主体模块、4个SAR ADC主体模块的参考电压控制开关以及数字滤波器模块四部分构成;其中输入信号Vin连接前端比较器的正输入端,前端比较器的负输入端连接一个参考电平Vcomp;前端比较器的输出连接参考电压的控制开关1和2;输入信号同时还连接SAR ADC主体模块的输入端。本发明主要应用于模拟集成电路设计制造场合。

Description

自适应调整参考电压的逐次逼近型ADC
技术领域
本发明涉及模拟集成电路设计领域,尤其涉及在图像传感器应用中,随着光照条件的变化,通过调整反馈电压来调整模数转换器的精度的问题。
背景技术
近年来,图像传感器发展日益迅猛,在消费电子,汽车电子,智能监控军事侦察等领域的应用越来越广泛。在图像传感器的读出电路中,SAR ADC(逐次逼近型模拟数字转换器)因其所具有的结构简单、功耗低、面积小等众多优点而被广泛应用。
目前图像传感器正朝着高速低功耗方向不断发展,为了顺应这种发展趋势,可以在不同光照条件下调节ADC(模拟数字转换器)的精度,根据像素噪声随光强的变化规律,在低照度情况下需要更高精度的ADC而高照度情况下可以降低ADC的精度。此过程可以通过改变SAR ADC的反馈电压来实现,使得在低照度情况下,不需要增加ADC的量化周期就可以达到提高精度的目的,从而提高了图像传感器的速度,同时降低了功耗。
发明内容
为克服现有技术的不足,本发明旨在提出一种用于图像传感器的根据光照强度自适应调整参考电压的SAR ADC,在高照度下,采用高参考电压;在低照度下,采用低参考电压,从而可以实现在低照度情况下的高精度量化,同时不需增加额外功耗和转换周期数。本发明采用的技术方案是,自适应调整参考电压的逐次逼近型ADC,由前端比较器模块、SARADC主体模块、4个SAR ADC主体模块的参考电压控制开关以及数字滤波器模块四部分构成;其中输入信号Vin连接前端比较器的正输入端,前端比较器的负输入端连接一个参考电平Vcomp;前端比较器的输出连接参考电压的控制开关1和2;输入信号同时还连接SAR ADC主体模块的输入端,SAR ADC主体模块的输出端连接数字滤波器的输入端并连接参考电压的控制开关3和4,数字滤波器输出端输出量化的数字码值,控制开关1的输入端连接SAR ADC主体模块的高反馈电压VH,控制开关2的输入端连接SAR ADC主体模块的反馈电压VM,控制开关1和2的输出端都连接控制开关3的输入端,控制开关4的输入端连接SAR ADC的低反馈电压VL,控制开关3和4的输出端都连接SAR ADC的另外一个输入端VFB
高照度下,SAR ADC的反馈电压为VH和VL,对于N个量化周期,其分辨率VLSB1为:
低照度下,SAR ADC的反馈电压变为VM和VL,同样对于N个量化周期,其分辨率VLSB2为:
SAR ADC主体模块由数模转换器DAC、SAR比较器、逻辑控制模块构成;逻辑控制模块由移位寄存器、SAR寄存器构成,用于给数模转换器DAC赋值;量化周期开始对像素输出信号进行采样,并通过逻辑控制模块对DAC进行假设赋值,在第一个周期给DAC的最高位赋高电平,其余位赋低电平,也就是使DAC的输出为1/2参考电压范围,把DAC的输出值送入SAR比较器与像素的输出信号进行第一次比较,并将第一次比较结果作为最高位存储在逻辑控制模块,此时第一个周期结束,第二个周期时将第一次比较结果通过数字逻辑控制赋给DAC的最高位,同时再对DAC进行的假设赋值,次高位赋高电平1,次高位以下的位赋低电平0,然后将DAC的输出电压送入SAR比较器和像素输出电压再次比较,将第二次的比较结果作为量化结果的次高位存储在数字逻辑模块;然后同上次相同再将DAC第三高位假设赋值,比较出第三位量化结果,以此类推,按照相同步骤对信号进行逐位量化,直到完成所需精度位数的量化。
本发明的特点及有益效果是:
1.该结构通过根据光照强度来调整参考电压,在低光照下,不需要增加ADC的量化周期就提高了ADC的精度,从而提高ADC以及图像传感器的速度。
2.在图像传感器中,由于提高了ADC的精度而不需要增加量化周期或者改变时钟的频率,从而降低了图像传感器的整体功耗。
附图说明:
图1读出信号和散粒噪声随光强变化关系图。
图2 ADC量化步长随光强变化关系图。
图3自适应调整参考电压SAR ADC整体结构图。
图4 SAR ADC结构图。
具体实施方式
图像传感器的噪声分为固定模式噪声和随机噪声,固定模式噪声可以通过改进工艺来抑制,随机噪声中的闪烁噪声可以通过采用相关双采样电路进行消除,而随机噪声中的散粒噪声随着光强的增强而不断增大,如图1所示。如图2所示,由于高光照时噪声信号比较大,ADC量化步长较大;低光照下信号噪声较小,用较小的量化步长来提高量化精度。
如图3所示,这种自适应调整参考电压SAR ADC由前端比较器模块,SAR ADC主体模块,SAR ADC的参考电压控制开关(4个)以及数字滤波器模块四部分构成。其中输入信号(Vin)连接前端比较器的正输入端,前端比较器的负输入端连接一个参考电平Vcomp。前端比较器的输出连接SAR ADC的参考电压的控制开关1和2。输入信号同时还连接SAR ADC的输入端,SAR ADC的输出端连接数字滤波器的输入端并连接参考电压的控制开关3和4,数字滤波器输出端输出量化的数字码值。控制开关1的输入端连接SAR ADC的高反馈电压(VH),控制开关2的输入端连接SAR ADC的反馈电压(VM)。控制开关1和2的输出端都连接控制开关3的输入端。控制开关4的输入端连接SAR ADC的低反馈电压VL。控制开关3和4的输出端都连接SAR ADC的另外一个输入端VFB
这种自适应调整参考电压的SAR ADC工作方式与传统的SAR ADC的工作方式比较类似。输入信号(Vin)是前级像素输出的电压值,先将Vin通过一个比较器与一个阈值电压(Vcomp)进行比较。如果光照比较强,输入的Vin比较大,比较器输出高电平,使得开关1闭合,开关2打开,此时SAR ADC在工作时采用的反馈电压是VH和VL。在第一个周期给DAC的最高位赋高电平,其余位赋低电平,也就是使DAC的输出为1/2(VH-VL),从而实现二分搜索算法,重复N个量化周期,其量化的精度较低。当光照比较弱的时候,Vin小于Vcomp,比较器输出低电平,开关1打开,开关2闭合,此时SAR ADC工作时采用的反馈电压是VM和VL,在第一个周期给DAC的最高位赋高电平,其余位赋低电平,也就是使DAC的输出为1/2(VM-VL),重复N个量化周期,其量化的精度较高。
高照度下,SAR ADC的反馈电压为VH和VL,对于N个量化周期,其分辨率VLSB1为:
低照度下,SAR ADC的反馈电压变为VM和VL,同样对于N个量化周期,其分辨率VLSB2为:
因为在实际应用中,VM<VH,因此在相同的量化周期内,相对于高照度情况,低照度条件下具有更小的分辨率。
SAR ADC的基本结构如图4所示。它的基本原理是来自二分搜索算法。它通过DAC(数模转换器)将数字码转换为输入信号,逐渐逼近到输入信号,通过调整DAC的输出直到其和输入相匹配,输出的数字码即代表模拟信号。其基本结构由采样保持电路、比较器、一个DAC、一个实现二分搜索算法的逻辑控制部分以及数字滤波器构成,采样保持电路和比较器组成前段比较器模块,DAC为SAR ADC主体模块,实现二分搜索算法的逻辑控制部分即SARADC的4个参考电压控制开关,数字滤波器组成数字滤波模块。SAR ADC的工作原理如下:首先在量化周期开始前对所有电路进行复位,量化周期开始对像素输出信号进行采样,并通过逻辑控制模块对DAC进行假设赋值,在第一个周期给DAC的最高位赋高电平,其余位赋低电平,也就是使DAC的输出为1/2参考电压范围,把DAC的输出值送入比较器与像素的输出信号进行第一次比较,并将第一次比较结果作为最高位存储在逻辑控制模块,此时第一个周期结束。第二个周期时将第一次比较结果通过数字逻辑控制赋给DAC的最高位,同时再对DAC进行的假设赋值,次高位赋高电平1,次高位以下的位赋低电平0,然后将DAC的输出电压送入比较器和像素输出电压再次比较,将第二次的比较结果作为量化结果的次高位存储在数字逻辑模块;然后同上次相同再将DAC第三高位假设赋值,比较出第三位量化结果。以此类推,按照相同步骤对信号进行逐位量化,直到完成所需精度位数的量化。
本文设计的SAR ADC通过改变反馈电压的值来改变精度。若高照度下,SAR ADC的反馈电压VH为1.6V,VL为0V。低照度情况下,SAR ADC的反馈电压为VM和VL。设定VM为0.8V时,弱光下精度比强光下提高了1bit,VM为0.4V时,弱光下精度比强光下提高了2bit,VM为0.2V时,弱光下精度比强光下提高了3bit,VM为0.1V时,弱光下精度比强光下提高了4bit。
在实际使用时,若需要设计的SAR ADC在强光下达到9bit的精度,弱光下达到12bit的量化精度。设定前端比较器的阈值电压Vcomp为0.5V。SAR ADC的反馈电压VH为1.6V,VL为0V,VM为0.2V。

Claims (3)

1.一种自适应调整参考电压的逐次逼近型ADC,其特征是,由前端比较器模块、SAR ADC主体模块、4个SAR ADC主体模块的参考电压控制开关以及数字滤波器模块四部分构成;其中输入信号Vin连接前端比较器的正输入端,前端比较器的负输入端连接一个参考电平Vcomp;前端比较器的输出连接参考电压的控制开关1和2;输入信号同时还连接SAR ADC主体模块的输入端,SAR ADC主体模块的输出端连接数字滤波器的输入端并连接参考电压的控制开关3和4,数字滤波器输出端输出量化的数字码值,控制开关1的输入端连接SAR ADC主体模块的高反馈电压VH,控制开关2的输入端连接SAR ADC主体模块的反馈电压VM,控制开关1和2的输出端都连接控制开关3的输入端,控制开关4的输入端连接SAR ADC的低反馈电压VL,控制开关3和4的输出端都连接SAR ADC的另外一个输入端VFB
2.如权利要求1所述的自适应调整参考电压的逐次逼近型ADC,其特征是,高照度下,SAR ADC的反馈电压为VH和VL,对于N个量化周期,其分辨率VLSB1为:
V L S B 1 = V H - V L 2 N - - - ( 1 )
低照度下,SAR ADC的反馈电压变为VM和VL,同样对于N个量化周期,其分辨率VLSB2为:
V L S B 2 = V M - V L 2 N - - - ( 2 ) .
3.如权利要求1所述的自适应调整参考电压的逐次逼近型ADC,其特征是,SAR ADC主体模块由数模转换器DAC、SAR比较器、逻辑控制模块构成;逻辑控制模块由移位寄存器、SAR寄存器构成,用于给数模转换器DAC赋值;量化周期开始对像素输出信号进行采样,并通过逻辑控制模块对DAC进行假设赋值,在第一个周期给DAC的最高位赋高电平,其余位赋低电平,也就是使DAC的输出为1/2参考电压范围,把DAC的输出值送入SAR比较器与像素的输出信号进行第一次比较,并将第一次比较结果作为最高位存储在逻辑控制模块,此时第一个周期结束,第二个周期时将第一次比较结果通过数字逻辑控制赋给DAC的最高位,同时再对DAC进行的假设赋值,次高位赋高电平1,次高位以下的位赋低电平0,然后将DAC的输出电压送入SAR比较器和像素输出电压再次比较,将第二次的比较结果作为量化结果的次高位存储在数字逻辑模块;然后同上次相同再将DAC第三高位假设赋值,比较出第三位量化结果,以此类推,按照相同步骤对信号进行逐位量化,直到完成所需精度位数的量化。
CN201610841368.XA 2016-09-22 2016-09-22 自适应调整参考电压的逐次逼近型adc Pending CN106656191A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610841368.XA CN106656191A (zh) 2016-09-22 2016-09-22 自适应调整参考电压的逐次逼近型adc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610841368.XA CN106656191A (zh) 2016-09-22 2016-09-22 自适应调整参考电压的逐次逼近型adc

Publications (1)

Publication Number Publication Date
CN106656191A true CN106656191A (zh) 2017-05-10

Family

ID=58852185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610841368.XA Pending CN106656191A (zh) 2016-09-22 2016-09-22 自适应调整参考电压的逐次逼近型adc

Country Status (1)

Country Link
CN (1) CN106656191A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007624A (zh) * 2019-03-29 2019-07-12 广东技术师范大学 基于模糊pi的灰度循迹传感器及其基准电压的调节方法
CN110166053A (zh) * 2019-05-24 2019-08-23 莆田学院 特定范围高精度逐次逼近型8位模数转换装置
CN111279616A (zh) * 2017-11-10 2020-06-12 索尼半导体解决方案公司 固态摄像装置
CN113114257A (zh) * 2021-04-19 2021-07-13 西安交通大学 次高位超前逐次逼近模数转换器及控制方法
CN109792251B (zh) * 2018-05-31 2023-09-08 深圳市汇顶科技股份有限公司 具有可切换参考电压的逐次逼近寄存器(sar)模数转换器(adc)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506196A (zh) * 2014-12-30 2015-04-08 天津大学 高速高精度两步式模数转换器
CN104660261A (zh) * 2013-11-19 2015-05-27 北京卓锐微技术有限公司 一种自适应量化的模拟数字转换装置
CN104836585A (zh) * 2015-05-21 2015-08-12 豪威科技(上海)有限公司 逐次逼近型模数转换器
CN104852738A (zh) * 2015-05-09 2015-08-19 天津大学 参考电压自适应调整的sigma-delta ADC
CN105827245A (zh) * 2016-03-14 2016-08-03 中国电子科技集团公司第五十八研究所 一种逐次逼近式模数转换器结构
CN105915220A (zh) * 2016-04-05 2016-08-31 天津大学 基于一位冗余位的带数字校准的逐次逼近型模数转换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104660261A (zh) * 2013-11-19 2015-05-27 北京卓锐微技术有限公司 一种自适应量化的模拟数字转换装置
CN104506196A (zh) * 2014-12-30 2015-04-08 天津大学 高速高精度两步式模数转换器
CN104852738A (zh) * 2015-05-09 2015-08-19 天津大学 参考电压自适应调整的sigma-delta ADC
CN104836585A (zh) * 2015-05-21 2015-08-12 豪威科技(上海)有限公司 逐次逼近型模数转换器
CN105827245A (zh) * 2016-03-14 2016-08-03 中国电子科技集团公司第五十八研究所 一种逐次逼近式模数转换器结构
CN105915220A (zh) * 2016-04-05 2016-08-31 天津大学 基于一位冗余位的带数字校准的逐次逼近型模数转换器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279616A (zh) * 2017-11-10 2020-06-12 索尼半导体解决方案公司 固态摄像装置
CN111279616B (zh) * 2017-11-10 2024-03-19 索尼半导体解决方案公司 固态摄像装置
CN109792251B (zh) * 2018-05-31 2023-09-08 深圳市汇顶科技股份有限公司 具有可切换参考电压的逐次逼近寄存器(sar)模数转换器(adc)
CN110007624A (zh) * 2019-03-29 2019-07-12 广东技术师范大学 基于模糊pi的灰度循迹传感器及其基准电压的调节方法
CN110166053A (zh) * 2019-05-24 2019-08-23 莆田学院 特定范围高精度逐次逼近型8位模数转换装置
CN110166053B (zh) * 2019-05-24 2024-02-09 莆田学院 高精度逐次逼近型8位模数转换装置及其控制方法
CN113114257A (zh) * 2021-04-19 2021-07-13 西安交通大学 次高位超前逐次逼近模数转换器及控制方法
CN113114257B (zh) * 2021-04-19 2023-08-08 西安交通大学 次高位超前逐次逼近模数转换器及控制方法

Similar Documents

Publication Publication Date Title
CN106656191A (zh) 自适应调整参考电压的逐次逼近型adc
CN104967451B (zh) 逐次逼近型模数转换器
CN103618550B (zh) 电容阵列型的逐次逼近模数转换器及控制方法
CN103986470B (zh) 低功耗列级多参考电压单斜模数转换方法及转换器
CN102386923B (zh) 异步逐次逼近模数转换器及转换方法
CN103219996B (zh) 具有降低功率消耗的流水线模数转换器
US8599059B1 (en) Successive approximation register analog-digital converter and method for operating the same
CN103152049A (zh) 一种逐次逼近寄存器型模数转换器
CN103595412B (zh) 低功耗小面积的电容阵列及其复位方法和逻辑控制方法
CN103905049A (zh) 一种高速快闪加交替比较式逐次逼近模数转换器
CN105049049A (zh) 一种提高逐次逼近模数转换器dnl/inl的电容交换方法
CN108809310B (zh) 无源基于时间交织SAR ADC的带通Delta-Sigma调制器
CN111371457A (zh) 一种模数转换器及应用于sar adc的三电平开关方法
CN102594353A (zh) 一种数模转换器及逐次逼近存储转换器
CN104467856A (zh) 一种高能效电容阵列逐次逼近型模数转换器及其转换方法
CN103427841B (zh) 一种提高列并行单斜率adc转换速率的系统及方法
CN104135289B (zh) 校准列级多参考电压单斜adc的方法及装置
CN108832928B (zh) 一种sar adc电容阵列的共模电压校正电路及其校正方法
CN111641413A (zh) 一种高能效sar adc的电容阵列开关方法
CN104639169A (zh) 一种两步转换逐次逼近型模数转换电路结构
CN108075776A (zh) 复合型模数转换器
CN102832941A (zh) 一种可预检测比较器输入范围的逐次逼近型模数转换器
CN104753533B (zh) 一种分级共享式双通道流水线型模数转换器
CN102013894B (zh) 一种低功耗流水线模数转换器
CN108111171A (zh) 适用于差分结构逐次逼近型模数转换器单调式开关方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170510

WD01 Invention patent application deemed withdrawn after publication