CN106630653B - 一种锗酸盐玻璃复合光纤及其制备方法 - Google Patents

一种锗酸盐玻璃复合光纤及其制备方法 Download PDF

Info

Publication number
CN106630653B
CN106630653B CN201610848311.2A CN201610848311A CN106630653B CN 106630653 B CN106630653 B CN 106630653B CN 201610848311 A CN201610848311 A CN 201610848311A CN 106630653 B CN106630653 B CN 106630653B
Authority
CN
China
Prior art keywords
glass
stick
inner cladding
hole
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610848311.2A
Other languages
English (en)
Other versions
CN106630653A (zh
Inventor
范小康
王斐
许学军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optics Valley Wuhan Sanjiang Laser Industry Technology Research Institute Co Ltd
Original Assignee
Optics Valley Wuhan Sanjiang Laser Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optics Valley Wuhan Sanjiang Laser Industry Technology Research Institute Co Ltd filed Critical Optics Valley Wuhan Sanjiang Laser Industry Technology Research Institute Co Ltd
Priority to CN201610848311.2A priority Critical patent/CN106630653B/zh
Publication of CN106630653A publication Critical patent/CN106630653A/zh
Application granted granted Critical
Publication of CN106630653B publication Critical patent/CN106630653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres

Abstract

本发明属于光纤技术领域,公开了一种锗酸盐玻璃复合光纤,包括:光纤外包层、光纤内包层以及光纤纤芯;所述光纤外包层采用铅硅酸盐玻璃;所述光纤内包层采用锗铅硅酸盐玻璃;所述纤芯玻璃采用锗铅酸盐玻璃。本发明提供了一种机械强度高,易用性强的复合光纤及其制备方法。

Description

一种锗酸盐玻璃复合光纤及其制备方法
技术领域
本发明涉及光纤技术领域,特别涉及一种锗酸盐玻璃复合光纤及其制备方法。
背景技术
光纤广泛应用在通信领域,大幅方便了人们的生产生活。
光纤的强度,稳定性和可靠性对于光纤的工作质量起着至关重要的作用。现有技术中,中外波段的锗酸盐玻璃光纤的机械强度低和易用性、可操作性差,严重制约着其工作质量。
发明内容
本发明提供一种锗酸盐玻璃复合光纤及其制备方法,解决了现有技术中中外波段的锗酸盐玻璃光纤的机械强度低和易用性、稳定性差的技术问题。
为解决上述技术问题,本发明提供了一种锗酸盐玻璃复合光纤,包括:光纤外包层、光纤内包层以及光纤纤芯;
所述光纤外包层采用铅硅酸盐玻璃;所述光纤内包层采用锗铅硅酸盐玻璃;所述纤芯玻璃采用锗铅酸盐玻璃。
进一步地,所述光纤纤芯玻璃的组分按照摩尔百分比范围是,
GeO2:37%~57%,SiO2:3%~8%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
进一步地,所述光纤内包层玻璃的组分按照摩尔百分比范围是,
GeO2:35%~55%,SiO2:5%~15%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
一种锗酸盐玻璃复合光纤制备方法,包括:
将锗铅酸盐玻璃纤芯细棒插入锗铅硅酸盐玻璃内包层套管中,并拉制成带有包层玻璃的芯棒;
将所述带包层芯棒插入铅硅酸盐玻璃外包层套管中,拉制成双包层锗铅酸盐玻璃复合光纤。
进一步地,所述锗铅酸盐玻璃纤芯的组分按照摩尔百分比范围是,
GeO2:37%~57%,SiO2:3%~8%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
进一步地,所述锗铅硅酸盐玻璃内包层的组分按照摩尔百分比范围是,
GeO2:35%~55%,SiO2:5%~15%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
进一步地,所述制备方法还包括:
将所述锗铅酸盐玻璃纤芯细棒粗料经切割、打磨、抛光加工成表面光洁度为2级的纤芯预制棒。
进一步地,所述制备方法还包括:
将所述锗铅硅酸盐玻璃内包层的粗料经切割、打磨、抛光成圆棒;
在所述圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套管;
将所述内包层套管的通孔进行抛光,再采用超声波和酒精对加工好的内包层套套管的通孔进行充分清洗。
进一步地,所述制备方法还包括:
在所述铅硅酸盐玻璃外包层的粗料上制备用于容纳所述带包层芯棒的内腔,形成铅硅酸盐玻璃套管。
进一步地,所述制备方法还包括:
分别将光纤原材料放入铂金中熔化,而后倒入经预热的钢模中,放入退火炉,在玻璃态转化温度点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中提供的锗酸盐玻璃复合光纤及其制备方法,针对锗酸盐玻璃脆性大、不易操作等特点,采用铅硅酸盐外包层,提高其机械性能,有利于锗酸盐光纤在中红外波段的实际应用;复合光纤机械强度高,克服了一般锗酸盐玻璃光纤强度不高、易断裂、环境稳定性低、不易操作与保存的问题,同时保留了锗酸盐玻璃良好的中红外波段透过能力。降低材料成本,包层采用铅硅玻璃,减少使用昂贵的GeO2原料;适用于中红外传输光纤或增益光纤。同时,采用厚度远大于内包层的铅硅玻璃作为外包层材料,增强了光纤的机械强度,提高其易用性和可操作性。
附图说明
图1为本发明实施例提供的光纤结构示意图。
具体实施方式
本申请实施例通过提供一种锗酸盐玻璃复合光纤及其制备方法,解决了现有技术中中外波段的锗酸盐玻璃光纤的机械强度低和易用性、稳定性差的技术问题;达到了提升光纤强度和易用性的技术效果。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细说明,应当理解本发明实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
参见图1,本发明实施例提供的一种锗酸盐玻璃复合光纤,包括:光纤外包层1、光纤内包层2以及光纤纤芯3。
所述光纤外包层采用铅硅酸盐玻璃;所述光纤内包层采用锗铅硅酸盐玻璃;所述纤芯玻璃采用锗铅酸盐玻璃。
具体来说,所述光纤纤芯玻璃的组分按照摩尔百分比范围是,
GeO2:37%~57%,SiO2:3%~8%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
所述光纤内包层玻璃的组分按照摩尔百分比范围是,
GeO2:35%~55%,SiO2:5%~15%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
基于上述结构本实施例还提出了制备方法。
一种锗酸盐玻璃复合光纤制备方法,包括:
将锗铅酸盐玻璃纤芯细棒插入锗铅硅酸盐玻璃内包层套管中,并拉制成带有包层玻璃的芯棒;
将所述带包层芯棒插入铅硅酸盐玻璃外包层套管中,拉制成双包层锗铅酸盐玻璃复合光纤。
其中,所述锗铅酸盐玻璃纤芯的组分按照摩尔百分比范围是,
GeO2:37%~57%,SiO2:3%~8%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
所述锗铅硅酸盐玻璃内包层的组分按照摩尔百分比范围是,
GeO2:35%~55%,SiO2:5%~15%,PbO:10%~30%,CaO:5%~15%,ZnO:5%~10%。
进一步地,所述制备方法还包括:
将所述锗铅酸盐玻璃纤芯细棒粗料经切割、打磨、抛光加工成表面光洁度为2级的纤芯预制棒。
进一步地,所述制备方法还包括:
将所述锗铅硅酸盐玻璃内包层的粗料经切割、打磨、抛光成圆棒;
在所述圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套管;
将所述内包层套管的通孔进行抛光,再采用超声波和酒精对加工好的内包层套套管的通孔进行充分清洗。
进一步地,所述制备方法还包括:
在所述铅硅酸盐玻璃外包层的粗料上制备用于容纳所述带包层芯棒的内腔,形成铅硅酸盐玻璃套管。
进一步地,所述制备方法还包括:
分别将光纤原材料放入铂金中熔化,而后倒入经预热的钢模中,放入退火炉,在玻璃态转化温度点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温。
下面将通过几个实施方案介绍所述方法。
实施例一
锗酸盐玻璃的制备,按照摩尔百分比组分:
芯纤玻璃组分:37%GeO2,13%SiO2,30%PbO,15%CaO,5%ZnO。
内包层玻璃:35%GeO2,15%SiO2,30%PbO,15%CaO,5%ZnO。
按照摩尔百分比配料,并分别混合均匀。后放入铂金中熔化,熔化温度为1250℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒,简称芯棒,该芯棒表面的光洁度为2级;将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在该圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对该内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述的芯棒插入所述的内包层套棒的通孔中,并保证两者紧密接触,形成预制棒。
将所述的预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度550℃。
选取铅硅玻璃为外包层,制备出与所述的的圆细棒相匹配的小孔,形成铅硅玻璃套管。
将所述的圆细棒插入所述的铅硅玻璃套管中,组成复合玻璃光纤预制棒。
将所述的复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为550℃,光纤纤芯直径为5μm,光纤外径为125μm的锗酸盐玻璃复合光纤。
测试表明,该光纤在1310nm处的传输损耗为0.5dB/m。
实施例二
锗酸盐玻璃的制备,按照摩尔百分比组分:
芯纤玻璃组分:37%GeO2,13%SiO2,30%PbO,15%CaO,5%ZnO。
内包层玻璃:35%GeO2,15%SiO2,30%PbO,15%CaO,5%ZnO。
按照摩尔百分比配料,并分别混合均匀;然后放入铂金中熔化,熔化温度为1150℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
芯层玻璃与包层玻璃制备方法完全相同。
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒,简称芯棒,该芯棒表面的光洁度为2级;将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在该圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对该内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述的芯棒插入所述的内包层套棒的通孔中,并保证两者紧密接触,形成预制棒。
将所述的预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度520℃。
选取铅硅玻璃为外包层,制备出与所述的的圆细棒相匹配的小孔,形成铅硅玻璃套管。
将所述的圆细棒插入所述的铅硅玻璃套管中,组成复合玻璃光纤预制棒。
将所述的复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为520℃,光纤纤芯直径为100μm,光纤外径为2000μm的锗酸盐玻璃复合光纤。
经测试表明,该光纤在1310nm处的传输损耗为10dB/m。
实施例三
锗酸盐玻璃的制备,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,3%SiO2,30%PbO,5%CaO,5%ZnO。
内包层玻璃:55%GeO2,5%SiO2,30%PbO,5%CaO,5%ZnO。
按照摩尔百分比配料,并分别混合均匀。
然后放入铂金中熔化,熔化温度为1200℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温。
芯层玻璃与包层玻璃制备方法完全相同。
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒,简称芯棒,该芯棒表面的光洁度为2级;将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在该圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对该内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述的芯棒插入所述的内包层套棒的通孔中,并保证两者紧密接触,形成预制棒。
将所述的预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度580℃。
选取铅硅玻璃为外包层,制备出与所述的的圆细棒相匹配的小孔,形成铅硅玻璃套管。
将所述的圆细棒插入所述的铅硅玻璃套管中,组成复合玻璃光纤预制棒。
将所述的复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为580℃,光纤纤芯直径为5μm,光纤外径为125μm的锗酸盐玻璃复合光纤。
测试表明,该光纤在1310nm处的传输损耗为0.5dB/m。
实施例四
锗酸盐玻璃的制备,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,3%SiO2,30%PbO,5%CaO,5%ZnO。
内包层玻璃:55%GeO2,5%SiO2,30%PbO,5%CaO,5%ZnO。
按照摩尔百分比配料,并分别混合均匀。
然后放入铂金中熔化,熔化温度为1200℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温。
芯层玻璃与包层玻璃制备方法完全相同。
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒,简称芯棒,该芯棒表面的光洁度为2级;将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在该圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对该内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述的芯棒插入所述的内包层套棒的通孔中,并保证两者紧密接触,形成预制棒。
将所述的预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度580℃。
选取铅硅玻璃为外包层,制备出与所述的的圆细棒相匹配的小孔,形成铅硅玻璃套管。
将所述的圆细棒插入所述的铅硅玻璃套管中,组成复合玻璃光纤预制棒。
将所述的复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为580℃,光纤纤芯直径为80μm,光纤外径为2000μm的锗酸盐玻璃复合光纤。
测试表明,该光纤在1310nm处的传输损耗为10dB/m。
实施例五
锗酸盐玻璃的制备,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,8%SiO2,10%PbO,15%CaO,10%ZnO。
内包层玻璃:55%GeO2,10%SiO2,10%PbO,15%CaO,10%ZnO。
按照摩尔百分比配料,并分别混合均匀。
然后放入铂金中熔化,熔化温度为1300℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温。
芯层玻璃与包层玻璃制备方法完全相同。
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒,简称芯棒,该芯棒表面的光洁度为2级;将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在该圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对该内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述的芯棒插入所述的内包层套棒的通孔中,并保证两者紧密接触,形成预制棒。
将所述的预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度630℃。
选取铅硅玻璃为外包层,制备出与所述的的圆细棒相匹配的小孔,形成铅硅玻璃套管。
将所述的圆细棒插入所述的铅硅玻璃套管中,组成复合玻璃光纤预制棒。
将所述的复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为630℃,光纤纤芯直径为5μm,光纤外径为125μm的锗酸盐玻璃复合光纤。
测试表明,该光纤在1310nm处的传输损耗为0.5dB/m。
实施例六
锗酸盐玻璃的制备,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,8%SiO2,10%PbO,15%CaO,10%ZnO。
内包层玻璃:55%GeO2,10%SiO2,10%PbO,15%CaO,10%ZnO。
按照摩尔百分比配料,并分别混合均匀;
然后放入铂金中熔化,熔化温度为1300℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点附近保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温。
芯层玻璃与包层玻璃制备方法完全相同。
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒,简称芯棒,该芯棒表面的光洁度为2级;将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在该圆棒的轴向中心钻通孔,该通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对该内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述的芯棒插入所述的内包层套棒的通孔中,并保证两者紧密接触,形成预制棒。
将所述的预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度630℃。
选取铅硅玻璃为外包层,制备出与所述的的圆细棒相匹配的小孔,形成铅硅玻璃套管。
将所述的圆细棒插入所述的铅硅玻璃套管中,组成复合玻璃光纤预制棒。
将所述的复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为630℃,光纤纤芯直径为80μm,光纤外径为2000μm的锗酸盐玻璃复合光纤。
测试表明,该光纤在1310nm处的传输损耗为10dB/m。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中提供的锗酸盐玻璃复合光纤及其制备方法,针对锗酸盐玻璃脆性大、不易操作等特点,采用铅硅酸盐外包层,提高其机械性能,有利于锗酸盐光纤在中红外波段的实际应用;复合光纤机械强度高,克服了一般锗酸盐玻璃光纤强度不高、易断裂、环境稳定性低、不易操作与保存的问题,同时保留了锗酸盐玻璃良好的中红外波段透过能力。降低材料成本,包层采用铅硅玻璃,减少使用昂贵的GeO2原料;适用于中红外传输光纤或增益光纤。同时,采用厚度远大于内包层的铅硅玻璃作为外包层材料,增强了光纤的机械强度,提高其易用性和可操作性。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种锗酸盐玻璃复合光纤制备方法,其特征在于,按照摩尔百分比组分:
芯纤玻璃组分:37%GeO2,13%SiO2,30%PbO,15%CaO,5%ZnO;
内包层玻璃:35%GeO2,15%SiO2,30%PbO,15%CaO,5%ZnO;
并包括以下步骤:
按照摩尔百分比配料,并分别混合均匀后放入铂金中熔化,熔化温度为1250℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒作为芯棒,所述芯棒表面的光洁度为2级;
将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在所述圆棒的轴向中心钻通孔,所述通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对所述内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述芯棒插入所述内包层套棒的通孔中,并保证两者紧密接触,形成预制棒;
将所述预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度550℃;
选取铅硅玻璃为外包层,制备出与所述圆细棒相匹配的小孔,形成铅硅玻璃套管;
将所述圆细棒插入所述铅硅玻璃套管中,组成复合玻璃光纤预制棒;
将所述复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为550℃,光纤纤芯直径为5μm,光纤外径为125μm的锗酸盐玻璃复合光纤。
2.一种锗酸盐玻璃复合光纤制备方法,其特征在于,按照摩尔百分比组分:
芯纤玻璃组分:37%GeO2,13%SiO2,30%PbO,15%CaO,5%ZnO;
内包层玻璃:35%GeO2,15%SiO2,30%PbO,15%CaO,5%ZnO;
并包括以下步骤:
按照摩尔百分比配料,并分别混合均匀后放入铂金中熔化,熔化温度为1150℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒作为芯棒,所述芯棒表面的光洁度为2级;
将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在所述圆棒的轴向中心钻通孔,所述通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对所述内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述芯棒插入所述内包层套棒的通孔中,并保证两者紧密接触,形成预制棒;
将所述预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度520℃;
选取铅硅玻璃为外包层,制备出与所述圆细棒相匹配的小孔,形成铅硅玻璃套管;
将所述圆细棒插入所述铅硅玻璃套管中,组成复合玻璃光纤预制棒;
将所述复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为520℃,光纤纤芯直径为100μm,光纤外径为2000μm的锗酸盐玻璃复合光纤。
3.一种锗酸盐玻璃复合光纤制备方法,其特征在于,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,3%SiO2,30%PbO,5%CaO,5%ZnO;
内包层玻璃:55%GeO2,5%SiO2,30%PbO,5%CaO,5%ZnO;并
包括以下步骤:
按照摩尔百分比配料,并分别混合均匀后放入铂金中熔化,熔化温度为1200℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒作为芯棒,所述芯棒表面的光洁度为2级;
将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在所述圆棒的轴向中心钻通孔,所述通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对所述内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述芯棒插入所述内包层套棒的通孔中,并保证两者紧密接触,形成预制棒;
将所述预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度580℃;
选取铅硅玻璃为外包层,制备出与所述圆细棒相匹配的小孔,形成铅硅玻璃套管;
将所述圆细棒插入所述铅硅玻璃套管中,组成复合玻璃光纤预制棒;
将所述复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为580℃,光纤纤芯直径为5μm,光纤外径为125μm的锗酸盐玻璃复合光纤。
4.一种锗酸盐玻璃复合光纤制备方法,其特征在于,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,3%SiO2,30%PbO,5%CaO,5%ZnO;
内包层玻璃:55%GeO2,5%SiO2,30%PbO,5%CaO,5%ZnO;
并包括以下步骤:
按照摩尔百分比配料,并分别混合均匀后放入铂金中熔化,熔化温度为1200℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒作为芯棒,所述芯棒表面的光洁度为2级;
将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在所述圆棒的轴向中心钻通孔,所述通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对所述内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述芯棒插入所述内包层套棒的通孔中,并保证两者紧密接触,形成预制棒;
将所述预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度580℃;
选取铅硅玻璃为外包层,制备出与所述圆细棒相匹配的小孔,形成铅硅玻璃套管;
将所述圆细棒插入所述铅硅玻璃套管中,组成复合玻璃光纤预制棒;
将所述复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为580℃,光纤纤芯直径为80μm,光纤外径为2000μm的锗酸盐玻璃复合光纤。
5.一种锗酸盐玻璃复合光纤制备方法,其特征在于,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,8%SiO2,10%PbO,15%CaO,10%ZnO;
内包层玻璃:55%GeO2,10%SiO2,10%PbO,15%CaO,10%ZnO;
并包括以下步骤:
按照摩尔百分比配料,并分别混合均匀后放入铂金中熔化,熔化温度为1300℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒作为芯棒,所述芯棒表面的光洁度为2级;
将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在所述圆棒的轴向中心钻通孔,所述通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对所述内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述芯棒插入所述内包层套棒的通孔中,并保证两者紧密接触,形成预制棒;
将所述预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度630℃;
选取铅硅玻璃为外包层,制备出与所述圆细棒相匹配的小孔,形成铅硅玻璃套管;
将所述圆细棒插入所述铅硅玻璃套管中,组成复合玻璃光纤预制棒;
将所述复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为630℃,光纤纤芯直径为5μm,光纤外径为125μm的锗酸盐玻璃复合光纤。
6.一种锗酸盐玻璃复合光纤制备方法,其特征在于,按照摩尔百分比组分:
芯纤玻璃组分:57%GeO2,8%SiO2,10%PbO,15%CaO,10%ZnO;
内包层玻璃:55%GeO2,10%SiO2,10%PbO,15%CaO,10%ZnO;
并包括以下步骤:
按照摩尔百分比配料,并分别混合均匀后放入铂金中熔化,熔化温度为1300℃,之后倒入已经预热的钢模中,放入退火炉,在Tg点保温7小时,然后以1℃/小时降至100℃,再关闭退火炉电源,令其自然冷却至室温;
将所选取的纤芯玻璃经切割、打磨、抛光加工成所需尺寸的圆形的纤芯预制棒作为芯棒,所述芯棒表面的光洁度为2级;
将所选取的内包层玻璃经切割、打磨、抛光成圆棒,然后在所述圆棒的轴向中心钻通孔,所述通孔的直径与所述的芯棒的直径相同,得到具有轴向中心通孔的内包层套棒,并对所述内包层套棒的通孔进行抛光,再用超声波和酒精对加工好的芯棒和内包层套棒的通孔进行充分清洗,将所述芯棒插入所述内包层套棒的通孔中,并保证两者紧密接触,形成预制棒;
将所述预制棒拉制成6mm的圆细棒,包层数量为1,拉制温度630℃;
选取铅硅玻璃为外包层,制备出与所述圆细棒相匹配的小孔,形成铅硅玻璃套管;
将所述圆细棒插入所述铅硅玻璃套管中,组成复合玻璃光纤预制棒;
将所述复合玻璃光纤预制棒拉制成光纤,光纤拉丝温度范围为630℃,光纤纤芯直径为80μm,光纤外径为2000μm的锗酸盐玻璃复合光纤。
CN201610848311.2A 2016-09-22 2016-09-22 一种锗酸盐玻璃复合光纤及其制备方法 Active CN106630653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610848311.2A CN106630653B (zh) 2016-09-22 2016-09-22 一种锗酸盐玻璃复合光纤及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610848311.2A CN106630653B (zh) 2016-09-22 2016-09-22 一种锗酸盐玻璃复合光纤及其制备方法

Publications (2)

Publication Number Publication Date
CN106630653A CN106630653A (zh) 2017-05-10
CN106630653B true CN106630653B (zh) 2019-07-26

Family

ID=58854530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610848311.2A Active CN106630653B (zh) 2016-09-22 2016-09-22 一种锗酸盐玻璃复合光纤及其制备方法

Country Status (1)

Country Link
CN (1) CN106630653B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248687A (zh) * 2017-06-16 2017-10-13 武汉光谷航天三江激光产业技术研究院有限公司 一种中红外波段单频单偏振光纤激光器
CN108345271B (zh) * 2018-01-16 2020-02-07 宁波艾格玛机电科技有限公司 一种机床远程修复装置用掺锗光纤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771717A (zh) * 2014-01-23 2014-05-07 中国科学院上海光学精密机械研究所 碲酸盐玻璃复合光纤的制备方法
CN104140203A (zh) * 2014-07-10 2014-11-12 中国科学院上海光学精密机械研究所 2μm激光输出的锗酸盐玻璃及其制备方法
CN105712621A (zh) * 2016-01-18 2016-06-29 中国科学院上海光学精密机械研究所 石英玻璃包层多组分玻璃复合光纤的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880362B2 (en) * 2012-10-22 2018-01-30 Corning Optical Communications LLC Methods of securing one or more optical fibers to a ferrule

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771717A (zh) * 2014-01-23 2014-05-07 中国科学院上海光学精密机械研究所 碲酸盐玻璃复合光纤的制备方法
CN104140203A (zh) * 2014-07-10 2014-11-12 中国科学院上海光学精密机械研究所 2μm激光输出的锗酸盐玻璃及其制备方法
CN105712621A (zh) * 2016-01-18 2016-06-29 中国科学院上海光学精密机械研究所 石英玻璃包层多组分玻璃复合光纤的制备方法

Also Published As

Publication number Publication date
CN106630653A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN103771717B (zh) 碲酸盐玻璃复合光纤的制备方法
CN101405232B (zh) 作为芯玻璃用于纤维光学光导的光学玻璃以及具有该芯玻璃的纤维光学阶跃折射率光纤
CN101923189B (zh) 掺铥碲酸盐玻璃双包层光纤及其制备方法
CN106630653B (zh) 一种锗酸盐玻璃复合光纤及其制备方法
CN104556678B (zh) 一种量子点掺杂微晶玻璃光纤的制备方法
JP2016504986A (ja) 遷移金属を含有するイオン交換可能な着色ガラス
WO2008111602A1 (ja) ガラス繊維用ガラス組成物、ガラス繊維、ガラス繊維の製造方法及び複合材
EP2107401A3 (en) Silica-based single core optical fiber, silica-based multi core optical fiber, and fabrication method for the same
CN104865635B (zh) 一种椭圆包层保偏大模场增益光纤
CN104609722B (zh) 一种管‑熔体共拉铋掺杂光纤的制备方法
CN104556710B (zh) 一种异形玻璃纤维及其制备方法
JPS5838370B2 (ja) 高強度光学プレフォ−ムの製造方法
WO2020155707A1 (zh) 一种大尺寸低损耗的光纤预制棒及其制备方法
CN108439789A (zh) 一种透明纳米晶复合玻璃光纤的制备方法
CN105236730B (zh) 一种超宽带荧光玻璃光纤及其制备方法
AU730505B2 (en) Ferrule for optical fiber connector
CN212134989U (zh) 一种激光传输光纤
CN102976607B (zh) 一种单模硫系玻璃光纤及其制作方法
CN104098275A (zh) 双包层光纤用锗碲酸盐玻璃及其光纤的制备方法
CN110922048B (zh) 一种全固态锗酸盐玻璃复合光子晶体光纤及其制备方法
CN106371168A (zh) 一种制备双包层有源光纤的方法
CN107235640A (zh) 一种Nd3+/Ho3+共掺实现2.0μm激光的碲酸盐光纤及其制备方法
CN101486531A (zh) 2μm高掺铥氟磷酸盐玻璃光纤及其制备方法
CN105068178B (zh) 一种近红外发光铋掺杂多组分光纤及制备方法
JP2015094785A (ja) 光学素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant